考研机械原理复试
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 步进电动机的原理
答:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
通常电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。
该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。
当定子的矢量磁场旋转一个角度。
转子也随着该磁场转一个角度。
每输入一个电脉冲,电动机转动一个角度前进一步。
它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。
改变绕组通电的顺序,电机就会反转。
所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动。
2. 间歇机构和间歇机构的原理
答:有些机械需要其构件周期地运动和停歇。
能够将原动件的连续转动转变为从动件周期性运动和停歇的机构,称为间歇运动机构。
例如牛头刨床工作台的横向进给运动,电影放映机的送片运动等都用有间歇运动机构。
常见的间歇运动机构有:棘轮机构、槽轮机构、连杆机构和不完全齿轮机构。
间歇运动机构可分为单向运动和往复运动两类。
凸轮机构、平面连杆机构、不完全齿轮、槽轮机构、棘轮机构、双向棘爪机构。
3. 三极管的工作原理
答: 三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件•其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。
晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。
而每一种又有NPN和PNP 两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。
两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。
对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。
当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。
在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正偏,发射区的多数载流子(电子)及基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流了。
由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得:
Ie=Ib+Ic
这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:
β1=Ic/Ib
式中:β1--称为直流放大倍数,
集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:
β= △Ic/△Ib
式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。
三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。
三极管放大时管子内部的工作原理
1、发射区向基区发射电子
电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。
同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。
2、基区中电子的扩散与复合
电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。
也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。
3、集电区收集电子
由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。
另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。
4. 中断的含义及功能
答:中断装置和中断处理程序统称为中断系统。
中断系统是计算机的重要组成部分。
实时控制、故障自动处理、计算机与外围设备间的数据传送往往采用中断系统。
中断系统的应用大大提高了计算机效率。
中断是实现多道程序设计的必要条件。
中断是CPU对系统发生的某个事件作出的一种反应。
引起中断的事件称为中断源。
中断源向CPU提出处理的请求称为中断请求。
发生中断时被打断程序的暂停点称为断点。
CPU暂停现行程序而转为响应中断请求的过程称为中断响应。
处理中断源的程序称为中断处理程序。
CPU执行有关的中断处理程序称为中断处理。
而返回断点的过程称为中断返回。
中断的实现实行软件和硬件综合完成,硬件部分叫做硬件装置,软件部分称为软件处理程序。
5. 自激震荡
答:如果在放大器的输入端不加输入信号,输出端仍有一定的幅值和频率的输出信号,这种现象叫做自激振荡。
可以采用频率补偿(又称相位补偿)的方法,消除自激振荡。
常用补偿方法有:
