数学:2.2《间接证明》课件(苏教选修1-2)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
间接证明(例题1)
求证:正弦函数没有比2小的正周期.
思路
先求出周期
用反证法证明 2 是最小正周期.
(例1)求证:正弦函数没有比2小的正周期.
解
假设T是正弦函数的周期
则对任意实数x都有:
sin(x T ) sin x
令x=0,得
sinT 0
即
T k , k Z.
假设最小正周期 0 T 2 故T
从而对任意实数x都应有
sin(x ) sin x
这与
sin( ) sin 矛盾.
2
2
因此,原命题成立.
间接证明(习题1)
1.求证:若一个整数的平方是偶数,则这个数也是偶数.
证: 假设这个整数是奇数,可以设为2k+1, k Z.
则有 (2k 1)2 4k 2 4k 1
而 4k2 4k 1 (k Z)不是偶数 这与原命题条件矛盾.
(3)式表 明,p 2是2的倍 数,所以p也是2的倍 数.
则p与q都是2的倍数,它们至少有公约数2,
这与p, q互素矛盾,因此 2不是有理数.
(回顾小结)
反证法
间接证明
同一法 枚举法
反设
否定命题不成立 归谬
原结论成立 存真
间接证明(基本概念)
反证法的过程包括以下三个步骤:
(1) 反设——假设命题的结论不成立,即假定 原命题的反面为真; (2) 归谬——从反设和已知条件出发,经过一 系列正确的逻辑推理,得出矛盾结果;
(3) 存真——由矛盾结果,断定反设不真,从 而肯定原结论成立.
2.2.2间接证明
间接证明(问题情境)
在《数学( 2 必修)》第三章中,如何证明 命题“在长方体ABCD A1B1C1D1中, AB与A1C是异面直线”
因此, AB与A1C是异面直线 .
间接证明(基本概念)
间接证明是不同于直接证明的又一类
证明方法.
反证法是一种常用的间接证明方法.
否定结论
导致矛盾
(例题2)证明:2不是有理数 .
假设 2是有理数,可设 2 q ( 1),
p
互素
其中p, q为互素的整数, q 0.
将(1)两边平方,变形得2 p2 q2 (2)
(2)式表 明,q 2是2的倍 数,从而q也 是2的倍 数.
设q 2l(l N ),代入(2)式得
p2 2l 2 ( 3)