人教版初中数学三角形经典测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学三角形经典测试题
一、选择题
1.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()
A.B.C.
D.
【答案】C
【解析】
【分析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、72+242=252,152+202≠242,(7+15)2+202≠252,故A不正确;
B、72+242=252,152+202≠242,故B不正确;
C、72+242=252,152+202=252,故C正确;
D、72+202≠252,242+152≠252,故D不正确,
故选C.
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足
a2+b2=c2,那么这个三角形是直角三角形.
2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()
A.32B.5 C.4 D.31
【答案】B
【解析】
【分析】
【详解】
由题意易知:∠CAB=45°,∠ACD=30°,
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=6,则AC=BC=32.
同理可求得:AO=OC=3.
在Rt△AOD1中,OA=3,OD1=CD1-OC=4,
由勾股定理得:AD1=5.故选B.
3.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()
A.8cm B.10cm C.12cm D.14cm
【答案】B
【解析】
【分析】
根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.
【详解】
∵BD是∠ABC的平分线,
∴∠ABD=∠EBD.
又∵∠A=∠DEB=90°,BD是公共边,
∴△ABD≌△EBD (AAS),
∴ AD =ED ,AB =BE ,
∴ △DEC 的周长是DE +EC +DC
=AD +DC +EC
=AC +EC =AB +EC
=BE +EC =BC
=10 cm.
故选B.
【点睛】
本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
4.如图,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠OAC 等于( )
A .65°
B .95°
C .45°
D .85°
【答案】B
【解析】
【分析】 根据OA =OB ,OC =OD 证明△ODB ≌△OCA ,得到∠OAC=∠OBD ,再根据∠O =50°,∠D =35°即可得答案.
【详解】
解:OA =OB ,OC =OD ,
在△ODB 和△OCA 中,
OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩
∴△ODB ≌△OCA (SAS ),
∠OAC=∠OBD=180°-50°-35°=95°,
故B 为答案.
【点睛】
本题考查了全等三角形的判定、全等三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
5.△ABC 中,∠A :∠B :∠C =1:2:3,最小边BC =4cm ,则最长边AB 的长为( )cm
A.6 B.8 C.5D.5
【答案】B
【解析】
【分析】
根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.
【详解】
设∠A=x,
则∠B=2x,∠C=3x,
由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,
解得x=30°,
即∠A=30°,∠C=3×30°=90°,
此三角形为直角三角形,
故AB=2BC=2×4=8cm,
故选B.
【点睛】
本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.
6.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()
A.6
5
B.
8
5
C.
12
5
D.
24
5
【答案】D
【解析】
【分析】
连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.
【详解】
解:连接AD
∵AB=AC,D为BC的中点,BC=12,
∴AD⊥BC,BD=DC=6,
在Rt△ADB中,由勾股定理得:AD=2222
1068
AB BD=+=,
∵S△ADB=1
2
×AD×BD=
1
2
×AB×DE,
∴DE=
8624
105 AD BD
AB
⨯⨯
==,
故选D.
【点睛】
本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.
7.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
8.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠
B=30°,则DE的长是()
A.12 B.10 C.8 D.6
【答案】C
【解析】
【分析】
由折叠的性质可知;DC=DE,∠DEA=∠C=90°,在Rt△BED中,∠B=30°,故此BD=2ED,从而得到BC=3BC,于是可求得DE=8.
【详解】
解:由折叠的性质可知;DC=DE,∠DEA=∠C=90°,
∵∠BED+∠DEA=180°,
∴∠BED=90°.
又∵∠B=30°,
∴BD=2DE.
∴BC=3ED=24.
∴DE=8.
故答案为8.
【点睛】
本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE是解题的关键.
9.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB 于点E.如果点M是OP的中点,则DM的长是()
A.2 B.2C.3D.23
【答案】C
【解析】
【分析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
【详解】
解:∵OP平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE=1
2
CP=1,
∴PE=22
CP CE3
-=,
∴OP=2PE=23,
∵PD⊥OA,点M是OP的中点,
∴DM=1
2
OP=3.
故选C.
考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
10.如图,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE, CE,如图:在射线AD上取点F连接BF, CF,如图,依此规律,第n个图形中全等三角形的对数是()
A.n B.2n-1 C.
(1)
2
n n+
D.3(n+1)
【答案】C
【解析】
【分析】
根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,
△BDE≌△CDE,△ABE≌△ACE有3对全等三角形;图3中有6对全等三角形,根据数据可分析出第n个图形中全等三角形的对数.
【详解】
∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
在△ABD与△ACD中,
AB=AC,
∠BAD=∠CAD,
AD=AD,
∴△ABD≌△ACD.
∴图1中有1对三角形全等;
同理图2中,△ABE≌△ACE,
∴BE=EC,
∵△ABD≌△ACD.
∴BD=CD,
又DE=DE,
∴△BDE≌△CDE,
∴图2中有3对三角形全等;
同理:图3中有6对三角形全等;
由此发现:第n个图形中全等三角形的对数是
()1
2
n n+
.
故选C.
【点睛】
考查全等三角形的判定,找出数字的变化规律是解题的关键.
11.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
【详解】
要使△ABP 与△ABC 全等,必须使点P 到AB 的距离等于点C 到AB 的距离,即3个单位长度,所以点P 的位置可以是P 1,P 2,P 4三个,故选C.
12.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:
①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )
A .2个
B .3个
C .4个
D .5个
【答案】C
【解析】
【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.