(电容滞后补偿:在放大电路中选择时间常数最大的回路内对地并联一个小电容,这样当相移处于180度时,其高频放大倍数幅值下降到0以下,由于这种补偿是该频率所对应的相位滞后,故称滞后补偿。
其他还有RC滞后补偿和密勒效应补偿);
6. 微机原理与接口
答:“微机原理与接口技术”课程主要有基于51 系列单片机和基于80x86CPU的两种模式,两种模式各有所长。
考虑到以Intel CPU 为核心的PC系列微型计算机结构的完整性和应用普及性,同时考虑到原理性课程的讲解平台不宜太复杂,本书选用以8086/8088CPU为主来介绍微型计算机工作原理、汇编语言及接口技术。
除了该课程的基本内容外,本书还增加了现代PC常用的总线技术、存储器管理、80x86/Pentium微处理器的发展等内容。
特别是考虑到PC作为上位机广泛应用于各种监测、控制、网络通信等场合,其在接口的应用方式上与芯片级接口有很大不同,本书从PC系统应用的需求出发,增加了PC的软件体系与软件接口基础知识、基于PC的应用系统设计举例。
这样,读者在学习传统的微机硬件系统工作原理的基础上,也学习到更实用的总线技术,了解PC系统软件体系及接口,为进一步理解和应用纷繁复杂的微型计算机新技术打下基础。
7. 自动控制装置有哪些部分组成
答:由执行元件、测量元件和控制元件三部分组成。
执行元件用于改变被控量,如电机作为执行元件可以改变机械臂的角度;
测量元件用于测量被控量,如采用旋转变压器或者码盘等角位置测量元件可以检测机械臂的转角;
控制元件用于实现闭环控制,改善被控系统性能,一般采用模拟电路、DSP、PLC或者计算机等部件实现,可以校正被控对象,改变系统开环传递函数,使闭环系统满足一定的性能指标要求。
8. 时间常量T是什么
答:
9. PID控制包括哪些环节,以及各参数对系统的影响
答:当今的自动控制技术都是基于反馈的概念。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
PID(比例(proportion)、积分(integration)、微分(differentiation))控制器作为最早实用化的控制器已有70多年历史,现在仍然是应用最广泛的工业控制器。
PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制器的参数整定是控制系统设计的核心内容。
它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。
PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
两种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
现在一般采用的是临界比例法。
利用该方法进行PID控制器参数的整定步骤如下:
(1)首先预选择一个足够短的采样周期让系统工作;
(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;
(3)在一定的控制度下通过公式计算得到PID控制器的参数。
此条应该不属于大的,抽象的PID控制理论的内容了,而是PID理论的具体应用。
10. 反接制动与能耗制动有什么区别
答:反接制动是电机的一种制动方式,它通过反接相序,使电机产生起阻滞作用的反转矩以便制动电机。
所谓能耗制动,即在电动机脱离三相交流电源之后,定子绕组上加一个直流电压,即通入直流电流,利用转子感应电流与静止磁场的作用已达到制动的目的。
能耗制动是把动能转变为电能,在把电能转变为热能消耗掉、来达到制动的目的。
反接制动是通过改变电机输入电源的相序(ABC)相、即改变电机旋转方向来达到制动的目的,制动太硬。
能耗制动节能科学、整流管也好买。
反接制动除了控制电路简单外没有什么优势。
11. 三极管属于电压控制器还是电流控制器
答:电流
12. 异步电机的启动方法
答:鼠笼式
1、直接起动,电机直接接额定电压起动。
2、降压起动有:
(1)定子回路串对称三相电阻获电抗器降压起动;
(2)星形-三角形启动器起动;
(3)软起动器起动;
(4)用自耦变压器起动。
绕线式:1主机切除启动电阻法2转子回路串频敏变阻器启动法
13. 数学期望、方差、随机变量、正态分布
答:数学期望,离散随机变量的一切可能取值与其对应的概率P的乘积之和称为数学期望,记为E. 连续型随机变量X的概率密度函数为f(x),若积分
绝对收敛,则称此积分值为随机变量X的数学期望,记为:
方差是各个数据与平均数之差的平方的和的平均数。
随机变量设X=X(a)是定义在样本空间欧米伽上的值,则称X=X(a)为随机变量。
常用大写字母XYZ等表示。
定义:若随机变量
服从一个位置参数为
、尺度参数为
的概率分布,且其概率密度函数为
则这个随机变量就称为正态随机变量,正态随机变量服从的分布就称为正态分布,记作
,读作
服从
,或
服从正态分布。
当
时,正态分布就成为标准正态分布
正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。
正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。
14. PWM是什么技术
答:脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
15. 放大电路中的增益和带宽是什么
答:、增益:四种放大电路分别具有不同的增益,如电压增益Av、电流增益AI、互阻增益AR及互导增益A G。
