酶促反应动力学(有方程推导过程)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

〔I〕 + Ki
)+〔S〕
竞争性抑制剂双倒数曲线,如下图所示:
1
vi
=Km( Vmax
1
+
〔KI〕i )〔S1〕+
1 Vmax
有竞争性抑制剂存在的 曲线与无抑制剂的曲线相 交于纵坐标I/Vmax处,但 横坐标的截距,因竞争性 抑制存在变小,说明该抑 制作用,并不影响酶促反 应的最大速度Vmax,而使 Km值变大。
很多药物都是酶的竞争性抑制剂。例如磺胺药 与对氨基苯甲酸具有类似的结构,而对氨基苯甲 酸、二氢喋呤及谷氨酸是某些细菌合成二氢叶酸 的原料,后者能转变为四氢叶酸,它是细菌合成 核酸不可缺少的辅酶。由于磺胺药是二氢叶酸合 成酶的竞争性抑制剂,进而减少细菌体内四氢叶 酸的合成,使核酸合成障碍,导致细菌死亡。抗 菌增效剂-甲氧苄氨嘧啶(TMP)能特异地抑制细菌 的二氢叶酸还原为四氢叶酸,故能增强磺胺药的 作用。
2.专一性不可逆抑制
此属抑制剂专一地作用于酶的活性中心或其必需 基团,进行共价结合,从而抑制酶的活性。有机 磷杀虫剂能专一作用于胆碱酯酶活性中心的丝氨酸 残基,使其磷酰化而不可逆抑制酶的活性。当胆碱 酯酶被有机磷杀虫剂抑制后,乙酰胆碱不能及时分 解成乙酸和胆碱,引起乙酰胆碱的积累,使一些以 乙酰胆碱为传导介质的神经系统处于过度兴奋状态, 引起神经中毒症状。解磷定等药物可与有机磷杀虫 剂结合,使酶和有机磷杀虫剂分离而复活。
磺胺药物的抑菌作用
2.非竞争性抑制(non-competitive inhibition)
(1)
抑制剂I和底物S与酶E的结合完全互不相关,既不排 斥,也不促进结合,抑制剂I可以和酶E结合生成EI, 也可以和ES复合物结合生成ESI。底物S和酶E结合成ES 后,仍可与I结合生成ESI,但一旦形成ESI复合物,再 不能释放形成产物P。
3.酶4 酶促反促应反动应力动学力学
酶促反应动力学(kinetics of enzymecatalyzed reactions)是研究酶促反应速度 及其影响因素的科学。酶促反应的影响因素 主要包括酶的浓度、底物的浓度、pH、温度、 抑制剂和激活剂等。
一. 酶浓度的影响
在一定温度和pH下,酶 促反应在底物浓度大于 100 Km时,速度与酶的浓 度呈正比。
2.米氏常数的意义 (1). 物理意义:
Km值等于酶反应速度为最大速度一半时的底物浓度。
(2). Km 值愈大,酶与底物的亲和力愈小;Km值愈小, 酶与底物亲和力愈大。酶与底物亲和力大,表示不需要很 高的底物浓度,便可容易地达到最大反应速度。
(3). Km 值是酶的特征性常数,只与酶的性质,酶所催 化的底物和酶促反应条件(如温度、pH、有无抑制剂等)有 关,与酶的浓度无关。酶的种类不同,Km值不同,同一种 酶与不同底物作用时,Km 值也不同。各种酶的 Km 值范 围很广,大致在 10-1~10-6 M 之间。
(3)计算一定速度下的底物浓度:如某一反应要求的 反应速度达到最大反应速度的99%,则[S]=99Km
(4)了解酶的底物在体内具有的浓度水平:一般地, 体内酶的天然底物的[S]体内≈Km,如果[S]体内<< Km, 那么V<< Vmax,细胞中的酶处于“浪费”状态,反 之,[S]体内 >> Km,那么V≈Vmax,底物浓度失去生 理意义,也不符合实际状态。
三. pH对酶促反应速度的影响
大多数酶的活性受 pH 影响显著,在某一 pH 下 表现最大活力,高于或低于此pH,酶活力显著下降。 酶表现最大活力的pH称为酶的最适pH(optimumpH pHm)。典型的酶速度-pH曲线是较窄的钟罩型曲线, 但有的酶的速度-pH曲线并非一定呈钟罩型。如胃蛋 白酶和木瓜蛋白酶的速度-pH曲线。
在一定范围内,反应速度达到最大时对应的温度称为 该酶促反应的最适温度(optimum temperature Tm).一 般动物组织中的酶其最适温度为35~40℃,植物与微生物 中的酶其最适温度为30~60℃,少数酶可达60℃以上,如 细菌淀粉水解酶的最适温度90℃以上。
温度对酶促反应速度的影响机理:
1. 温度影响反应体系中的活化分子数:温度增加,活 化分子数增加,反应速度增加。
2. 温度影响酶的活性:过高的温度使酶变性失活,反 应速度下降。
最适温度不是酶的特征常数,因为一种酶的最适温 度不是一成不变的,它要受到酶的纯度、底物、激活剂、 抑制剂、酶反应时间等因素的影响。因此,酶的最适温 度与其它反应条件有关。
(一)不可逆性抑制作用(irreversible inhibition)
不可逆性抑制作用的抑制剂,通常以共价 键方式与酶的必需基团进行不可逆结合而使 酶丧失活性。常见的不可逆抑制剂如下图所 示。按其作用特点,又分专一性及非专一性 两种。
1.非专一性不可逆抑制
抑制剂与酶分子中一类或几类基团作用,不论是 必需基团与否,皆可共价结合,由于其中必需基团 也被抑制剂结合,从而导致酶的抑制失活。某些重金 属(Pb++、Cu++、Hg++)及对氯汞苯甲酸等,能与酶分子 的巯基进行不可逆适合,许多以巯基作为必需基团 的酶(通称巯基酶),会因此而遭受抑制,属于此种类 型。用二巯基丙醇(british anti lewisite,BAL)或 二巯基丁二酸钠等含巯基的化合物可使酶复活。
2、pH影响酶分子的构象:过高或过低pH都会影响酶分子活 性中心的构象,或引起酶的变性失活。
动物体内多数酶的最适pH值接近中性,但也有例外,如胃 蛋白酶的最适pH约1.8,肝精氨酸酶最适pH约为9.8(见下表)。
一些酶的最适pH
四、 底物浓度对反应速度的影响 1、酶反应与底物浓度的关系
1902年,Henri用蔗糖酶水解蔗糖的实验中观 察到:在蔗糖酶酶的浓度一定的条件下测定底物 (蔗糖)浓度对酶 反应速度的影响, 它们之间的 关系呈现矩形双曲线(rectangular hyperbola)。 如下图所示:
当酶反应体系处于恒态时: v1 v2
即: k1Et ESS k1ES k2ES
Et
S ES ES
S

