13-5 劈尖干涉 牛顿环

合集下载

四川师范大学大学物理波动光学(13、14、15章)题解

四川师范大学大学物理波动光学(13、14、15章)题解

第十三章 光的干涉13–1 在双缝干涉实验中,两缝分别被折射率为n 1和n 2的透明薄膜遮盖,二者的厚度均为e ,波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的位相差 。

解:加入透明薄膜后,两束相干光的光程差为n 1e –n 2e ,则位相差为e n n e n e n )(2)(22121-=-=∆λλλλφ13–2 如图13-1所示,波长为λ的平行单色光垂直照射到两个劈尖上,两劈尖角分别为21θθ和,折射率分别为n 1和n 2,若二者分别形成的干涉条纹的明条纹间距相等,则21,θθ,n 1和n 2之间的关系是 。

解:劈尖薄膜干涉明条纹间距为θλθλn n L 2sin 2≈=( 很小) 两劈尖干涉明条纹间距相等221122θλθλn n =,所以 2211θθn n =或1221n n =θθ13–3 用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是: ; 。

解:因为干涉条纹的间距与两缝间距成反比,与屏与双缝之间的距离成正比。

故填“使两缝间距变小;使屏与双缝之间的距离变大。

”13–4 用波长为λ的单色光垂直照射如图13-2示的劈尖膜(n 1>n 2>n 3),观察反射光干涉,从劈尖顶开始算起,第2条明条纹中心所对应的膜厚度e = 。

解:劈尖干涉(n 1>n 2>n 3)从n 1射向n 2时无半波损失,产生明条纹的条件为2n 2e = k ,k = 0,1,2,3…在e = 0时,两相干光相差为0,形成明纹。

第2条明条纹中心所对应的膜厚度为k = 1,即2n 2e = ,则22n e λ=。

13–5 若在迈克耳孙干涉仪的可动反射镜移动0.620mm 的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为 。

解:设迈克耳孙干涉仪空气膜厚度变化为e ,对应于可动反射镜的移动,干涉条纹每移动一条,厚度变化2λ,现移动2300条,厚度变化mm 620.022300=⨯=λ∆e ,则 = 。

等厚干涉实验—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉
等厚干涉实验,是由洪堡用他的牛顿环提出来的,它是细节最精确的光学实验中的一种,从1832年到今天依然使用着这种工具,用于测量光的波长。

与常见的牛顿环相比,劈尖干涉实验对更精确的波长测量更加具有优势,因此得到了广泛的应用。

等厚干涉实验由牛顿环和劈尖干涉组成。

牛顿环是带有镶边的圆形玻璃,其边缘处有两个凹痕,它们被锯齿状分割或尖锐的割边填充,形成镶边,这种特殊的凹痕可以将光线形成一个尖锐而密集的条状图案。

光线由镶边穿过时,产生干涉。

劈尖干涉则不依靠物理凹痕来实现,而是依靠使用两个平行的光纤,其中一根分成两端,由一个非激光的光源为源入射在第一根光纤上,然后从两端发出,分别穿过另外一端光纤,最后从E型探头出发,形成劈尖边缘,从而产生干涉。

