光电隔离RS485典型电路
RS485光耦应用电路图
高(通常都在4800波特以上) 。限制通信波特率提高的“瓶颈”,并不是现场的导线(现场 施工一般使用5类非屏蔽的双绞线) ,而是在与单片机系统进行信号隔离的光耦电路上。此 处采用 TIL117。电路设计中可以考虑采用高速光耦,如 6N137 、6N136等芯片,也可以优 化普 通光耦电路参数的设计,使之能工作在最佳状态。例如:电阻 R2、R3如果选取得较大, 将 会 使光耦的发光管由截止进入饱和变得较慢;如果选取得过小,退出饱和也会很慢,所以这两 只电阻的数值要精心选取,不同型号的光耦及驱动电路使得这两个电阻的数值略有差异, 这 一点在电路设计中要特别慎重,不能随意,通常可以由实验来定。 2.3 485总线输出电路部分的设计 输出电路的设计要充分考虑到线路上的各种干扰及线路特性阻抗的匹配。由于工程环境 比较复杂,现场常有各种形式的干扰源,所以485总线的传输端一定要加有保护措施。在电 路设计中采用稳压管 D1、D2组成的吸收回路,也可以选用能够抗浪涌的 TVS 瞬态杂波抑 制器 件,或者直接选用能抗雷击的485芯片(如 SN75LBC184等) 。 考虑到线路的特殊情况(如某一台分机的485芯片被击穿短路) ,为防止总线中其它分 机的通信受到影响,在 75176 的485 信号输出端串联了两个 20Ω的电阻 R10 、R11。这样本 机的 硬件故障就不会使整个总线的通信受到影响。 在应用系统工程的现场施工中,由于通信载体是双绞线,它的特性阻抗为120Ω左右, 所以线路设计时,在 RS-485 网络传输线的始端和末端各应接1只120Ω的匹配电阻(如图2 中 R8) ,以减少线路上传输信号的反射。 由于 RS-485芯片的特性,接收器的检测灵敏度为± 200mV,即差分输入端 VA-VB ≥ +200mV,输出逻辑1,VA-VB ≤-200mV,输出逻辑0;而 A、B 端电位差的绝对值小于 200mV 时,输出为不确定。如果在总线上所有发送器被禁止时,接收器输出逻辑0,这会误认为通 信帧的起始引起工作不正常。解决这个问题的办法是人为地使 A 端电位高于 B 两端电位, 这样 RXD 的电平在485 总线不发送期间(总线悬浮时)呈现唯一的高电平, 8031单片机就不会 被误 中断而收到乱字符。通过在485电路的 A、B 输出端加接上拉、下拉电阻 R7、R9,即可很
RS485典型电路分享(带隔离)
RS485典型电路分享(带隔离)
图中虚线左侧为单片机的电源网络,右侧为RS485的电源网络,两者通过光耦和双通道数字隔离芯片ADuM1201实现隔离。电平转换芯片采用MAX3082实现,电阻R61将总线A上之间的电平只有0.3V-0.4V之间的差别,上下拉电阻可以保证在通信的过程中A,B线不会因电平差别太小而出现乱码的情况。
485光电隔离
带隔离的增强型RS-485接口电路图磁耦隔离iCoupler技术,是由ADI公司设计开发的一项适合高压环境的隔离电路的专利技术,而非传统的基于光电耦合器所采用的发光二极管(LED)与光敏三极管结合,因采用了高速的iCOMS工艺,因此在功耗、体积、集成度、速度等各方面都优于光耦。
同时能满足医用设备高电压工业应用、电源以及其它高隔离度环境的严格隔离要求,非常适合在各种工业上的应用,包括数据通信、数据转换器接口、各种总线隔离以及其它多通道隔离应用。
图1 ADM2483功能内部框图ADM2483是带隔离的增强型RS-485 收发器,其内部框图如图1所示,它包括一个三通道隔离器、一个带三态输出的差分驱动器和一个带三态输入的差分接收器。
1/8 单位负载的接收器输入阻抗可允许多达256 个收发器接入总线,最高传输速率可达500Kbps。
逻辑端兼容3V/5V 工作电源,总线端5V 供电。
图2 ADM2483BRW典型应用电路ADM2483与其它RS-485 接口芯片相比,集成了磁隔离技术,仅需要一个外部的DC/DC电源即可。
ADM2483应用电路如图3所示,本电路仅供参考,若遇特殊应用,为了设备及系统安全,可以选择相应的其它保护措施,如TVS 等等。
