三亚市高二下学期数学期末考试试卷(理科)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三亚市高二下学期数学期末考试试卷(理科)
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)二项式的展开式的常数项为第()项
A . 17
B . 18
C . 19
D . 20
2. (2分)若随机变量η的分布列如表:
η012345
P0.10.20.20.30.10.1
则当P(η<x)=0.8时,实数x的取值范围是()
A . x≤4
B . 3<x<4
C . 3≤x≤4
D . 3<x≤4
3. (2分) (2016高二下·信阳期末) 甲、乙两人进行射击比赛,他们击中目标的概率分别为和(两人是否击中目标相互独立),若两人各射击2次,则两人击中目标的次数相等的概率为()
A .
B .
C .
D .
4. (2分) (2019高二下·奉化期末) 在“石头、剪刀、布”游戏中,规定“石头赢剪刀、剪刀赢布、布赢石头”,现有小明、小泽两位同学玩这个游戏,共玩n局,每一局中每人等可能地独立选择一种手势.设小明赢小泽的局数为,且,则()
A . 1
B .
C .
D . 2
5. (2分)(2018·荆州模拟) 已知随机变量,其正态分布密度曲线如图所示,那么向正方形
中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()
注:, .
A . 6038
B . 6587
C . 7028
D . 7539
6. (2分)(2020·合肥模拟) 为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有()
A . 24
B . 36
C . 48
D . 64
7. (2分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在同一个兴趣小组的概率为()
A .
B .
C .
D .
8. (2分) (2019高三上·西湖期中) 我国古代数学典籍《九章算术》第七章“盈不足”章中有一道“两鼠穿墙”问题:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问两鼠在第几天相遇?()
A . 第2天
B . 第3天
C . 第4天
D . 第5天
9. (2分)把一个四棱锥的每一个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种不同颜色可供选择,那么不同的染色方法共有()
A . 420种
B . 300种
C . 360种
D . 540种
10. (2分) (2017高二下·台州期末) 如图,有6种不同颜色的涂料可供涂色,每个顶点只能涂一种颜色的涂料,其中A和C1同色、B和D1同色,C和A1同色,D和B1同色,且图中每条线段的两个端点涂不同颜色,则涂色方法有()
A . 720种
B . 360种
C . 120种
D . 60种
11. (2分) (2019高二下·吉林期末) 从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派议程种数是()
A . 70
B . 140
C . 420
D . 840
12. (2分)(2012·湖北) 设a∈Z,且0≤a≤13,若512012+a能被13整除,则a=()
A . 0
B . 1
C . 11
D . 12
二、填空题 (共4题;共13分)
13. (1分)(2020·榆林模拟) 设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则 ________ .(填>,<,=)
14. (1分)已知随机变量ξ服从正态分布 N(2,1),P(ξ≤3)=0.8413,则 P(ξ≤1)=________.
15. (1分) (2016高二下·民勤期中) 在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为________.
16. (10分) (2016高二下·故城期中) 已知的展开式的系数和比(3x﹣1)n的展开式的系数和大992,求(2x﹣)2n的展开式中:
(1)二项式系数最大的项;
(2)系数的绝对值最大的项.
三、三.解答题 (共8题;共95分)
17. (15分)设 .
(1)求的值;
(2)求的值;
(3)求的值
18. (10分) (2020高二下·广州期末) 关于x的不等式的解集为R.
(1)求实数m的值;
(2)若,且,求证: .
19. (10分)(2018·河北模拟) 已知数列的前项和恰好与的展开式中含项的系数相等.
(1)求数列的通项公式;
(2)记,数列的前项和为,求 .
20. (10分)(2019·绵阳模拟) 已知函数
(1) m=1时,求不等式f(x-2)+f(2x)>4的解集;
(2)若t<0,求证:≥ .
21. (15分)如图,从左到右有五个空格.
(1)向这五个格子填入0,1,2,3,4五个数,要求每个数都要用到,且第三个格子不能填0,则一共有多少不同的填法?
(2)若向这五个格子放入六个不同的小球,要求每个格子里都有球,问有多少种不同的放法?
(3)若给这五个空格涂上颜色,要求相邻格子不同色,现有红黄蓝三种颜色可供使用,问一共有多少不同的涂法?
22. (10分) (2017高一下·新余期末) 大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至11月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x元和销售量y件之间的一组数据如表所示:月份7891011
销售单价x元99.51010.511
销售量y件1110865
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?
参考公式:回归直线方程 =b +a,其中b= .
参考数据: =392, =502.5.
23. (10分) (2016高三上·黑龙江期中) 电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷体育迷合计
男
女1055
合计
附:K2= .
P(K2≥k)0.050.01
k 3.841 6.635
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).
24. (15分)(2017·菏泽模拟) 中学阶段是学生身体发育最重要的阶段,长时间熬夜学习严重影响学生的身体健康,某校为了解甲、乙两班学生每周自我熬夜学习的总时长(单位:时间),分别从这两个班中随机抽取6名同学进步调查,将他们最近一周自我熬夜学习的总时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周
自我熬夜学习的总时长超过22小时,则称为“过度熬夜”.
(1)请根据样本数据,分别估计甲,乙两班的学生平均每周自我熬夜学习时长的平均值;
(2)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率;
(3)从甲班、乙班的样本中各随机抽取2名学生的数据,记“过度熬夜”的学生人数为X,写出X的分布列和数学期望E(X).
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共13分)
13-1、
14-1、
15-1、
16-1、
16-2、
三、三.解答题 (共8题;共95分) 17-1、
17-2、
17-3、
18-1、
18-2、
19-1、
19-2、
20-1、
20-2、21-1、21-2、21-3、22-1、22-2、
23-1、23-2、24-1、24-2、
24-3、。