等厚干涉实验的基本原理是,入射光有一定的空间图案,其条纹会与凹痕或劈尖边缘相互叠加,形成干涉。

在实际操作中,将该干涉实验用于波长测量时,只要将数据拟合到模型公式,便可以准确测量出光的波长。

等厚干涉实验的优势在于,操作简便,测量准确,同时具有较高的精度。

而缺点是,由于采用凹痕或劈尖边缘,光线会产生不可预测的多普勒效应,而且各种环境因素会对结果造成影响,所以并不能完全准确测量光的波长。

牛顿环与劈尖干涉实验报告

牛顿环与劈尖干涉实验报告

牛顿环与劈尖干涉实验报告《牛顿环与劈尖干涉实验报告》牛顿环与劈尖干涉实验是光学实验中常见的一种实验方法,通过这两种实验可以观察到光的干涉现象。

在这篇报告中,我们将介绍这两种实验的原理和实验结果,并对实验数据进行分析和讨论。

首先我们来介绍一下牛顿环实验。

在牛顿环实验中,我们使用一块平面玻璃片和一个凸透镜,将它们放在一起形成一定的空气层。

当透镜上方有一束平行光照射到玻璃片上时,由于光的波动性质,光波在玻璃片和凸透镜之间发生干涉现象,从而形成一系列明暗相间的圆环,这就是牛顿环。

通过观察牛顿环的形态和颜色,我们可以测量出不同位置处的空气层厚度,并利用这些数据来计算光的波长和折射率等物理量。

接下来我们来介绍劈尖干涉实验。

劈尖干涉实验是利用劈尖装置产生的干涉条纹来观察光的干涉现象。

劈尖装置是由两块平行的玻璃片组成,它们之间有一个微小的夹角,当一束平行光照射到这两块玻璃片之间时,光波在两块玻璃片之间发生干涉,从而形成一系列明暗相间的条纹。

通过观察这些干涉条纹的形态和间距,我们可以测量出光的波长和折射率等物理量。

在实验过程中,我们使用了精密的光学仪器和精确的测量方法,得到了一系列的实验数据。

通过对这些数据进行分析和处理,我们得到了光的波长和折射率等物理量的测量结果,并与理论值进行了比较。

实验结果表明,我们得到的测量值与理论值吻合较好,证明了牛顿环与劈尖干涉实验的可靠性和准确性。

总之,牛顿环与劈尖干涉实验是一种重要的光学实验方法,通过这些实验可以直观地观察光的干涉现象,并且得到了较为准确的测量结果。

这些实验结果对于光学理论的研究和应用具有重要的意义,也为我们深入理解光的波动性质提供了重要的实验依据。

希望通过这篇报告的介绍,读者能够对牛顿环与劈尖干涉实验有一个更加深入的了解,并对光学实验方法和技术有所启发。

牛顿环和劈尖干涉实验报告

牛顿环和劈尖干涉实验报告

牛顿环和劈尖干涉实验报告牛顿环和劈尖干涉实验报告引言:光学是一门研究光的传播和性质的学科,而干涉实验则是光学中重要的实验手段之一。

本次实验旨在通过观察牛顿环和劈尖干涉实验现象,探究光的干涉现象及其原理。

一、牛顿环实验牛顿环实验是一种观察薄膜干涉现象的经典实验。

实验中,我们使用了牛顿环装置,即一块平凸透镜与一块平凹透镜相接触,形成一层薄膜。

通过照射白光,我们可以观察到一系列彩色的环状条纹。

牛顿环的形成是由于光的干涉现象。

当光线从空气进入到透明介质中时,会发生折射。

在透镜与薄膜接触的表面,由于介质折射率的变化,光线会发生反射和折射,形成反射和折射光波的干涉。

这种干涉现象导致了光的干涉条纹的形成。

牛顿环实验中,我们可以观察到一系列同心圆环,每个环的亮暗程度不同。

这是由于光的干涉现象导致的。

光线在透镜与薄膜接触表面发生反射和折射后,由于相位差的存在,不同波长的光会发生干涉,形成亮暗相间的条纹。

而圆环的大小则与光的波长和相位差有关。

二、劈尖干涉实验劈尖干涉实验是一种观察光的干涉现象的实验,通过劈尖形状的玻璃片,我们可以观察到一系列干涉条纹。

在劈尖干涉实验中,我们使用了一块劈尖形状的玻璃片。

当平行光通过劈尖玻璃片时,由于玻璃的折射率不均匀,光线会发生反射和折射,形成干涉现象。

我们可以观察到一系列亮暗相间的条纹。

劈尖干涉实验中,条纹的形成与光的干涉现象有关。

光线在劈尖玻璃片表面发生反射和折射后,由于相位差的存在,不同波长的光会发生干涉,形成亮暗相间的条纹。

而条纹的间距则与光的波长和相位差有关。

结论:通过牛顿环和劈尖干涉实验,我们可以观察到光的干涉现象,并了解到干涉现象的原理。

光的干涉现象是光学中重要的现象之一,对于研究光的性质和应用具有重要意义。

通过实验,我们更深入地理解了光的干涉现象,并对光学的研究有了更深入的认识。

在实验过程中,我们还发现了光的波动性质和光的相位差对干涉现象的影响。

这些发现对于进一步研究光的干涉现象和应用具有指导意义。

牛顿环和劈尖干涉实验报告

牛顿环和劈尖干涉实验报告

牛顿环和劈尖干涉实验报告
实验目的:
1.观察和研究牛顿环和劈尖干涉现象。

2.通过实验验证光的波动性和干涉现象。

实验原理:
1.牛顿环实验:当一块平行玻璃板接触在光源上方的凸透镜或光源上并与凸透镜或光源的平面接触很好且空间之间没有气泡时,光线会形成彩色的环,称为牛顿环。

这是由于平行玻璃板和凸透镜或光源形成的薄膜导致光的干涉现象。

2.劈尖干涉实验:通过将一束单色光通过劈尖上的狭缝后,使光线呈现出明暗交替的条纹模式。

这是由于光的波动性导致光的干涉现象。

实验步骤:
1.牛顿环实验:
a)将凸透镜或光源放置在平台上,并调整到合适的高度。

b)在平行玻璃板上放置一滴水或一小滴云母溶液,并将平行玻璃板轻轻放在凸透镜或光源上方。

c)观察并记录形成的彩色环的数量和颜色。

根据环的半径和波长,可以计算出平行玻璃板的折射率。

2.劈尖干涉实验:
a)将劈尖放置在光源前方,并保持其垂直于光线。

b)使用狭缝光源发出一束单色光线并通过劈尖上的狭缝。

c)在屏幕上观察并记录明暗交替的条纹模式。

根据条纹的间距
和波长,可以计算出光的波长或劈尖的缝宽。

实验结果:
1.牛顿环实验:观察到形成的彩色环的数量和颜色。

2.劈尖干涉实验:观察到明暗交替的条纹模式,并记录条纹的间距。

实验结论:
1.牛顿环实验:根据计算得到的彩色环的半径和波长,可以计算出平行玻璃板的折射率。

2.劈尖干涉实验:根据条纹的间距和波长计算,可以得出光的波长或劈尖的缝宽。

通过以上两个实验,我们验证了光的波动性和干涉现象,并通过计算得到了相关参数。

13-5 劈尖干涉 牛顿环

13-5 劈尖干涉  牛顿环
5

2nl
将 n 1.4, l 0.25cm, 7 10 cm ,代入得
7 10 sin 104 2nl 2 1.4 0.25
因sinθ很小,所以
第13章 光的干涉

5
sin 104 rad

如图:按明条纹出现的条件,ek 和 ek 1 应满足下
列两式:
2nek
2nek 1

2
k
(k 1)

2
第13章 光的干涉
13-5
劈尖干涉
牛顿环
7
n(ek 1 ek )

2
ek 1 ek

2n
l sin ek 1 ek
sin
第13章 光的干涉
13-5 讨论
劈尖干涉
牛顿环
4
(1) e 0 时,

2 (2)劈尖干涉的直条纹中,任何两条相邻明纹或暗纹 的距离是相同的,即条纹间距相等。
1 1 1 1 ek 1ll e sin ((k k 1) 1) k k sin k
5
逐渐变暗后又逐渐变亮(或由暗逐渐变亮后又逐渐变暗),好像干涉 条纹移动了一条似的。若观察到条纹移动了N条,则该处空气隙厚度 改变 N 的距离。
2 章 光的干涉 第13
某处的空气膜厚度改变 2 的过程中,将观察到该处干涉条纹由亮
13-5
劈尖干涉
牛顿环
6
例13.4 利用劈尖干涉可以测量微小角度.如图所示, 折射率 n 1.4 的劈尖在某单色光的垂直照射下,测得 两相邻明条纹之间的距离是l=0.25 cm.已知单色光在 空气中的波长 700 nm ,求劈尖的顶角θ.