k1 k1
k2
令: k1 k2 Km k1
则:KmES ESS Et S
经整理得: ES
(2)特点:
① I和S在结构上一般无相似之处,I常与酶分子上结合 基团以外的化学基团结合,这种结合并不影响底物和酶 的结合,增加底物浓度并不能减少I对酶的抑制。
(5)判断反应方向或趋势:催化正逆反应的酶,其 正逆两向的反应的Km不同,如果正逆反应的底物浓度 相当,则反应趋向于Km小对应底物的反应方向。
方程:
称为Lineweaver-Buck方程(或双倒数方程) (double reciprocal plot or Lineweaver Burk plot)
(2)特点:
① 抑制剂I与底物S在化学结构上相似,能与 底物S竞争酶E分子活性中心的结合基团.
例如,丙二酸、苹果酸及草酰乙酸皆和琥珀酸 的结构相似,是琥珀酸脱氢酶的竞争性抑制剂。
②抑制程度取决于抑制剂与底物的浓度比、 〔ES〕和〔EI〕的相对稳定性;
③加大底物浓度,可使抑制作用减弱甚至消除。
(3)竞争性抑制剂的动力学方程
k1 E+S ES
k3 E+P
E+I
k2
〔E〕〔S〕
由米氏方程得:Km=
〔ES〕
ki EI