它们实际反映了放大电路在输入信号控制下,将供电电源能量转换为信号能量的能力;
带宽(band width)在模拟信号系统又叫频宽,是指在固定的的时间可传输的资料数量,亦即在传输管道中可以传递数据的能力。
在数字设备中,频宽通常以bps表示,即每秒可传输之位数。
在模拟设备中,频宽通常以每秒传送周期或赫兹(Hz)来表示。
对于数字信号而言,带宽指单位时间能通过链路的数据量。
[
16. 戴维宁定理
答:戴维南定理(Thevenin's theorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。
电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。
17. 谐振
答:谐振即物理的简谐振动,在物理学里,有一个概念叫共振:当策动力的频率和系统的固有频率相等时,系统受迫振动的振幅最大,这种现象叫共振。
电路里的谐振其实也是这个意思:当电路中激励的频率等于电路的固有频率时,电路的电磁振荡的振幅也将达到峰值。
实际上,共振和谐振表达的是同样一种现象。
这种具有相同实质的现象在不同的领域里有不同的叫法而已。
18. TTL COMS含义及应用
答:全称Transistor-Transistor Logic,即BJT-BJT逻辑门电路,是数字电子技术中常用的一种逻辑门电路,应用较早,技术已比较成熟。
TTL主要有BJT(Bipolar Junction Transistor 即双极结型晶体管,晶体三极管)和电阻构成,具有速度快的特点。
最早的TTL门电路是74系列,后来出现了74H系列,74L系列,74LS,74AS,74ALS等系列。
但是由于TTL功耗大等缺点,正逐渐被CMOS电路取代。
MOS管,金属氧化物半导体场效应晶体管,类似于一种控制开关,在栅端输入信号来控制开关的开启。
当开关打开的时候,信号从MOS的源端流向漏端。
所谓CMOS,既互补MOS,就是说两种MOS极性相反的MOS,一种是高电压开启,一种是低电压开启。
这样就可以进行逻辑运算了。
19. 直流电机的调速
答:直流电机的转速计算公式如下:n=(U-IR)/Kφ,其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,φ为每极磁通量,K为电动机结构参数。
1改变电枢电路外串电阻Rad2电枢供电电压3主磁通
20. 机电一体化包括哪几个部分
答:五大组成要素:一个机电一体化系统中一般由结构组成要素、动力组成要素、运动组成要素、感知组成要素、智能组成要素五大组成要素有机结合而成。
机械本体(结构组成要素)是系统的所有功能要素的机械支持结构,一般包括有机身、框架、支撑、联接等。
动力驱动部分(动力组成要素)依据系统控制要求,为系统提供能量和动力以使系统正常运行。
测试传感部分(感知组成要素)对系统的运行所需要的本身和外部环境的各种参数和状态进行检测,并变成可识别的信号,传输给信息处理单元,经过分析、处理后产生相应的控制信息。
控制及信息处理部分(职能组成要素)将来之测试传感部分的信息及外部直接输入的指令进行集中、存储、分析、加工处理后,按照信息处理结果和规定的程序与节奏发出相应的指令,控制整个系统有目的的运行。
执行机构(运动组成要素)根据控制及信息处理部分发出的指令,完成规定的动作和功能。
21. 运算放大器
答:运算放大器(简称“运放”)是具有很高放大倍数的电路单元。
在实际电路中,通常结合反馈网络共同组成某种功能模块。
由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”。
运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。
随着半导体技术的发展,大部分的运放是以单芯片的形式存在。
运放的种类繁多,广泛应用于电子行业当中。
运放如图有两个输入端a(反相输入端),b(同相输入端)和一个输出端o。
也分别被称为倒向输入端非倒向输入端和输出端。
当电压U-加在a端和公共端(公共端是电压为零的点,它相当于电路中的参考结点。
)之间,且其实际方向从a 端高于公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反。
当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同。
为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性。
▪通用型高阻型低温漂型▪ 高速型▪ 低功耗型▪高压大功率型
22. 单片机和PLC控制的区别
答:单片机和PLC在原理上来讲属于同一类东西。
但是区别也较大。
比如编程方式上的不一样,PLC采用梯形图或逻辑语句来编程,而单片机采用汇编语言或高级语言来编程。
另外工作方式也会不一样,传统的PLC采用扫描的工作方式,而单片机采用顺序程序+中断的方式工作(当然现在也有一些PLC引入了中断,但没有单片机的中断能力强)。
在控制量方面,因为两者的内部结构相似,都是数字电路,所以只要加上ADC和DAC,均可以控制数字量和模拟量。
不同的是两者的输出特性是不一样的。
PLC的输出可以直接驱动继电器,
而单片机的输出只能驱动有限的逻辑门电路。
PLC可以直接输入24V-220V交流或直流,输出可控制继电器,而单片机的工作电压一般不超过5V直流,输出也只能是TTL或CMOS 电平。
单片机可靠性没PLC高,PLC控制成本比单片机高!