牛顿环和劈尖干涉

牛顿环和劈尖干涉

牛顿环和劈尖干涉【实验目的】1. 学习用牛顿环测量透镜的曲率半径和劈尖的厚度。

2. 熟练使用读数显微镜。

【实验仪器】移测显微镜,钠光灯,牛顿环仪和劈尖装置。

【实验原理】测量透镜曲率半径的公式为:224()m nd dRm nλ-=-【实验内容】一、用牛顿环测量透镜的曲率半径1.调节牛顿环仪,使牛顿环的中心处于牛顿环仪的中心。

(为什么?)2. 将牛顿环仪置于显微镜平台上,调节半反射镜使钠黄光充满整个视场。

此时显微镜中的视场由暗变亮。

(一定能调出条纹吗?)3. 调节显微镜,直至看清十字叉丝和清晰的干涉条纹。

(注意:调节显微镜物镜镜筒时,只能由下向上调节。

为什么?)4. 观察条纹的分布特征。

察看各级条纹的粗细是否一致,条纹间隔是否一样,并做出解释。

观察牛顿环中心是亮斑还是暗斑,若为亮斑,如何解释?5. 测量暗环的直径。

转动移测显微镜读数鼓轮,同时在目镜中观察,使十字刻线由牛顿环中央缓慢向一侧移动然后退回第30环,自30环开始单方向移动十字刻线,每移动一环即记下相应的读数直到第25环,然后再从同侧第15环开始记数直到第10环;穿过中心暗斑,从另一侧第10环开始依次记数到第15环,然后从第25环记数直至第30环。

并将所测数据记入数据表格中。

(为什么测量暗环的直径,而不是测量亮环的直径?)6. 观察透射光束形成的牛顿环。

7. 观察白光产生的牛顿环(选做)二、利用劈尖测量薄片厚度(表格自拟)利用牛顿环测透镜的曲率半径【思考与讨论】1、用移测显微镜测量牛顿环直径时,若测量的不是干涉环直径,而是干涉环的同一直线上的弦长,对实验是否有影响?为什么?2、透射光能否形成牛顿环?它和反射光形成的牛顿环有什么区别?。

劈尖和牛顿环

劈尖和牛顿环

劈尖和牛顿环新教材第三册二十一章提到了两个薄膜干涉的装置——劈尖和牛顿环。

教材中并没有给出明确的说明,下面介绍以下它们的光学原理。

一.劈尖:干涉法检查平面的平整程度的装置光学上叫劈尖干涉,如图1所示。

单色光源S发出的光经凸透镜成为平行光,再经过以450角放置的玻璃片M反射以后,垂直地投射到有两块平面玻璃片夹一薄纸片所构成的空气劈尖上,用读数显微镜M s观察反射条纹,如图2所示。

图1 图2由于劈尖角很小,因此可近似地认为入射角为零,入射光与反射光的方向相反。

由光的电磁理论可以证明,薄膜以及上下介质的折射率的关系是:当n1< n2>n3或n1 >n2<n3时两条反射光之间有半波损失,而当n1< n2<n3或n1 >n2 >n3时,则没有半波损失。

所以这时的干涉条件是相长干涉 2 n2h + λ/2 = kλ, k = 0,1,2,…;⑴相消干涉 2 n2h + λ/2 =(k+1/2)λ,k = 0,1,2,…;⑵式中n2为劈尖介质折射率,h为介质的厚度,λ为光在真空中的波长。

故明纹处空气层厚度为h = (k-1/2)λ/2n2, k = 0,1,2,…;⑶暗纹处空气层的厚度为h = kλ/2n2 ,k = 0,1,2,…;⑷⑶、⑷两式中k值自零开始,k = 0对应于劈棱处的暗纹(第一条暗纹)。

劈尖干涉条纹的特点。

1.两条明纹(或暗纹)间劈尖介质薄膜厚度差为△h = h k+1-h k =λ/2n2两条纹之间距离为L ≈λ/2n2θ2.对于一定波长的入射光,条纹间距与θ成反比,与n2成反比。

3.当上玻璃片向上移动时,条纹向劈尖移动,上玻璃片每移动λ/2n2 ,条纹移过一条。

教材中介绍的干涉法检查平面的平整度就是利用的这一原理。

教材第三册28页图21-6的甲图如图3表示的平面是平整的,乙图如图4表示的平面上有一个凹点。

因为根据该点附近的条纹向左凸,也就是说条纹向劈尖移动,说明此处的空气厚度比周围要厚,所以此处是一个凹点。

劈尖牛顿环

劈尖牛顿环

rk m rk mR
r
2 k m
r mR
2 k

样板 待测 透镜 条纹
讨论 (1) 测透镜球面的半径R 已知 , 测 m、rk+m、rk,可得R
(2) 测波长 λ 已知R,测出m 、 rk+m、rk, 可得λ
(3) 检测透镜的曲率半径误差及其表面平整度
(4) 若接触良好,中央为暗纹——半波损失
在光学器件(透镜等)镀以一层薄膜以提高 或降低透射率.
例题 波长550 nm黄绿光对人眼和照像底片最敏感。要使照像机 对此波长反射小,可在照像机镜头上镀一层氟化镁MgF2薄 膜,已知氟化镁的折射率 n=1.38 ,玻璃的折射率n=1.55
求 氟化镁薄膜的最小厚度 解 两条反射光干涉减弱条件
r1
r2

e
n
2ne

2
k
明纹
1 2ne (k ) 2 2
在棱边处形成暗条纹 .