89c51单片机采用光耦隔离485电路原理图--------以上部分请勿修改!-------------提高485总线的可靠性摘要:就485总线应用中易出现的问题,分析了产生的原因并给出解决问题的软硬件方案和措施。
关键词:RS-485总线、串行异步通信--------------------------------------------------------------------------------1 问题的提出在应用系统中,RS-485半双工异步通信总线是被各个研发机构广泛使用的数据通信总线,它往往应用在集中控制枢纽与分散控制单元之间。
系统简图如图1所示。
rs485总线典型电路图
rs485总线典型电路图
RS485电路全体上能够分为隔绝型与非隔绝型。
隔绝型比非隔绝型在抗搅扰、体系安稳性等方面都有更超卓的体现,但有一些场合也能够用非隔绝型。
咱们就先讲一下非隔绝型的典型电路,非隔绝型的电路十分简略,只需一个RS485芯片直接与MCU的串行通讯口和一个I/O操控口联接就能够。
如图1所示:
图1、典型485通讯电路图(非隔绝型)
当然,上图并不是无缺的485通讯电路图,咱们还需求在A线上加一个4.7K的上拉偏置电阻;在B线上加一个4.7K的下拉偏置电阻。
基地的R16是匹配电阻,通常是120Omega;,当然这个详细要看你传输用的线缆。
(匹配电阻:485悉数通讯体系中,为了体系的传输安稳性,咱们通常会在榜首个节点和究竟一个节点加匹配电阻。
所以咱们通常在方案的时分,会在每个节点都设置一个可跳线的120Omega;电阻,至于用仍是不必,由现场人员来设定。
当然,详细怎样区别榜首个节点仍是究竟一个节点,还得有待现场的专家们来答复呵。
)TVS咱们通常选用6.8V的,这个咱们会在后边进一步的解说。
RS-485规范界说信号阈值的上下限为plusmn;200mV。
即当A-
B200mV时,总线状况应标明为1;当A-Blt;-200mV时,总线状况应标明为0。
但当A-B在plusmn;200mV之间时,则总线状况为不断定,所以咱们会在A、B线上面设上、下拉电阻,以尽量防止这种不断定状况。
RS-485_接口电路
RS-485 接口电路RS-485 接口电路的主要功能是:将来自微处理器的发送信号TX 通过“发送器”转换成通讯网络中的差分信号,也可以将通讯网络中的差分信号通过“接收器”转换成被微处理器接收的RX 信号。
任一时刻,RS-485 收发器只能够工作在“接收”或“发送”两种模式之一,因此,必须为RS-485 接口电路增加一个收/发逻辑控制电路。
另外,由于应用环境的各不相同,RS-485 接口电路的附加保护措施也是必须重点考虑的环节。
下面以选用SP485R 芯片为例,列出RS-485 接口电路中的几种常见电路,并加以说明。
1.基本RS-485 电路图1为一个经常被应用到的SP485R芯片的示范电路,可以被直接嵌入实际的RS-485应用电路中。
微处理器的标准串行口通过RXD 直接连接SP485R 芯片的RO 引脚,通过TXD直接连接SP485R 芯片的DI 引脚。
由微处理器输出的R/D 信号直接控制SP485R 芯片的发送器/接收器使能:R/D 信号为“1”,则SP485R 芯片的发送器有效,接收器禁止,此时微处理器可以向RS-485 总线发送数据字节;R/D 信号为“0”,则SP485R 芯片的发送器禁止,接收器有效,此时微处理器可以接收来自RS-485 总线的数据字节。
此电路中,任一时刻SP485R 芯片中的“接收器”和“发送器”只能够有1 个处于工作状态。
连接至A 引脚的上拉电阻R7、连接至B 引脚的下拉电阻R8 用于保证无连接的SP485R芯片处于空闲状态,提供网络失效保护,以提高RS-485 节点与网络的可靠性。
R7,R8,R9这三个电阻要根据实际应用而改变大小,特别在用120欧或更小终端电阻时,R9就不需要了,R7和R8应使用680欧电阻。
如果将SP485R 连接至微处理器80C51 芯片的UART 串口,则SP485R 芯片的RO 引脚不需要上拉;否则,需要根据实际情况考虑是否在RO 引脚增加1 个大约10K 的上拉电阻。