PLC应用要比单片机简单,开发周期要短。
工业控制大多用PLC,要求不高的场合或须成本控制的地方会用到单片机。
PLC针对工业控制有很多现成的东西,都是模块化的,而单片机很多应用场合都要从零开始。
23. 车刀和车床以及加工工艺是重点
24. 他励直流电机调速及特点
答:1改变电枢电路外串电阻Rad,简单,缺点,机械特性较软,稳定性差,空载或轻载时调速范围不大,调速电阻耗能多2供电电压可实现无级调速,稳定性高,范围较大,应用广泛,但只能在额定转速下调节3主磁通可实现无级调速,弱磁升速,额定转速以上调节,特性较软,调速范围小,额定转速以下配合调压调速,以上弱磁调速。
25. DMA
答:DMA(Direct Memory Access,直接内存存取) 是所有现代电脑的重要特色,它允许不同速度的硬件装置来沟通,而不需要依于CPU 的大量中断负载。
否则,CPU 需要从来源把每一片段的资料复制到暂存器,然后把它们再次写回到新的地方。
在这个时间中,CPU 对于其他的工作来说就无法使用。
DMA 传输将数据从一个地址空间复制到另外一个地址空间。
当CPU 初始化这个传输动作,传输动作本身是由DMA 控制器来实行和完成。
典型的例子就是移动一个外部内存的区块到芯片内部更快的内存区。
像是这样的操作并没有让处理器工作拖延,反而可以被重新排程去处理其他的工作。
DMA 传输对于高效能嵌入式系统算法和网络是很重要的。
26. 状态反馈观测器
答:状态反馈是系统的状态变量通过比例环节传送到输入端去的反馈方式。
状态反馈是体现现代控制理论特色的一种控制方式。
状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。
但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。
27. 放大器的虚地
答:“虚短”是指在理想情况下,两个输入端的电位相等,就好像两个输入端短接在一起,但事实上并没有短接,称为“虚短”。
虚短的必要条件是运放引入深度负反馈。
“虚断”指在理想情况下,流入集成运算放大器输入端电流为零。
这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路,但事实上并没有开路,称为“虚断”。
“虚地”是深度电压并联负反馈放大器的重要特点,是指集成运放的反相输入端为虚地点,即u_=0。
28. 傅里叶变换与拉氏变换的关系
答:傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。
许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。
拉氏变换即拉普拉斯变换。
为简化计算而建立的实变量函数和复变量函数间的一种函数变换。
对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易
得多。
拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。
在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。
29. 静态RAM和动态RAM
答:随机存取存储器(英文:random access memory,RAM)又称作“随机存储器”,是与CPU直接交换数据的内部存储器,也叫主存。
它可以随时读写,而且速度很快,通常作为操作系统或其他正在运行中的程序的临时数据存储媒介。
一般计算机系统使用的随机存取内存(RAM)可分动态(DRAM)与静态随机存取内存(SRAM)两种,差异在于DRAM需要由存储器控制电路按一定周期对存储器刷新,才能维系数据保存,SRAM的数据则不需要刷新过程,在上电期间,数据不会丢失。
SRAM存储电路以双稳态触发器为基础,其一位存储单元类似于D锁存器。
数据一经写入只要不关掉电源,则将已知保持有效。
而DRAM存储电路以电容为基础,靠芯片内部电容电荷的有无来表示信息,为防止由于电容漏电所引起的信息丢失,就需要在一定的时间间隔内对电容进行充电,这种充电的过程称为DRAM的刷新。
30. 如何消除差模噪声和共模噪声
答:共模噪声又称为非对称噪声或线路对地的噪声,在使用交流电源的电气设备的输入端(输电线和中线)都存在这种噪声,两者对地的相位保持同相。
通常有三种基本对策用于共模噪声的抑制: 系统接地方式的改进,消弱噪声源以及噪声屏蔽。
差模噪声又称为正常型、对称噪声或线路间噪声,它存在于交流线路和中性导线中,二者相位差为180°。
差模噪声的电流沿着一条交流线流出,并沿着另一条交流线返回。
在地线中不存在差模噪声电流。
差模噪声可以通过在电磁干扰滤波器中使用X电容进行抑制,电容连接在输电线(输电线和中线)之间,对差模信号起到高频分流的作用。
在差模噪声非常大的情况下,可能需要增加差模抑制电感。
有些混合型电感所包含的线圈可以同时抑制共模和差模噪声。
31. 232与485的区别
答:1.RS-232-C是美国电子工业协会EIA(Electronic Industry Association)制定的一种串行物理接口标准。
RS是英文“推荐标准”的缩写,232为标识号,C表示修改次数。
RS-232-C 总线标准设有25条信号线,包括一个主通道和一个辅助通道,在多数情况下主要使用主通道,对于一般双工通信,仅需几条信号线就可实现,如一条发送线、一条接收线及一条地线。
RS-232-C标准规定的数据传输速率为每秒50、75、100、150、300、600、1200、2400、4800、9600、19200波特。
RS-232-C标准规定,驱动器允许有2500pF的电容负载,通信距离将受此电容限制,例如,采用150pF/m的通信电缆时,最大通信距离为15m;若每米电缆的电容量减小,通信距离可以增加。
传输距离短的另一原因是RS-232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信。
2.RS-485总线, 串口是一种接口标准,它规定了接口的电气标准,简单说只是物理层的一个标准。
没有规定接口插件电缆以及使用的协议,所以只要我们使用的接口插件电缆符合串口标准就可以在实际中灵活使用,在串口接口标准上使用各种协议进行通讯及设备控制。
所以485的使用范围广,通用性强。
在要求通信距离为几十米到上千米时,广泛采用RS-485 串行总线标准。
RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。
加上总线收发器具有高灵敏度,能检测低。