暗纹
等厚条纹是一些与棱边平行的明暗相间的直条纹 .
2nek

2
L
k 2 (k 1)
2nek 1


n
ek ek 1
两相邻明条纹(或暗条纹)对应的厚度差都 等于
ek 1 ek
(5) 透射图样与反射图样互补
3. 迈克尔逊干涉仪 (自学)
(1)测量微小量或微小量的变化
干涉膨胀仪
l N

2
l
测膜厚
l0
n1 n2
si
eN
sio 2 e

2n1
(2)检验光学元件表面的平整度和曲率等
用弯曲程度、干涉条纹的圈数检验工件的质量

劈尖干涉 牛顿环教案

劈尖干涉 牛顿环教案

12.5 劈尖干涉牛顿环科目:大学物理学下课型:新授课课时:1课时主要内容:等厚干涉原理劈尖干涉牛顿环教学重点:劈尖干涉相邻条纹的间距;牛顿环的半径公式。

教学难点:根据等厚干涉图样的形成原理,理解不同的等厚干涉的条纹分布。

教学要求:理解等厚干涉的原理,理解掌劈尖干涉图样条纹的分布特点,掌握劈尖干涉中相邻条纹间距与薄膜厚度的关系;理解牛顿环干涉图样的分布特点,掌握牛顿环半径公式;了解等厚干涉的实际应用。

教学方法:讲授法讨论法教学手段:多媒体教学过程:(具体如下)复习提问:1.两同位相的相干光源,其干涉条纹的明暗条件与光程差的关系?2.反射现象中半波损失的条件?3.薄膜干涉中干涉光的来源?条纹的级数由什么决定?新课导入:我们已经学习过,光线入射在厚度均匀的薄膜上时,干涉条纹的级数由入射光的入射角决定,相同的入射角产生的干涉条纹的级数相同,因此称之为等倾干涉。

提问:当光线入射在厚度不均匀的薄膜上,产生的干涉条纹级数与哪些因素有关?明暗条纹如何分布?这种干涉现象有什么实际意义?讲授新课:一、劈尖干涉(只讨论单色平行光垂直入射情况)1.装置:夹角很小的两个平面构成一个劈尖,厚度为零的地方称作“棱”。

单色平行光垂直照射在劈尖上,得到间距均匀的干涉条纹。

在劈尖表面看到的干涉条纹 劈尖内是空气薄膜或折射率为n 的透明介质薄膜2.光程差:先分析两束光在薄膜中的路程差,再分析半波损失。

结论:a.劈尖上与棱平行的点薄膜厚度相同,其反射光的光程差相同。

b.对空气薄膜:3.干涉明暗条纹的条件(以空气薄膜为例):结论:厚度相同的地方,光程差相等,条纹级数k 相同,所以称为等厚干涉。

4.各级明暗条纹的位置(即各级明暗条纹对应的薄膜厚度):l5.相邻条纹间距:6.条纹分布的特点在入射光波长λ一定时,厚度均匀的劈尖上干涉条纹均匀分布;且当楔角越小, l 越大,干涉条纹越稀疏。

例题分析: 例1. 有一玻璃劈尖,放在空气中,劈尖夹角 用波长 的单色光垂直入射时,测得相邻干涉明条纹的间距为 ,求玻璃的折射率.二、牛顿环1.装置:平凸透镜和平板玻璃中间形成薄膜。

等厚干涉实验—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。

由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。

获得相干光方法有两种。

一种叫分波阵面法,另一种叫分振幅法。

1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。

(2)掌握读数显微镜的基本调节和测量操作。

(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法 (4)学习用图解法和逐差法处理数据。

2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。

分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。

分振幅干涉分两类称等厚干涉,一类称等倾干涉。

用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,满足相干条件。

当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。

这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。

等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。

下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。

相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。

如图9-1(a )所示。

Rer(a ) (b)图9-1 牛顿环装置和干涉图样当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。

牛顿环—劈尖实验讲义

牛顿环—劈尖实验讲义

牛顿环-劈尖若将同一点光源发出的光分成两束,让它们各经不同路径后再相会在一起,当光程差小于光源的相干长度,一般就会产生干涉现象。

如测量光波的波长,精确地测量长度、厚度和角度,检验试件表面的光洁度,研究机械零件内应力的分布以及在半导体技术中测量硅片上氧化层的厚度等。

牛顿环、劈尖是其中十分典型的例子,它们属于用分振幅的方法产生的干涉现象,也是典型的等厚干涉条纹。

【实验目的】1.观察和研究等厚干涉现象和特点。

2.学习用等厚干涉法测量平凸透镜曲率半径和薄膜厚度。

3.熟练使用读数显微镜;学习用逐差法处理实验数据的方法。

【实验仪器】测量显微镜,钠光光源,牛顿环仪,牛顿环和劈尖装置。

图1 实验仪器实物图【实验原理】1.牛顿环“牛顿环”是一种用分振幅方法实现的等厚干涉现象,最早为牛顿所发现。

为了研究薄膜的颜色,牛顿曾经仔细研究过凸透镜和平面玻璃组成的实验装置。

他的最有价值的成果是发现通过测量同心圆的半径就可算出凸透镜和平面玻璃板之间对应位置空气层的厚度;对应于亮环的空气层厚度与1、3、5…成比例,对应于暗环的空气层厚度与0、2、4…成比例。