RS485收发的3种典型电路-重点-自动收发电路
RS485收发的3种典型电路-重点-自动收发电路三种常用电路如下:1、基本的RS485电路上图是最基本的RS485电路,R/D为低电平时,发送禁止,接收有效,R/D 为高电平时,则发送有效,接收截止。
上拉电阻R7和下拉电阻R8,用于保证无连接的SP485R芯片处于空闲状态,提供网络失效保护,提高RS485节点与网络的可靠性,R7,R8,R9这三个电阻,需要根据实际应用改变大小,特别是使用120欧或更小的终端电阻时,R9就不需要了,此时R7,R8使用680欧电阻。
正常情况下,一般R7=R8=4.7K,R9不要。
图中钳位于6.8V的管V4,V5,V6,都是为了保护RS485总线的,避免受外界干扰,也可以选择集成的总线保护原件。
另外图中的L1,L2,C1,C2为可选安装原件,用于提高电路的EMI性能.2、带隔离的RS485电路根本原理与基本电路的原理相似。
使用DC-DC器件可以产生1组与微处理器电路完全隔离的电源输出,用于向RS485收发器提供+5V电源。
电路中的光耦器件速率会影响RS485电路的通信速率。
上图中选用了NEC 的光耦PS2501,受其影响,该电路的通讯速率控制在19200bps下。
3、自动切换电路上图中,TX,RX引脚均需要上拉电阻,这一点特别重要。
接收:默认没有数据时,TX为高电平,三极管导通,RE为低电平使能,RO收数据有效,MAX485为接收态。
发送:发送数据1时,TX为高电平时,三极管导通,DE为低电平,此时收发器处于接收状态,驱动器就变成了高阻态,也就是发送端与A\B 断开了,此时A\B之间的电压就取决于A\B的上下拉电阻了,A为高电平、B为低电平,也就成为了逻辑1了。
发送数据0时,TX为低电平,三极管截止,DE为高电平,驱动器使能,此时正好DI是接地的,也就是低电平,驱动器也就会驱动输出B 为1,A为0,也就是所谓的逻辑0了。
理解自收发的作用,关键是要理解RE和DE的作用,尤其是DE为0时,驱动器与A\B之间就是高阻态,也就是断开状态,而且A\B都要有上下拉电阻。
485通信电路原理与选择
485通信电路原理与选择(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一、RS485总线介绍:RS485总线是一种常见的串行总线标准,采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。
在一些要求通信距离为几十米到上千米的时候,RS485总线是一种应用最为广泛的总线。
而且在多节点的工作系统中也有着广泛的应用。
二、RS485总线典型电路介绍:RS485电路总体上可以分为隔离型与非隔离型。
隔离型比非隔离型在抗干扰、系统稳定性等方面都有更出色的表现,但有一些场合也可以用非隔离型。
我们就先讲一下非隔离型的典型电路,非隔离型的电路非常简单,只需一个RS485芯片直接与MCU的串行通讯口和一个I/O控制口连接就可以。
如图1所示:图1、典型485通信电路图(非隔离型)当然,上图并不是完整的485通信电路图,我们还需要在A线上加一个4.7K 的上拉偏置电阻;在B线上加一个4.7K的下拉偏置电阻。
中间的R16是匹配电阻,一般是120Ω,当然这个具体要看你传输用的线缆。
(匹配电阻:4 85整个通讯系统中,为了系统的传输稳定性,我们一般会在第一个节点和最后一个节点加匹配电阻。
所以我们一般在设计的时候,会在每个节点都设置一个可跳线的120Ω电阻,至于用还是不用,由现场人员来设定。
当然,具体怎么区分第一个节点还是最后一个节点,还得有待现场的专家们来解答呵。
)TVS我们一般选用6.8V的,这个我们会在后面进一步的讲解。
RS-485标准定义信号阈值的上下限为±200mV。
即当A-B>200mV时,总线状态应表示为“1”;当A-B<-200mV时,总线状态应表示为“0”。
但当A-B 在±200mV之间时,则总线状态为不确定,所以我们会在A、B线上面设上、下拉电阻,以尽量避免这种不确定状态。
