贝特朗概率悖论的解释
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝特朗概率悖论的解释
贝特朗概率悖论的解释
贝特朗概率悖论是一个著名的悖论题,与其他的集合悖论不一样,这个悖论只是我们看起来“错”而已,也并没有像集合悖论一样带来一次数学危机,正确审视它,就是让我们对“几何概型”这一概念更加地深入了解而已。
我就不废话,我们直接来看什么是贝特朗概率悖论,百度上有很多,随便一搜就到处都是
题目是这样子滴:在圆中做弦MN,求使MN的长大于圆内接正三角形边长的概率。
这道题若从不同的角度看,就有几种不同的答案,百度百科里有,我就不想在这里多费口舌,希望各位先到那里去看看具体的答案,我把图片下来,大家可以自己看:百度百科词条解释
虽然这多种解法各有各得说法,似乎每一个都对,但是悖论毕竟是悖论,他终究是错的。
概率问题一个基本的原则就是,不管从哪个角度看,答案只能有一个,否则一件事情的概率都不一致,这问题要么就是本身就有问题,要么就是条件不够。
而对于贝特朗概率悖论所涉及到的问题,正是如此,因为其条件不够。
首先我们看第一种“解法”。
解法1的思路是,在于AB平行的弦中,只有与PQ交点落在MN上的,弦长才大于根号3。
弦与PQ的交点肯定就是落在
能分布于以O为圆心,半径为1/2的圆中,而该圆的面积占据大圆的1/4,故概率为1/4.
学夫子自己的看法来说,这种解法最牵强,他将弦的分布划归为其中点在圆中的分布,认为“一个中点M只对应于一条弦”,显然这是错误的,因为圆心O所对应的弦有无数条,而对于非圆心的点M,以M为中点的弦只有一条。
所以这本身就不是等可能的,这种解法就是错误,他就跟前两种解法不一样,加上条件就是对的,这种解法无论加什么条件都是错的,因为不是条件缺与不缺的问题,而是犯了概率论中最基本的前提错误——等可能分布。
不过网络上更倾向于第二种方法的答案作为这道题的“标
准答案”,因为任意给一条弦,他应该由圆周上的两点决定。
文章。