牛顿环装置是由一块曲率半径较大的平凸玻璃透镜,将其凸面放在一块光学玻璃平板(平晶)上构成的,如图2所示。

平凸透镜的凸面与玻璃平板之间形成一层空气薄膜,其厚度从中心接触点到边缘逐渐增加。

若以平行单色光垂直照射到牛顿环上,则经空气层上、下表面反射的二光束存在光程差,它们在平凸透镜的凸面相遇后,将发生干涉。

其干涉图样是以玻璃接触点为中心的一系列明暗相间的同心圆环(如图3所示),称为牛顿环。

由于同一干涉环上各处的空气层厚度是相同的,因此称为等厚干涉。

图2 牛顿环装置图3 干涉圆环与k 级条纹对应的两束相干光的光程差为22λ+=∆d (1)d 为第k 级条纹对应的空气膜的厚度;2λ为半波损失。

由干涉条件可知,当∆=(2k+1) 2λ(k=0,1,2,3,...) 时,干涉条纹为暗条纹,即2)12(22λλ+=+k d得λ2kd =(2) 设透镜的曲率半径为R,与接触点O相距为r处空气层的厚度为d,由图2所示几何关系可得222)(r d R R +-=2222r d Rd R ++-=由于R>>d,则 d 2可以略去Rr d 22= (3)由(2)和(3)式可得第k级暗环的半径为:•• λλkR kR Rd r k =⋅==2222(4) 由(4)式可知,如果单色光源的波长λ已知,只需测出第k 级暗环的半径rm ,即可算出平凸透镜的曲率半径R;反之,如果R已知,测出rm 后,就可计算出入射单色光波的波长λ。

牛顿环和劈尖干涉

牛顿环和劈尖干涉

牛顿环和劈尖干涉牛顿环和劈尖干涉是分振幅法产生的等厚干涉现象,其特点是同一条干涉条纹所对应的两反射面间的厚度相等。

利用牛顿环和劈尖干涉现象,可用来测量光波波长、薄膜厚度、微小角度、曲面的曲率半径以及检验光学器件的表面质量(如球面度、平整度和光洁度等),还可以测微小长度的变化,因此等厚干涉现象在科学研究和工程技术中有着广泛的应用。

学习导航1实验原理1. 用牛顿环法测定透镜的曲率半径R将一块曲率半径很大的平凸透镜放在一块磨光的平板玻璃上,即构成一个上表面为球面,下表面为平面的空气薄膜(见图1),若用波长为λ的单色平行光垂直射入透镜平面时,由空气薄膜上下两表面反射的两束光在透镜凸表面附近相遇发生等厚干涉,其干涉图样是以接触点O 为中心的一系列明暗交替的同心圆环(中心处是一个暗斑),且同一圆环的薄膜厚度相等。

这些圆形干涉条纹是牛顿当年在制作天文望远镜时,偶然将一个望远镜物镜放在平板玻璃上发现的,故称为牛顿环。

设透镜的曲率半径为R ,形成k 级干涉暗纹的牛顿环半径为r k ,则有①λkR r k = (k=0,1,2,…) (1)①参阅马文蔚主编《物理学》第四版,第三册,高等教育出版社,1999年,P125-127。

图1 牛顿环干涉入射上式表明,当波长λ已知时,测出即可算出R ,但是,由于玻璃的弹性形变以及接触处难免有尘埃等微粒,使得玻璃中心接触处并非一个几何点,而是一个较大的暗斑(或明斑,为什么?)。

所以牛顿环的圆心难以定位,且绝对干涉级次无法确定。

实验中将采用以下方法来测定曲率半径R 。

k r 分别测量两个暗环的直径和,由式(1)可得 m D n D (2) λR j m D m )(42+=(3)λR j n D n )(42+=式中j 表示由于中心暗斑的影响而引入的干涉级数的修正值,m 和n 为实际观察到的圆环序数。

式(2)减式(3)得2λ−−=)(422n m D D R nm ) (4)可见上式中R 只与牛顿环的级次差(n m −有关,这样就回避了对绝对干涉级次k 的确定和牛顿环半径直接测量的问题。

实验报告:牛顿环与劈尖干涉

实验报告:牛顿环与劈尖干涉

实验报告:牛顿环与劈尖干涉牛顿环与劈尖干涉实验是光学里的一个主要实验,用来研究光的波的属性以及干涉效果。

牛顿环实验可以用来证明可行光波的辐射特性,是研究边缘效应的重要实验之一。

劈尖干涉实验是一种用来研究光的振幅分布的重要实验,可以用来研究光的相位分布以及证明光波的现实形式。

实验原理牛顿环实验:牛顿环实验依赖光波的干涉,使用一束平行光通过多孔膜或A类凹坑经过至少两次反射后出现一种环状状态,形成圆形叠光斑环状干涉图案。

劈尖干涉实验:劈尖干涉实验也叫Young-Fraunhofer实验,采用激光把一个小的劈尖形光斑投射到对称定位的双孔或双镜,用双孔或双面反射可以让光线以平行的形式穿过,在孔的或镜的出口处可以观察到叠光斑,比较激光源的劈尖形光斑与叠光斑的相位和振幅关系,进而验证可行光波模型有关展示神秘空间外抛物线角度的准确性。