三、隔离型RS485总线典型电路介绍在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。
光电隔离RS485典型电路
光电隔离RS485典型电路一、RS485总线介绍RS485总线是一种常见的串行总线标准,采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。
在一些要求通信距离为几十米到上千米的时候,RS485总线是一种应用最为广泛的总线。
而且在多节点的工作系统中也有着广泛的应用。
二、RS485总线典型电路介绍RS485电路总体上可以分为隔离型与非隔离型。
隔离型比非隔离型在抗干扰、系统稳定性等方面都有更出色的表现,但有一些场合也可以用非隔离型。
我们就先讲一下非隔离型的典型电路,非隔离型的电路非常简单,只需一个RS485芯片直接与MCU的串行通讯口和一个I/O控制口连接就可以。
如图1所示:图1、典型485通信电路图(非隔离型)当然,上图并不是完整的485通信电路图,我们还需要在A线上加一个4.7K的上拉偏置电阻;在B线上加一个4.7K的下拉偏置电阻。
中间的R16是匹配电阻,一般是120Ω,当然这个具体要看你传输用的线缆。
(匹配电阻:485整个通讯系统中,为了系统的传输稳定性,我们一般会在第一个节点和最后一个节点加匹配电阻。
所以我们一般在设计的时候,会在每个节点都设置一个可跳线的120Ω电阻,至于用还是不用,由现场人员来设定。
当然,具体怎么区分第一个节点还是最后一个节点,还得有待现场的专家们来解答呵。
)TVS我们一般选用6.8V的,这个我们会在后面进一步的讲解。
RS-485标准定义信号阈值的上下限为±200mV。
即当A-B>200mV时,总线状态应表示为“1”;当A-B<-200mV时,总线状态应表示为“0”。
但当A-B在±200mV之间时,则总线状态为不确定,所以我们会在A、B线上面设上、下拉电阻,以尽量避免这种不确定状态。
三、隔离型RS485总线典型电路介绍在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。
虽然RS-485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS-485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无**常工作了,严重时甚至会烧毁芯片和仪器设备。
485通信电路原理与选择
一、RS485总线介绍:RS485总线是一种常见的串行总线标准,采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。
在一些要求通信距离为几十米到上千米的时候,RS485总线是一种应用最为广泛的总线。
而且在多节点的工作系统中也有着广泛的应用。
二、RS485总线典型电路介绍:RS485电路总体上可以分为隔离型与非隔离型。
隔离型比非隔离型在抗干扰、系统稳定性等方面都有更出色的表现,但有一些场合也可以用非隔离型。
我们就先讲一下非隔离型的典型电路,非隔离型的电路非常简单,只需一个RS4 85芯片直接与MCU的串行通讯口和一个I/O控制口连接就可以。
如图1所示:图1、典型485通信电路图(非隔离型)当然,上图并不是完整的485通信电路图,我们还需要在A线上加一个4.7K的上拉偏置电阻;在B线上加一个4.7K的下拉偏置电阻。
中间的R16是匹配电阻,一般是120Ω,当然这个具体要看你传输用的线缆。
(匹配电阻:485整个通讯系统中,为了系统的传输稳定性,我们一般会在第一个节点和最后一个节点加匹配电阻。
所以我们一般在设计的时候,会在每个节点都设置一个可跳线的120Ω电阻,至于用还是不用,由现场人员来设定。
当然,具体怎么区分第一个节点还是最后一个节点,还得有待现场的专家们来解答呵。
)TVS我们一般选用6.8V的,这个我们会在后面进一步的讲解。
RS-485标准定义信号阈值的上下限为±200mV。
即当A-B>200mV时,总线状态应表示为“1”;当A-B<-200mV时,总线状态应表示为“0”。
