焦点坐标公式
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焦点坐标的计算公式是p/2,平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线,其中定点叫抛物线的焦点,定直线叫抛物线的准线,焦点坐标和准线方程是圆锥曲线的两个主要参数。
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。
其中定点叫抛物线的焦点,定直线叫抛物线的准线。
•
抛物线焦点坐标公式
•
几何领域的抛物线焦点弦弦长公式定义:如果一条倾斜角为α的直线过抛物线焦点F,并交抛物线于A。
B两点,则AB的长度为2P/(sinα)2(即2P除以sinα的平方)。
•
双曲线焦点坐标公式
•
焦点在x轴(-c,0)、(c,0);焦点在y轴:(0,-c)、(0,c)。
双曲线有两个焦点,焦点的横(纵)坐标满足c=a+b。
平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。
焦点在x轴(-c,0)、(c,0);焦点在y轴:(0,-c)、(0,c)。
双曲线有两个焦点,焦点的横(纵)坐标满足c=a+b。
平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。
•
椭圆焦点坐标公式
•
椭圆焦点坐标公式是a^2-b^2=c^2,其中a为长轴长,b为短轴长,c为焦距。
如果长轴长在x轴上的话,焦距为(C,0),(-C,0),如果长轴长在y轴上的话,焦距为(0,C),(0,-C)。
在数学中,椭圆是平面上到两个固定点的距离之和是常数的轨迹。
这两个固定点叫做焦点。
经由这个定义,这样画出一个椭圆:先准备一条线,将这条线的两端各绑在一点上(这两个点就当作是椭圆的两个焦点);取一支笔,将线绷紧,这时候两个点和笔就形成了一个三角形;然后拉着线开始作图,持续的使线绷紧,最后就可以完成一个椭圆的图形了。