ห้องสมุดไป่ตู้
Ki=
〔E〕〔I〕 〔EI〕

〔E〕=〔E〕t-〔ES〕-〔EI〕 ③
解方程①②③得:
〔ES〕=
〔E〕t
〔KSm〕(1 + 〔KI〕i )+1
又因vi=k3〔ES〕,代入上式得:
Vi=
Vmax〔S〕
Km(1
(4)
将(4)代入(3),则:
v Vmax S Km S
Vmax指该酶促反应的最大速度,[S]为底 物浓度,Km是米氏常数,V是在某一底物浓 度时相应的反应速度。从米氏方程可知:
当底物浓度很低时 [S] << Km,则 V≌Vmax[S]/Km ,反应速度 与底物浓度呈正比;
当底物浓度很高时, [S]>> Km ,此时V≌Vmax ,反应速度达最大 速度,底物浓度再增高也不影响反应速度。
酶浓度对速度的影响机 理:酶浓度增加,[ES]也 增 加 , 而 V=k3[ES] , 故 反 应速度增加。
二. 温度对酶促反应速度的影响
酶促反应与其它化学反应一样,随温度的增加,反应 速度加快。化学反应中温度每增加10℃反应速度增加的 倍数称为温度系数Q10。一般的化学反应的Q10为2~3,而 酶促反应的Q10为1~2。
酶的激活剂,动物唾液中的α-淀粉酶则受Cl-的激活。
特点:1、酶对激活剂有一定的选择性,一种酶的激活剂 对另一种酶来说可能是抑制剂
2、有一定的浓度要求,当激活剂的浓度超过一 定的范围时,它就成为抑制剂。
激活剂
六、抑制剂对反应速度的影响
凡能使酶的活性下降而不引起酶蛋白变性的物质称为 酶的抑制剂(inhibitor)。使酶变性失活(称为酶的钝化) 的因素如强酸、强碱等,不属于抑制剂。通常抑制作用分 为可逆性抑制和不可逆性抑制两类。
3. Km在实际应用中的重要意义
(1)鉴定酶:通过测定可以鉴别不同来源或相同来源但 在不同发育阶段、不同生理状态下催化相同反应的酶是 否属于同一种酶。
(2)判断酶的最佳底物:如果一种酶可作用于多个底 物,就有几个Km值,其中Km最小对应的底物就是酶的天 然底物。如蔗糖酶既可催化蔗糖水解(Km=28mmol/L),也 可催化棉子糖水解(Km=350mmol/L),两者相比,蔗糖为 该酶的天然底物。
Et S Km S
(1)
由于酶促反应速度由[ES]决定,即 v k2 ES
,所以 ES v (2)
k2
将(2)代入(1)得:
v k2

Et S Km S
v

k2Et S Km S
(3)
当[Et]=[ES]时, v Vm
所以 Vm k2 Et
(二)可逆性抑制(reversible inhibition)
抑制剂与酶以非共价键结合,在用透析等物 理方法除去抑制剂后,酶的活性能恢复,即抑 制剂与酶的结合是可逆的。
1.竞争性抑制(competitive inhibition)
(1)含义和反应式
抑制剂I和底物S结构相似,抑制剂I和 底物S对游离酶E的结合有竞争作用,互相 排斥,已结合底物的ES复合体,不能再结 合I。同样已结合抑制剂的EI复合体,不能 再结合S
在底物浓度很低时,反应速度随底物浓度的增 加而急骤加快,两者呈正比关系,表现为一级反 应。随着底物浓度的升高,反应速度不再呈正比 例加快,反应速度增加的幅度不断下降。如果继 续加大底物浓度,反应速度不再增加,表现为零 级反应。此时,无论底物浓度增加多大,反应速 度也不再增加,说明酶已被底物所饱和。所有的 酶都有饱和现象,只是达到饱和时所需底物浓度 各不相同而已。
用1/V0 对 1/[S] 的作图得一直线,其斜率是 Km/Vmax,,在纵轴上的截距为 1/Vmax ,横轴上 的截距为 -1/Km。此作图除用来求 Km 和 Vmax 值外,在研究酶的抑制作用方面还有重要价值。
双倒数作图法
五. 激活剂对酶反应速度的影响
能使酶活性提高的物质,都称为激活剂(activator),其中 大部分是离子或简单的有机化合物。如Mg++是多种激酶和合成
胃蛋白酶的速度-温度曲线如下图:
胃蛋白酶和葡萄糖-6-磷酸酶的pH活性曲线 :
pH对酶促反应速度的影响机理: 1、pH影响酶和底物的解离: 酶的活性基团的解离受pH影 响,底物有的也能解离,其解离状态也受pH的影响,在某 一反应pH下,二者的解离状态最有利于它们的结合,酶促 反应表现出最大活力,此pH称为酶的最适pH;当反应pH偏 离最适pH时,酶促反应速度显著下降。
为解释酶被底物饱和现象,Michaelis和Menten 做了大量的定量研究,积累了足够的实验数据, 提出了酶促反应的动力学方程:
S E k1 ES k2 P E
S Et ES
k1
ES
[ES]生成速度:v1 k1Et ES S ,[ES]分解速度:v2 k1ES k2ES
凡能使酶分子发生别构作用的物质称为变构剂或调节物调节物能使酶活性增加的效应叫正协同效应该调节物叫正调节物如底物调节物能使酶活性降低的效应叫负协同效应该调节物叫负调节物通过其它酶对其多肽链某些基团进行可逆共通过其它酶对其多肽链某些基团进行可逆共价修饰使处于活性与非活性的互变状态价修饰使处于活性与非活性的互变状态从而调节酶活性
相关文档
最新文档