【详解】
∵∠1=∠2,
∴AC ∥DE ,故①正确;
∵AC ⊥BC ,CD ⊥AB ,
∴∠ACB=∠CDB=90°,
∴∠A+∠B=90°,∠3+∠B=90°,
∴∠A=∠3,故②正确;
∵AC ∥DE ,AC ⊥BC ,
∴DE ⊥BC ,
∴∠DEC=∠CDB=90°,
∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,
∴∠3=∠EDB ,故③正确,④错误;
∵AC ⊥BC ,CD ⊥AB ,
∴∠ACB=∠CDA=90°,
∴∠A+∠B=90°,∠1+∠A=90°,
∴∠1=∠B ,故⑤正确;
即正确的个数是4个,
故选:C .
【点睛】
此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.
13.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a 和b .若8ab =,大正方形的边长为5,则小正方形的边长为( )
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】 由题意可知:中间小正方形的边长为a ﹣b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.
【详解】
解:由题意可知:中间小正方形的边长为:a ﹣b , ∵每一个直角三角形的面积为:
12ab =12×8=4, ∴根据4×12
ab +(a ﹣b )2=52=25, 得4×4+(a ﹣b )2=25,
∴(a ﹣b )2=25﹣16=9,
∴a ﹣b =3(舍负),
故选:C .
【点睛】
本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.
14.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在AD
CD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )
A.6 B.8 C.9 D.12
【答案】B
【解析】
【分析】
根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH
是等腰直角三角形,于是得到DE=
2
2
EH=
2
2
EF,EF=
2
2
AE,即可得到结论.
【详解】
解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,
∵四边形EFGH为正方形,
∴EH=EF,∠AFE=∠FEH=90°,
∴∠AEF=∠DEH=45°,
∴AF=EF,DE=DH,
∵在Rt△AEF中,AF2+EF2=AE2,
∴AF=EF 2 AE,
同理可得:DH=DE=
2
2
EH
又∵EH=EF,
∴DE 2
EF
22
AE=
1
2
AE,
∵AD=AB=6,
∴DE=2,AE=4,
∴EH2DE=2,
∴EFGH的面积为EH2=(2)2=8,故选:B.
【点睛】
本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.
15.如图,正方体的棱长为6cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )
A .9
B .310
C .326+
D .12
【答案】B
【解析】
【分析】 将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.
【详解】
解:如图,AB=22(36)3310++= .
故选:B .
【点睛】
此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.
16.如图,D 、E 分别是ABC V 边AB 、BC 上的点,2AD BD =,点E 为BC 中点,设ADF V 的面积为1S ,CEF △的面积为2S ,若ABC S =V 9,则12S S -=( )
A .12
B .1
C .32
D .2
【答案】C
【解析】
【分析】
根据12S S -=ABE BCD S S -V V ,根据三角形中线的性质及面积求解方法得到ABE S V ,BCD S △,故可求解.
【详解】
∵点E 为BC 中点
∴ABE S V =
12
ABC S =V 4.5 ∵2AD BD = ∴BCD S △=13
ABC S =V 3 ∵ABE BCD S S -V V =()()ADF CEF BEFD BEFD S S S S +-+V V 四边形四边形=ADF CEF S S -V V ∴12S S -=4.5-3=
32
故选C .
【点睛】
此题主要考查三角形的面积求解,解题的关键是熟知中线的性质.
17.如图,在平面直角坐标系中,已知点A (﹣2,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的正半轴于点C ,则点C 的横坐标介于( )
A .0和1之间
B .1和2之间
C .2和3之间
D .3和4之间
【答案】B
【解析】
【分析】 先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC
的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.
【详解】
∵点A ,B 的坐标分别为(﹣2,0),(0,3),
∴OA =2,OB =3,
在Rt △AOB 中,由勾股定理得:AB =
∴AC =AB ,
∴OC 2,
∴点C 2,0),
∵34<< ,
∴122<< ,
即点C 的横坐标介于1和2之间,
故选:B .
【点睛】
本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.
18.满足下列条件的是直角三角形的是( )
A .4BC =,5AC =,6A
B =
B .13B
C =,14AC =,15AB = C .::3:4:5BC AC AB =
D .::3:4:5A B C ∠∠∠= 【答案】C
【解析】
【分析】
要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
【详解】
A .若BC=4,AC=5,AB=6,则BC 2+AC 2≠A
B 2,故△AB
C 不是直角三角形; B.若13
BC =,14AC =,15AB =,则AC 2+AB 2≠CB 2,故△ABC 不是直角三角形; C .若BC :AC :AB=3:4:5,则BC 2+AC 2=AB 2,故△ABC 是直角三角形;
D .若∠A :∠B :∠C=3:4:5,则∠C <90°,故△ABC 不是直角三角形;
故答案为:C .
【点睛】 本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.
19.如图,已知A ,D,B,E 在同一条直线上,且AD = BE, AC = DF,补充下列其中一个条件后,不一定能得到△ABC ≌△DEF 的是( )
A.BC = EF B.AC//DF C.∠C = ∠F D.∠BAC = ∠EDF 【答案】C
【解析】
【分析】
根据全等三角形的判定方法逐项判断即可.
【详解】
∵BE=CF,
∴BE+EC=EC+CF,
即BC=EF,且AC = DF,
∴当BC = EF时,满足SSS,可以判定△ABC≌△DEF;
当AC//DF时,∠A=∠EDF,满足SAS,可以判定△ABC≌△DEF;
当∠C = ∠F时,为SSA,不能判定△ABC≌△DEF;
当∠BAC = ∠EDF时,满足SAS,可以判定△ABC≌△DEF,
故选C.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
20.下列长度的三根小木棒能构成三角形的是()
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D
【解析】
【详解】
A.因为2+3=5,所以不能构成三角形,故A错误;
B.因为2+4<6,所以不能构成三角形,故B错误;
C.因为3+4<8,所以不能构成三角形,故C错误;
D.因为3+3>4,所以能构成三角形,故D正确.
故选D.。

相关文档
最新文档