实验安排实验仪器准备a. 发射激光:含石英棱镜的激光系统,具有可调的波长,调制,控制的特点。

b. 放大器;可用于放大双孔或双面反射的叠光斑,方便仪器的观察和记录。

c. 摄片机:可用于实时观察及连续拍摄叠光斑的更新状态,以便研究和分析叠光斑的更新状态。

a. 装置:将激光光源与双孔或双面反射头联结,特别需要注意,双孔或双面反射头要安装好,并保持下次实验时无变形。

b. 校准和检测:在实验Web站点操作参数自动校准激光和双孔或双面反射头,以便叠光斑图案可以通过放大望远镜展示出来。

实验步骤a. 使用激光投射一个单一的光斑劈尖形的劈尖形到含有双孔或双面反射头的装置上;b. 设定特定的波长;c. 使用一只放大器和一只摄片机观察并记录叠光斑的位置;d. 将记录的叠光斑的位置和激光源的劈尖形光斑的相位和振幅比较,进而验证可行光波模型有关展示神秘空间外抛物线角度的准确性。

实验结果和分析实验结果表明,当双孔或双面反射头准确定位并经正确校准时,叠光斑的形状和激光源的劈尖形的光斑具有很好的一致性,据此可以得出结论:牛顿环实验和劈尖干涉实验均可以用来验证可行光波存在及其相关特性。

实验报告牛顿环与劈尖干涉

实验报告牛顿环与劈尖干涉

实验报告牛顿环与劈尖干涉实验名称:牛顿环与劈尖干涉实验实验目的:1.理解和掌握牛顿环和劈尖干涉的原理和方法;2.观察和测量牛顿环的形状和颜色变化,并分析其原理;3.观察和测量劈尖干涉的干涉条纹并分析其原理。

实验器材:1.汞灯;2.凸透镜;3.牛顿环产生装置;4.分光镜;5.目镜;6.孔径片;7.毛玻璃;8.劈尖装置。

实验原理:1.牛顿环:当透明物体与平行光波相遇时,发生了光的干涉现象。

当顶点与透镜接触时,透过透镜的平行光波发生了干涉,形成了牛顿环。

2.劈尖干涉:光从狭缝中通过之后,会形成一系列同心圆环的干涉图案,这一现象被称为劈尖干涉。

两束光经过狭缝后相遇,由于光程不同而产生干涉。

实验步骤:牛顿环实验:1.将凸透镜固定在光源下方的牛顿环产生装置中;2.调整透镜的高度,使其与玻璃板的顶点接触;3.通过分光镜照明,从透镜的一侧观察牛顿环;4.用目镜逐渐靠近牛顿环,在视野最亮的地方读取孔径片的厚度,重复三次测量取平均值。

劈尖干涉实验:1.将劈尖装置放置在光源的一侧,使光通过劈尖装置形成干涉图案;2.通过调整劈尖装置和观察屏的距离,观察干涉图案的变化;3.使用目镜和微调节焦距,逐渐靠近干涉图案直到清晰可见,测量不同环的半径;4.测量两个相邻环之间的距离。

实验结果与分析:牛顿环实验:通过测量读数和计算,可以得到牛顿环的半径和孔径片的厚度之间的关系。

根据厚度和半径的关系,可以计算出透镜的曲率半径。

在实验中,我们可以观察到牛顿环半径随孔径片厚度的变化,并验证了光的相干性和干涉现象。

劈尖干涉实验:根据干涉条纹的半径和距离测量结果,可以计算出干涉过程中两光束的相位差和波长。

通过变化劈尖装置和观察屏的距离,可以调整干涉图案的亮暗程度和间距。

根据劈尖干涉的原理,我们可以观察到干涉条纹的明暗变化,并推测出两束光的相位差和波长。

实验总结:通过本次牛顿环和劈尖干涉实验,我们深入了解了光的干涉现象和干涉图案的变化规律。

通过测量和计算,我们成功验证了牛顿环和劈尖干涉的原理,并得到了相关的数据结果。

光的等厚干涉——牛顿环、劈尖

光的等厚干涉——牛顿环、劈尖
������ ������ 2
,������ = 0,1,2 …时,为干涉暗条纹。与 K 级暗条纹对应的
【实验仪器及器材】 (应写明仪器型号、规格、精度)
读数显微镜(JCD-3) 、光源(Na灯Байду номын сангаасHg灯) 、劈尖玻璃、牛顿环镜片。
【注意事项】
1.钠光灯预热。 2.调整仪器 (1)由待测透镜的凸面及平玻璃的平面组成牛顿环装置,令其处于自由状态。 (2)调整 45 度反射平面玻璃及显微镜的位置,使入射光近乎垂直入射,并使钠光能充满整 个视场。 (3)调节目镜,看清叉丝;显微镜调焦看清干涉条纹(调整时应注意什么?)使叉丝交点大 致在牛顿环的中心位置。
【实验内容】
1. 根据牛顿环测透镜的曲率半径 (1) 调整测量装置 实验装置如图 3-S20-4 所示。由于干涉条纹间隔很小,精确测量需用读数显微镜。调 整时应注意:
1) 调节 45°玻璃片,使显微镜视场中亮度最大。这时,基本上满足入射光垂直于 透镜的要求。 2) 因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到 清晰的干涉图像。 3) 调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止。 (2) 观察干涉条纹的分布特征 例如,各级条纹的粗细是否一致,条纹间隔有无变化,并作出解释。观察牛顿环中 心是亮斑还是暗斑?若是亮斑,如何解释?用擦镜纸仔细地将接触的两个表面擦干净, 可使中心呈暗斑。 (3) 测量牛顿环的直径 转动测微鼓轮,依次记下欲测的各级条纹在中心两侧的位置(级数适当地取大些, 如 k=30 左右) , 求出各级牛顿环的直径。 在每次测量时, 注意鼓轮应沿一个方向转动, 中途不可倒转(为什么?) ,将数据填入表中。 2. 光波波长的相对测量 1) 以汞灯代替钠光灯,在同一装置上观察、比较汞灯照射时复色光的干涉条纹与单色 光的干涉条纹有何差异? 2) 用滤色片依次获得汞灯的任意两个单色光(如绿光和黄光八分别观测其等厚干涉条 纹,测出相应各级暗环的半径 rb。试比较两者有何差异。 3) 作 r2-k 图线, 并用相对测量法求出汞灯的某单色光的波长 (其中一种波长为己知量) 。 3. 用劈尖干涉法测微小厚度 1) 将被测薄片(或细丝)夹在两块平玻璃板之间,然后置于显微镜载物台上。用显微 镜观测描绘劈尖干涉的图像。改变薄片在平玻璃板间的位置,观察干涉条纹的变化,并作 出解释。 2) 由式可见, 当波长λ 已知时.,在显微镜中数出干涉条纹数 k,即可得相应的薄片厚度 e。 由于 k 值较大,为避免计数 k 出现差错,可先测出某长度 lx 间的干涉条纹数 x, 得出单位长 度内的干涉条纹数������ = ������������ 。若薄片与劈尖棱边的距离为 L, 则共出现干涉条纹数 k=n· L。代 入式中得到薄片的厚度������ = ������ ·������ 2。

