中考一元二次方程的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考一元二次方程的应用(总5页)
--本页仅作为文档封面,使用时请直接删除即可--
--内页可以根据需求调整合适字体及大小--
一元二次方程应用
1.本商店积压了100件某种商品,为使这批货物尽快出售,该商店采取了如下销售方案,先将价格提高到原来的倍,再作三次降价处理;第一次降价30%标出了“亏本价”,第二次降价30%,标出“破产价”,第三次又降价30%,标出“跳楼价”,三次降价处理销售情况如下表。
问:
(1)跳楼价占原价的百分比是多少?
(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利,请通过计算加以说明
2.云南省是我国花卉产业大省,一年四季都有大量鲜花销往全国各地,花卉产业已成为我省许多地区
经济发展的重要项目.近年来某乡的花卉产值不断增加,2009年花卉的产值是640万元,2011年产值
达到l000万元.
(l)求2010年、2011年花卉产值的年平均增长率是多少?
(2)若2012年花卉产值继续稳步增长(即年增长率与前两年的年增长率相同).那么请你估计2012年这个乡的花卉产值将达到多少万元?
3.据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2009年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2011年的利用率提高到60%,求
每年的增长率。
(
(二)商品利润问题
1.合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发
现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200
元,那么每件童装应降价多少?
2.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了
促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元
3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件的进价、标价分别是多少元?
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大获得的最大利润是多少元
4.大宇商场在一种待处理的衣服共20件,每件原价为50元,因季节关系的影响,决定进行
降价销售。
卖出10件后,商场为了让资金尽快回收,决定以同样的幅度再次下调价格,结
果很快全部售完了所有这种衣服,并共回收资金855元。
(1).求这两次降价的百分率是多少 (2).求后10件这种衣服每件的售价。
(三)图形计算问题
1.(1)小明家要建面积为150m2的养鸡场,鸡场一边靠墙,另一边用竹篱笆围成,竹篱笆总长为35m。
若墙的长度为18m,鸡场的长、分别是多少?
(2)如果墙的长为15m,鸡场一边靠墙,竹篱笆总长为45m,可围成的鸡场最大面积是多少平方米?
(3) 如果墙的长为15m,鸡场一边靠墙,竹篱笆总长为45m,可围成的鸡场的面积能达到250m2吗?通过计算说明理由。
D B C P Q A
(4)如果墙的长为15m ,鸡场一边靠墙,竹篱笆总长
为45m ,可围成的鸡
场的面积能达到100m 2吗?通过计算并画草图说明。
2.如图,在直角梯形ABCD 中,∠B=90°,AB=8cm ,AD=24cm ,BC=26cm ,点P 从A 出发,以1cm/s 的速度向D 运动,点Q 从C 同时出发,以3cm/s 的速度向B 运动,当一个点运动到端点时,另一个也随之停止运动,从运动开始,经过多少时间,四边形
PQCD 成为平行四边形成为等腰梯形
(四)面积问题
1. 一个直角三角形的两条直角边的和是14cm,面积是24cm 2,两条直角边的长分别是 。
2. 一个直角三角形的两条直角边相差5㎝,面积是7㎝2,斜边的长是 。
3. 一个菱形两条对角线长的和是10㎝,面积是12㎝2,菱形的周长是 。
(结果保留小数点后一位)
4. 为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为 米,宽
为 米。
5. 若把一个正方形的一边增加2cm ,另一边增加1cm ,得到的矩形面积的2 倍比正方形的面积
多11cm 2,则原正方形的边长为 cm.
6. 如图,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形
(图中阴影部分)面积是原矩形面积的80%,所截去的小正方形的边长是 。
7. 张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚
好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了是 元钱
8. 如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余
分作为耕地为551㎡。
则道路的宽为是 。
9.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m。
①鸡场
的面积能达到150m2吗?②鸡场的面积能达到180m2吗?如果能,请你给出设计方案;如果不能,请说明理由。
(3)若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用?
(五)工程问题
1.某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果
由甲、乙两队单独做,甲队比乙队少用10天完成.(1)求甲、乙两工程队单独完成此项工程所需的天数.(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少?
2.搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相
的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间(列式子)
3.乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已
知甲比乙跑得快,求甲、乙每分钟各跑几圈?
4.
5.某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开
放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时?
(六)行程问题
1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km 的速度向A驶去,两人在相距B点40km处相遇。
问甲、乙的速度各是多少?
甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.
3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.
4、甲、乙两人分别骑车从A,B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进。
乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度。
三、解答题
1. (2011山东日照)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2011年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
3. (2011湖北襄阳)汽车产业是我市支柱产业之一,产量和效益逐年增加.据统计,2008年我市某种品牌汽车的年产量为万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011年的年产量为多少万辆?
4. (2011山东东营本题满分10分) 随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多的进入普通家庭,成为居民消费新的增长点。
据某市交通部门统计,2008年底全市汽车拥有量为15万辆,而截止到2010年底,全市的汽车拥有量已达万辆。
(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;
(2)为了保护环境,缓解汽车拥堵状况,从2011年起,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过万辆;另据估计,该市从2011年起每年报废的汽车数量是上年底汽车拥有量的10%。
假定在这种情况下每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆。
5. (20011江苏镇江)某商店以6元/千克的价格购进某干果1140千克,并对其起先筛选分成甲级干果与乙级干果后同时开始销售,这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每都有销售量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销售量1y (千克)与x 的关系为2140y x x =-+;乙级干果从开始销售至销售的第t 天的总销售量2y (千克)与t 的关系为
22y at bt =+,且乙级干果的前三天的销售量的情况见下表:
1 2
3 2y 21
44 69 (1)求a 、b 的值.
(2)若甲级干果与乙级干果分别以元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润为多少元?
(3)此人第几天起乙级干果每 天的销售量比甲级干果每天的销售量至少多千克(说明:毛利润=销售总金额-进货总金额.这批干果进货至卖完的过程中的损耗忽略不计.)
2.①美化城市,改善人们的居住环境已成为城市建设的一项重要
内容.某市近几年来,通过拆迁旧房,植草,栽树,修公园等措
施,使城区绿地面积不断增加(如图所示).
(1)根据图中所提供的信息回答下列问题:2003年底的绿地面积为 公顷,比2002年底增加了 公顷;在2001年,2002年,
2003年这三个中,绿地面积最多的是 ___________年;
(2)为满足城市发展的需要,计划到2005年底使城区绿地面积达到72.6公顷,试今明两绿地面积的年平均增长率.
3.机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克用油的重复利用率是多少。