但当A-B在±200mV之间时,则总线状态为不确定,所以我们会在A、B线上面设上、下拉电阻,以尽量避免这种不确定状态。
三、隔离型RS485总线典型电路介绍在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。
虽然R S-485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS-485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无法正常工作了,严重时甚至会烧毁芯片和仪器设备。
RS485收发的三种常用电路
RS485 收发的三种常用电路
三种常用电路如下:
1、基本的RS485 电路
上图是最基本的RS485 电路,R/D 为低电平时,发送禁止,接收有效,
R/D 为高电平时,则发送有效,接收截止。
上拉电阻R7 和下拉电阻R8,用于保证无连接的SP485R 芯片处于空闲状态,提供网络失效保护,提高RS485 节点与网络的可靠性,R7,R8,R9 这三个电阻,需要根据实际应用改变大小,特别是使用120 欧或更小的终端电阻时,R9 就不需要了,此时R7,R8 使用680 欧电阻。
正常情况下,一般R7=R8=4.7K,R9 不要。
图中钳位于6.8V 的管V4,V5,V6,都是为了保护RS485 总线的,避免
受外界干扰,也可以选择集成的总线保护原件。
另外图中的L1,L2,C1,C2 为可选安装原件,用于提高电路的EMI 性能.
2、带隔离的RS485 电路
根本原理与基本电路的原理相似。
使用DC-DC 器件可以产生1 组与微处。
RS485芯片介绍及典型应用电路
RS485芯片介绍及典型应用电路1. 高传输速率:RS485支持最高10Mbps的传输速率,可以满足大部分应用场景的需求。
2.长传输距离:RS485可以支持最长1200米的传输距离,适用于需要跨越大面积的数据传输场景。
3.多节点通信:RS485支持多节点的串行通信,最多可以连接32个节点,可以灵活实现多节点之间的数据传输。
4.抗干扰能力强:RS485采用差分信号传输方式,具有较强的抗干扰能力,适用于工业环境等电磁干扰较大的场景。
1.工业控制系统:RS485适用于工业自动化领域的数据传输需求,可以连接传感器、执行器等设备与主控系统进行数据交互。
例如,将温湿度传感器、压力传感器等设备通过RS485接口连接到PLC(可编程逻辑控制器)上,实时采集数据并控制工业过程。
2.电力系统监测:RS485经常用于电力系统的远程监测和控制,可以连接电表、断路器等设备与监测中心进行数据传输。
例如,电网运营商可以使用RS485通信将多个电表的电能数据传输到监测中心,实现对电力系统的远程监控和管理。
3.楼宇自动化系统:RS485可以应用于楼宇自动化系统中,实现楼宇内各种设备的控制和管理。
如,将空调、照明、门禁等设备连接到一台中央控制器,通过RS485通信与中央控制器进行数据传输,实现智能化的楼宇管理。
4.网络通信设备:RS485芯片可以用于网络通信设备的数据传输,如路由器、交换机等设备与服务器之间的通信。
通过RS485接口,这些设备可以实现高速、长距离的数据传输,提高网络通信的稳定性和可靠性。
在RS485通信电路中,常见的典型应用电路是星型拓扑结构和总线拓扑结构。
星型拓扑结构下,每个设备都与主控制器直接相连,主控制器可以独立与每个设备进行通信。
这种拓扑结构适用于相对较小的系统,例如楼宇自动化系统中的一栋大楼。
总线拓扑结构下,多个设备通过RS485通信连接成一条总线,主控制器与总线相连,可以与总线上的任意设备进行通信。
这种拓扑结构适用于较大规模的系统,例如电力系统监测中的多个监测点。
485隔离电路方案详解
RS485隔离电路方案详解1、什么是485隔离电路?RS-485是一种常用的数据通信协议,广泛应用于工业控制系统、楼宇自动化、安防系统等领域。
在某些应用中,为了防止电气噪声干扰或电气冲击,需要对RS-485接口进行隔离。
示例图(仅供参考)2、有哪些方法可以实现485隔离电路?想要做到485电路上的隔离需要采用隔离器件,如光耦隔离器、磁隔离器等。