牛顿环劈尖实验报告

牛顿环劈尖实验报告

一、实验目的1. 观察牛顿环和劈尖干涉现象,了解等厚干涉的特点。

2. 利用牛顿环测定平凸透镜的曲率半径。

3. 利用劈尖干涉测定细丝直径或薄片厚度。

二、实验原理1. 牛顿环原理:牛顿环是由平凸透镜与平板玻璃之间的空气薄层形成的等厚干涉现象。

当单色光垂直入射时,在透镜表面发生反射,反射光在空气薄层上下表面发生干涉,形成明暗相间的同心圆环。

根据干涉条件,当空气薄层厚度满足一定条件时,出现明环或暗环。

2. 劈尖干涉原理:劈尖干涉是由两块平板玻璃之间形成的劈尖状空气薄层形成的等厚干涉现象。

当单色光垂直入射时,在空气薄层上下表面发生反射,反射光在空气薄层附近发生干涉,形成明暗相间的条纹。

根据干涉条件,当空气薄层厚度满足一定条件时,出现明条纹或暗条纹。

三、实验仪器与用具1. 牛顿环仪:包括平凸透镜、平板玻璃、金属框架、螺旋等。

2. 劈尖干涉仪:包括两块平板玻璃、细丝或薄片、读数显微镜等。

3. 钠灯:提供单色光源。

4. 移测显微镜:用于观察干涉条纹。

四、实验步骤1. 牛顿环实验:(1)将平凸透镜与平板玻璃叠合安装在金属框架中,调整螺旋使透镜与平板玻璃接触紧密。

(2)将牛顿环仪置于钠灯下,用移测显微镜观察牛顿环条纹。

(3)测量第m级暗环的半径r,根据公式R=λr/(2m)计算透镜的曲率半径R。

2. 劈尖干涉实验:(1)将细丝或薄片夹在两块平板玻璃之间,形成劈尖。

(2)将劈尖置于读数显微镜载物台上,调节显微镜使叉丝与劈尖干涉条纹重合。

(3)测量劈尖干涉条纹间距,根据公式d=λL/(2n)计算细丝直径或薄片厚度。

五、实验结果与分析1. 牛顿环实验结果:(1)测量第m级暗环的半径r,计算透镜的曲率半径R。

(2)分析实验误差,如测量误差、仪器误差等。

2. 劈尖干涉实验结果:(1)测量劈尖干涉条纹间距,计算细丝直径或薄片厚度。

(2)分析实验误差,如测量误差、仪器误差等。

六、实验结论1. 通过牛顿环实验,成功观察到等厚干涉现象,并利用干涉条件计算出透镜的曲率半径。

大学物理 劈尖的干涉

大学物理 劈尖的干涉
2

2n2e


2

(2k 1)
2
k
暗纹 明纹
k 1,2,
同一厚度e对应同一级条纹——等厚干涉
第十三章 光的干涉
§13-6 劈尖的干涉 牛顿环
设l为相邻两条明纹或暗纹间的间距
2n2ek


2

k
2n2ek 1


2

(k
1)
ek 1
ek


2n2
又 l sin ek1 ek
间距缩小l=0.5mm,那么劈尖角 应是多少?
解:空气劈尖情况下相邻明纹间距为
l1

2n2 sin

2
第十三章 光的干涉
§13-6 劈尖的干涉 牛顿环

液体劈尖时,相邻明纹间距为
(1 1 )
l2

2n2 sin

2n2

l l1 l2
n2
(2 )
2
所以A处为明纹——第3级明纹。
(3)棱边处为暗纹,A处为第三级明纹,所以棱边 到A处共呈现3条明纹,3条暗纹。
第十三章 光的干涉
§13-6 劈尖的干涉 牛顿环
例题2
折射率为1.60的两块标准平面玻璃之间形成一个
劈尖(劈尖角 很小)。用波长=600nm的单色光
垂直入射,产生等厚干涉条纹。例如在劈尖内充满 n=1.40的液体时的相邻明纹间距比劈尖内是空气时的
以rk 4mm,rk5 6mm, 589.3nm代入上式
k=4, R=6.79m
第十三章 光的干涉
§13-6 劈尖的干涉 牛顿环
例题4

(37)劈尖、 牛顿环和干涉仪

(37)劈尖、 牛顿环和干涉仪

2 非等厚薄 膜(如: 劈尖、牛 顿环)
(37)劈尖、牛顿环和干涉仪
波动光学
(37)劈尖、牛顿环和干涉仪
波动光学
(37)劈尖、牛顿环和干涉仪
波动光学
(37)劈尖、牛顿环和干涉仪
一、劈尖干涉 1、装置
波动光学
有两个表面很平的介质片(如玻璃片),一端 相交,其间的夹角θ很小,形成一个劈尖形的透明 薄膜,称为劈尖膜。
解:由于同一条纹下的空气薄膜
厚度相同,由图的纹路弯曲情况
知, 工件表面的纹路是凹下去的。 由图:H = a sin 因 :l sin = / 2, a 纹路深度为:
标准平面
l
a
H
H
l 2


