新人教版初中数学九年级上册单元测试第21章一元二次方程含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 一元二次方程全章测试
一、填空题
1.一元二次方程x 2-2x +1=0的解是______.
2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.
3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =
______.
4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.
5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______.
6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______.
7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.
8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简
结果是______.
二、选择题
9.方程x 2-3x +2=0的解是( ).
A .1和2
B .-1和-2
C .1和-2
D .-1和2
10.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).
A .有两个不相等的实数根
B .有两个相等的实数根
C .没有实数根
D .无法确定
11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).
A .没有实数根
B .可能有且只有一个实数根
C .有两个不相等的实数根
D .有两个不相等的实数根
12.如果关于x 的一元二次方程02
22=+
-k x x 没有实数根,那么k 的最小整数值是( ). A .0 B .1 C .2 D .3
13.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).
A .m 不能为0,否则方程无解
B .m 为任何实数时,方程都有实数解
C .当2<m <6时,方程无实数解
D .当m 取某些实数时,方程有无穷多个解
三、解答题
14.选择最佳方法解下列关于x 的方程:
(1)(x +1)2=(1-2x )2. (2)x 2-6x +8=0.
(3).02222=+-x x
(4)x (x +4)=21.
(5)-2x 2+2x +1=0.
(6)x 2-(2a -b )x +a 2-ab =0.
15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次
三项式的值都是正数.
16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.
(1)求k 的取值范围;
(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.
17.已知关于x 的两个一元二次方程:
方程:02132)12(22=+
-+-+k k x k x ① 方程:04
92)2(2=+++-k x k x ② (1)若方程①、②都有实数根,求k 的最小整数值;
(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是
______(填方程的序号),并说明理由;
(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.
18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c
02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.
19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m,BD =6m,动点M 从A 出发沿AC 方向以2m/s
匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 4
12
答案与提示
第二十一章 一元二次方程全章测试
1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤
5.4. 6.⋅-
4
9 7.2. 8.3. 9.A. 10.A. 11.A. 12.D. 13.C. 14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x
(4)x 1=-7,x 2=3; (5);2
31,23121-=+=x x (6)x 1=a ,x 2=a -b .
15.变为2(x -1)2+4,证略.
16.(1)k <2;(2)k =-3.
17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆ 2>0> ∆ 1;(3)k
=5时,方程②的根为;2
721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x 18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2.
19.设出发后x 秒时,⋅=∆4
1MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--4
1)3)(24(21x x 解得);s (2
25,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(2
1x x --⋅=41 解得);s (2
521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(2
1x x ⋅41 解得).s (2
25+=x 综上所述,出发后
s,225+或s 25时,△MON 的面积为.m 412。