具体实现步骤如下:使用隔离器:首先,需要选择一款适合的隔离器。
常见的RS-485隔离器有ADI的ADM2483、TI的ISO3082等。
这些隔离器通常集成了RS-485收发器和隔离电源,可以提供高达2500V的隔离电压。
电源设计:隔离器需要两个独立的电源,一个用于隔离前的电路(如MCU),一个用于隔离后的电路(如RS-485总线)。
隔离电源可以使用隔离型DC-DC转换器来实现。
接口设计:RS-485接口通常需要一个120欧姆的终端电阻,用于抑制信号反射。
此外,还可以添加TVS二极管和磁珠,用于防止静电放电和滤除高频噪声。
布线设计:为了减少电磁干扰,RS-485的A、B线应该尽可能地走在一起,且尽量远离高速或高电流的信号线。
软件设计:在软件中,需要正确设置RS-485收发器的工作模式(如半双工或全双工),并根据需要设置数据速率、数据位、停止位和校验位。
我们需要注意的是,具体的设计可能还需要根据实际的应用需求和环境条件进行调整。
同时还需要注意隔离器件的选型和质量,确保隔离电路的稳定性和可靠性。
3、485隔离电路方案存在什么好处?提高通信的可靠性和稳定性:隔离电路可以防止电气噪声和电气冲击对系统造成干扰,从而提高系统的可靠性和稳定性。
保护设备安全:隔离电路可以防止高电压冲击对设备造成损坏,从而保护设备的安全。
提高信号质量:隔离电路可以减少信号传输过程中的干扰,从而提高信号的质量。
扩展系统距离:RS-485接口可以支持长距离的数据传输,而隔离电路可以进一步扩展这个距离。
rs-485接口电路详解
RS-485 接口电路RS-485 接口电路的主要功能是:将来自微处理器的发送信号TX 通过“发送器”转换成通讯网络中的差分信号,也可以将通讯网络中的差分信号通过“接收器”转换成被微处理器接收的RX 信号。
任一时刻,RS-485 收发器只能够工作在“接收”或“发送”两种模式之一,因此,必须为RS-485 接口电路增加一个收/发逻辑控制电路。
另外,由于应用环境的各不相同,RS-485 接口电路的附加保护措施也是必须重点考虑的环节。
下面以选用SP485R 芯片为例,列出RS-485 接口电路中的几种常见电路,并加以说明。
1.基本RS-485 电路图1为一个经常被应用到的SP485R芯片的示范电路,可以被直接嵌入实际的RS-485应用电路中。
微处理器的标准串行口通过RXD 直接连接SP485R 芯片的RO引脚,通过TXD直接连接SP485R芯片的DI引脚。
由微处理器输出的R/D 信号直接控制SP485R 芯片的发送器/接收器使能:R/D 信号为“1”,则SP485R 芯片的发送器有效,接收器禁止,此时微处理器可以向RS-485 总线发送数据字节;R/D 信号为“0”,则SP485R 芯片的发送器禁止,接收器有效,此时微处理器可以接收来自RS-485 总线的数据字节。
此电路中,任一时刻SP485R 芯片中的“接收器”和“发送器”只能够有1 个处于工作状态。
连接至A 引脚的上拉电阻R7、连接至B 引脚的下拉电阻R8 用于保证无连接的SP485R芯片处于空闲状态,提供网络失效保护,以提高RS-485 节点与网络的可靠性。
R7,R8,R9这三个电阻要根据实际应用而改变大小,特别在用120欧或更小终端电阻时,R9就不需要了,R7和R8应使用680欧电阻。
如果将SP485R 连接至微处理器80C51芯片的UART串口,则SP485R芯片的RO引脚不需要上拉;否则,需要根据实际情况考虑是否在RO引脚增加1个大约10K的上拉电阻。
RS485收发器两种典型电路(转帖)
RS485收发器两种典型电路(转帖)标签:单片机串行通信485RS485收发器两种典型电路(转帖)RS-485 接口电路RS-485 接口电路的主要功能是:将来自微处理器的发送信号TX通过“发送器”转换成通讯网络中的差分信号,也可以将通讯网络中的差分信号通过“接收器”转换成被微处理器接收的RX 信号。
任一时刻,RS-485收发器只能够工作在“接收”或“发送”两种模式之一,因此,必须为RS-485接口电路增加一个收/发逻辑控制电路。