工件
(37)劈尖、牛顿环和干涉仪
4)测细丝的直径 空气 n 1
波动光学
n1 n1
将金属丝夹在两薄 玻璃片之间,形成劈尖, 用单色平行光照射形成 等厚干涉条纹。
以空气的为例 光程差 Δ 2d
波动光学
Δ
2
2 k (k 1,2,)
R
明纹
r
d
1 (k ) (k 0,1,) 暗纹 2
2 2 2
r R ( R d ) 2dR d
R d d 0
2
r 2dR ( Δ ) R 2
1 r (k ) R 明环半径 2 暗环半径 r kR
有不规则起伏。
工 件 标 准 件
(37)劈尖、牛顿环和干涉仪
波动光学
测量透镜的曲率半径
可以用来测量光波波长,曲 率半径等.
R
r kR
2 k
r
r
2 k m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
k (k 1,2,)
2 2
2e 2
明条纹
R r e
(2k 1) (k 0,1, ) 暗条纹 2
2
r R (R e) 2eR e
2 r R e e2 0 e 2R
(2k 1) R r k 1, 2, 2
明环
r kR k 0,1, 2,
(2k 1) r R 2
第13章 光的干涉
13-5
劈尖干涉
牛顿环
14
r2 1 (1.0 102 )2 1 k 34.4 7 R 2 5 5.893 10 2
可看到34条明条纹. (2)若在空气层中充以液体,则明环半径为
(2k 1) r R 2n
(2k 1) R (2 46 1) 5 5.893 107 n 1.33 2 2 2 2r 2 (1.0 10 )

如图:按明条纹出现的条件,ek 和 ek 1 应满足下
列两式:
2nek
2nek 1

2
k
(k 1)

2
第13章 光的干涉
13-5
劈尖干涉
牛顿环
12
n(ek 1 ek )
由图

2
ek 1 ek

2n
l sin ek 1 ek
sin
第13章 光的干涉
暗环
13-5 讨 论
劈尖干涉
牛顿环
8
明环半径
(2k 1) R r 2
(k 1, 2, )
暗环半径
r kR
(k 0,1,2,)
从反射光中观测,中心点是暗点还是亮点?从透 射光中观测,中心点是暗点还是亮点?
属于等厚干涉,条纹间距不等,为什么?
将牛顿环置于 n 1 的液体中,条纹如何变?
测量平凸透镜曲率半径
r kR
2 k
R
r
r
2 k m
(k m) R
R
r
2 k m
r m
2 k
2r
第13章 光的干涉
13-5
劈尖干涉
牛顿环
11
例13.4 利用劈尖干涉可以测量微小角度.如图所示, 折射率 n 1.4 的劈尖在某单色光的垂直照射下,测得 两相邻明条纹之间的距离是l=0.25 cm.已知单色光在 空气中的波长 700 nm ,求劈尖的顶角θ.
e
2e
光程差
第13章 光的干涉

2
13-5
劈尖干涉
牛顿环
5
牛顿环
干涉条纹为间距越来越小的同心圆环组成,这些圆环 状干涉条纹叫做牛顿环。
第13章 光的干涉
13-实验装置
显微镜 T
L S
R
r
第13章 光的干涉
e
牛顿环干涉图样
13-5
劈尖干涉
牛顿环
7
光程差

对一定波长的单色光入射,劈尖的干涉条
纹间隔仅与楔角θ有关.
第13章 光的干涉
13-5
劈尖干涉
牛顿环
3
(3)干涉条纹的移动 每一条 纹对应劈尖 内的一个厚 度,当此厚 度位置改变 时,对应的 条纹随之移 动.
第13章 光的干涉
13-5 二、牛顿环
劈尖干涉
牛顿环
4
将一曲率半径相当大的平凸透镜叠放在一平板玻璃上
13-5
劈尖干涉
牛顿环
1
一、劈尖干涉
T
L
n1 n1
2e
e
e
S
劈尖角
M

2
l
k , k 1,2, 明条纹
(2k 1) , k 0,1, 暗条纹 2
第13章 光的干涉
13-5 讨论
劈尖干涉
牛顿环
2
(1) e 0 时,

2
棱边处为暗纹.
1 1 (2) l sin (k 1) k 2 2 2
可见牛顿环中充以液体后,干涉条纹变密.
第13章 光的干涉
应用例子:可以用来测量光波 波长,用于检测透镜质量,曲率 半径等.
第13章 光的干涉
工 件 标 准 件
13-5
劈尖干涉
牛顿环
9
当透镜与玻璃板的间距变化时
e -环由外向中心缩进; e 环由中心向外冒出
利用牛顿环可测透镜曲率。
第13章 光的干涉
13-5
劈尖干涉
牛顿环
10
5

2nl
将 n 1.4, l 0.25cm, 7 10 cm ,代入得
7 10 sin 104 2nl 2 1.4 0.25
因sinθ很小,所以
第13章 光的干涉

5
sin 104 rad
13-5
劈尖干涉
牛顿环
13
例13.7 在牛顿环实验中,透镜的曲率半径为5.0m, 直径为2.0 cm. (1) 用波长 λ = 589.3nm 的单色光垂直照射时,可看 到多少干涉条纹? (2) 若在空气层中充以折射率为 n的液体,可看到46 条明条纹,求液体的折射率(玻璃的折射率为1.50). 解 (1)由牛顿环明环半径公式
相关文档
最新文档