另外,由于应用环境的各不相同,RS-485 接口电路的附加保护措施也是必须重点考虑的环节。
下面以选用SP485R芯片为例,列出RS-485 接口电路中的几种常见电路,并加以说明。
1.基本RS-485 电路图1为一个经常被应用到的SP485R芯片的示范电路,可以被直接嵌入实际的RS-485应用电路中。
微处理器的标准串行口通过RXD 直接连接SP485R 芯片的RO引脚,通过TXD直接连接SP485R 芯片的DI 引脚。
由微处理器输出的R/D 信号直接控制SP485R 芯片的发送器/接收器使能:R/D信号为“1”,则SP485R 芯片的发送器有效,接收器禁止,此时微处理器可以向RS-485 总线发送数据字节;R/D 信号为“0”,则SP485R芯片的发送器禁止,接收器有效,此时微处理器可以接收来自RS-485 总线的数据字节。
此电路中,任一时刻SP485R 芯片中的“接收器”和“发送器”只能够有1个处于工作状态。
连接至A 引脚的上拉电阻R7、连接至B 引脚的下拉电阻R8用于保证无连接的SP485R芯片处于空闲状态,提供网络失效保护,以提高RS-485节点与网络的可靠性。
光电隔离rs485典型电路
光电隔离rs485典型电路概述
光电隔离的RS485典型电路通常包括以下几个部分:
1. 光电隔离器:光电隔离器是实现电信号隔离的主要元件,通过光电效应原理,将电信号转换为光信号,再通过光导纤维或反射镜等传输介质传输到接收端,然后再将光信号转换回电信号。
这样可以有效地隔离电路中的干扰和噪声,提高信号的传输质量和稳定性。
2. RS485收发器:RS485收发器是实现串行通信的关键元件,它可以实现TTL电平与RS485协议之间的转换,从而使得微控制器等TTL设备能够与RS485总线进行通信。
3. 终端电阻:终端电阻是为了消除信号反射、保证信号质量而设置的。
在总线的两端加上终端电阻,可以吸收信号的反射能量,保证信号的完整性。
4. 电缆:电缆是用来传输信号的,通常采用双绞线或同轴电缆等线缆。
在选择电缆时,需要根据实际需求选择合适的线径和材质,以减小信号的衰减和干扰。
在光电隔离的RS485典型电路中,发送数据时,微控制器通过串行口将数据发送给RS485收发器,然后经过光电隔离器将电信号转换为光信号,再通过光导纤维等传输介质传输到接收端。
在接收数据时,光信号被光电隔离器转换为电信号,然后经过RS485收发器将信号处理
后传输给微控制器。
这样就可以实现长距离、高可靠的通信传输。
485通讯协议怎么使用(传统光电隔离的典型电路实例)
485通讯协议怎么使用(传统光电隔离的典型电路实例)RS485总线标准是工业中(考勤,监控,数据采集系统)使用非常广泛的双向、平衡传输标准接口,支持多点连接,允许创建多达3两个节点的网络;最大传输距离1200m,支持1200 m时为100kb/s的高速度传输,抗干扰能力很强,布线仅有两根线很简单。
RS485通信网络接口是1种总线式的结构,上位机(以个人电脑为例)和下位机都挂在通信总线上,RS485物理层的通信协议由RS485标准和PLC的多机通讯方式。
传统光电隔离的典型电路VDD与+5V1(VCC485)是两组不共地的电源,一般用隔离型的DC-DC来实现。
通过光耦隔离来实现信号的隔离传输,ISL3152EIBZ与MCU系统不共地,完全隔离则有效的抑制了高共模电压的产生,大大降低485的损坏率,提高了系统稳定性。
但也存在电路体积过大、电路繁琐、分立器件过多,传输速率受光电器件限制等缺点,对整个系统的稳定性也有一定影响。
第一步,配置好串口发送、接收端引脚和485控制引脚;因为RXD1引脚相对于STM32芯片来说是接收外来数据,所以设置为输入;TXD1引脚相对于STM32芯片来说是对外发送数据,所以设置为输出;TRE1 引脚是对外发送1或0高低电平命令,所以设置为输出;/******************************************************************函数名称:UART2Init*功能描述:对串口2参数进行设置、485控制端口初始化**输入参数:无*返回值:无*其他说明:无*当前版本:v1.0*-----------------------------------------------------------------*******************************************************************/。
RS485芯片介绍及典型应用电路
一、RS485基本知识RS-485接口芯片已广泛应用于工业控制、仪器、仪表、多媒体网络、机电一体化产品等诸多领域。
可用于RS-485接口的芯片种类也越来越多。
如何在种类繁多的接口芯片中找到最合适的芯片,是摆在每一个使用者面前的一个问题。
RS-485接口在不同的使用场合,对芯片的要求和使用方法也有所不同。
使用者在芯片的选型和电路的设计上应考虑哪些因素,由于某些芯片的固有特性,通信中有些故障甚至还需要在软件上作相应调整,如此等等。
希望本文对解决RS-485接口的某些常见问题有所帮助。
1 RS-485接口标准传输方式:差分传输介质:双绞线标准节点数:32最远通信距离:1200m 共模电压最大、最小值:+12V;-7V差分输入范围:-7V~+12V接收器输入灵敏度:±200mV接收器输入阻抗:≥12kΩ2 节点数及半双工和全双工通信2.1 节点数所谓节点数,即每个RS-485接口芯片的驱动器能驱动多少个标准RS-485负载。
根据规定,标准RS-485接口的输入阻抗为≥12kΩ,相应的标准驱动节点数为32。
为适应更多节点的通信场合,有些芯片的输入阻抗设计成1/2负载(≥24kΩ)、1/4负载(≥48kΩ)甚至1/8负载(≥96kΩ),相应的节点数可增加到64、128和256。
表1为一些常见芯片的节点数。
表1节点数型号32 SN75176,SN75276,SN75179,SN75180,MAX485,MAX488,MAX49064 SN75LBC184128 MAX487,MAX1487256 MAX1482,MAX1483,MAX3080~MAX30892.2 半双工和全双工RS-485接口可连接成半双工和全双工两种通信方式。
半双工通信的芯片有SN75176、SN75276、SN75LBC184、MAX485、MAX 1487、MAX3082、MAX1483等;全双工通信的芯片有SN75179、SN75180、MAX488~MAX491、MAX1482等。
RS485芯片介绍及典型应用电路
(1)使用带故障保护的芯片,它会在总线开路、短路和空闲情况下,使接收器的输出为高电平。确保总线空闲、短路时接收器输出高电平是由改变接收器输入门限来实现的。例如,MAX3080~MAX 3089输入灵敏度为-50mV-200mV,即差分接收器输入电压UA-B≥-50mV时,接收器输出逻辑高电平;如果UA-B≤-200mV,则输出逻辑低电平。当接收器输入端总线短路或总线上所有发送器被禁止时,接收器差分输入端为0V,从而使接收器输出高电平。同理,SN75276的灵敏度为0mV-300mV,因而达到故障保护的目的。
64 SN75LBC184
128 MAX487,MAX1487
256 MAX1482,MAX1483,MAX3080~MAX3089
2.2 半双工和全双工
RS-485接口可连接成半双工和全双工两种通信方式。半双工通信的芯片有SN75176、SN75276、SN75LBC184、MAX485、MAX 1487、MAX3082、MAX1483等;全双工通信的芯片有SN75179、SN75180、MAX488~MAX491、MAX1482等。
对分机(或分机应答主机)的控制命令;地址码是分机的本机地址号;“内容”是这一包数
据里的各种信息;校验码是这一包数据的校验标志,可以采用奇偶校验、和校验等不同的方
式。
在485芯片的通信中,尤其要注意对485控制端DE的软件编程。为了可靠的工作,在485
总线状态切换时需要做适当延时,再进行数据的收发。具体的做法是在数据发送状态下,先
解决这个问题。
图1 RS485应用典型电路
三、软件的编程
485芯片的软件编程对产品的可靠性也有很大影响。由于485总线是异步半双工的通信总