2015-2016学年人教版一年级数学下册第一次月考试卷

合集下载

2015-2016学年,七年级(上),第一次月,考数学试卷

2015-2016学年,七年级(上),第一次月,考数学试卷

2015-2016学年湖南省邵阳市武冈三中七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A.﹣7℃B.+7℃C.+12℃D.﹣12℃2.某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( ) A.+800,+350,﹣100 B.+800,+350,+100C.+800,﹣350,﹣100 D.﹣800,﹣350,+1003.﹣6的相反数为( )A.6 B.C.D.﹣64.下列式子中,﹣(﹣3),﹣|﹣3|,3﹣5,﹣1﹣5是负数的有( )A.1个B.2个C.3个D.4个5.下列计算不正确的是( )A.﹣(﹣3)×=﹣1 B.+[﹣(﹣)]=1 C.﹣3+|﹣3|=0 D.﹣÷5=﹣6.下列四个数中,最小的数是( )A.2 B.﹣2 C.0 D.﹣7.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.﹣4 B.﹣2 C.0 D.48.某种面粉袋上的质量标识为“25±0.25kg”,则下列面粉中合格的是( )A.24.70kg B.25.30kg C.25.51kg D.24.80kg9.(﹣1)﹣(﹣3)+2×(﹣3)的值等于( )A.1 B.﹣4 C.5 D.﹣110.若ab≠0,则+的值不可能是( )A.2 B.0 C.﹣2 D.1二、填空题(每小题3分,共30分)11.①3的相反数是__________,②﹣2的倒数是__________,③|﹣2012|=__________.12.如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是__________.13.写出一个比﹣1小的数是__________.14.7×(﹣2)的相反数是__________.15.如图,数轴上A,B两点分别对应实数a、b,则a、b的大小关系为__________.16.若|x|=3,y=2,则|x+y|=__________.17.计算|﹣|﹣的结果是__________.18.武冈某天早晨气温是﹣5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为__________.19.已知a,b互为相反数,且都不为0,则(a+b﹣5)×(﹣3)=__________.20.一组按规律排列的数:,,,,…请你推断第9个数是__________.三、简答题21.(16分)计算(1)3+(﹣)﹣(﹣)+2(2)(﹣12)÷(﹣)÷(﹣9)(3)﹣2﹣12×(﹣+)(4)﹣﹣(﹣)﹣|﹣|22.把下列各数写在相应的集合里﹣5,10,﹣4,0,+2,﹣2.15,0.01,+66,﹣,15%,,2003,﹣16正整数集合:__________负整数集合:__________正分数集合:__________负分数集合:__________整数集合:__________负数集合:__________正数集合:__________.23.画出数轴,并在数轴上画出表示:﹣(﹣4),+(﹣2.5),﹣|﹣3|,+2,﹣(﹣1.5)24.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元?25.为节约能源,电力部门按以下规定收取每月电费:用电不超过120度,按每月每度0.57元收费,如果超过120度,超过部分按每度0.69元收费,若某用户五月份共用电220度,该用户五月份应交电费多少元?26.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小石距离下午出发地点的距离多少千米?(2)若汽车耗油量为0.56升/千米,这天下午汽车共耗油多少升?2015-2016学年湖南省邵阳市武冈三中七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A.﹣7℃B.+7℃C.+12℃D.﹣12℃考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:∵“正”和“负”相对,∴零上5℃记作+5℃,则零下7℃可记作﹣7℃.故选A.点评:此题考查了正数与负数的定义.解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.某同学春节期间将自己的压岁钱800元,存入银行.十一放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( ) A.+800,+350,﹣100 B.+800,+350,+100C.+800,﹣350,﹣100 D.﹣800,﹣350,+100考点:正数和负数.分析:根据存入为正数,支出为负数,即可解答.解答:解:根据题意得:+800,﹣350,﹣100,故选:C.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.﹣6的相反数为( )A.6 B.C.D.﹣6考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫相反数,可以直接得到答案.解答:解:﹣6的相反数是:6,故选:A,点评:此题主要考查了相反数的定义,同学们要熟练掌握相反数的定义.4.下列式子中,﹣(﹣3),﹣|﹣3|,3﹣5,﹣1﹣5是负数的有( )A.1个B.2个C.3个D.4个考点:正数和负数;绝对值.分析:先化简各数,再根据负数的概念求解.解答:解:﹣(﹣3)=3是正数,﹣|﹣3|=﹣3是负数,3﹣5=﹣2是负数,﹣1﹣5=﹣6是负数.负数有三个,故选C.点评:本题主要考查了负数的概念,解题的关键是:先将各数化简.5.下列计算不正确的是( )A.﹣(﹣3)×=﹣1 B.+[﹣(﹣)]=1 C.﹣3+|﹣3|=0 D.﹣÷5=﹣考点:有理数的乘法;有理数的加法;有理数的除法.分析:根据有理数的乘法、加法、除法,逐个计算,即可解答.解答:解:A、﹣(﹣3)×=1,计算结果错误;B、,计算结果正确;C、﹣3+|﹣3|=0,计算结果正确;D、,计算结果正确;故选:A.点评:本题考查了有理数的乘法、加法、除法,解决本题的关键是熟练掌握有理数的运算.6.下列四个数中,最小的数是( )A.2 B.﹣2 C.0 D.﹣考点:有理数大小比较.分析:根据有理数比较大小的法则进行比较即可.解答:解:∵2>0,﹣2<0,﹣<0,∴可排除A、C,∵|﹣2|=2,|﹣|=,2>,∴﹣2<﹣.故选B.点评:本题考查的是有理数的大小比较,熟知正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是解答此题的关键.7.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.﹣4 B.﹣2 C.0 D.4考点:绝对值;数轴.专题:计算题.分析:如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.解答:解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选B.点评:此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.确定数轴的原点是解决本题的关键.8.某种面粉袋上的质量标识为“25±0.25kg”,则下列面粉中合格的是( )A.24.70kg B.25.30kg C.25.51kg D.24.80kg考点:正数和负数;有理数的加法;有理数的减法.专题:应用题.分析:根据正负数的意义,判断产品是否合格.解答:解:∵25+0.25=25.25,25﹣0.25=24.75,∴符合条件的只有D.故选D.点评:解答此题关键是要弄清题意,某种面粉袋上的质量标识为“25±0.25kg”,则说明面粉的重量在25.25﹣24.75kg之间.9.(﹣1)﹣(﹣3)+2×(﹣3)的值等于( )A.1 B.﹣4 C.5 D.﹣1考点:有理数的混合运算.专题:计算题.分析:原式先计算乘法运算,再计算加减运算即可得到结果.解答:解:原式=﹣1+3﹣6=﹣4,故选B点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.若ab≠0,则+的值不可能是( )A.2 B.0 C.﹣2 D.1考点:有理数的除法;绝对值;有理数的乘法.分析:由于ab≠0,则有两种情况需要考虑:①a、b同号;②a、b异号;然后根据绝对值的性质进行化简即可.解答:解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选D.点评:此题考查的是绝对值的性质,能够正确的将a、b的符号分类讨论,是解答此题的关键.二、填空题(每小题3分,共30分)11.①3的相反数是﹣3,②﹣2的倒数是﹣,③|﹣2012|=2012.考点:倒数;相反数;绝对值.分析:根据相反数、倒数、绝对值的定义,即可解答.解答:解:①3的相反数是﹣3,②﹣2的倒数是﹣,③|﹣2012|=2012,故答案为:﹣3,﹣,2012.点评:本题考查了相反数、倒数、绝对值的定义,解决本题的关键是熟记相反数、倒数、绝对值的定义.12.如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是﹣n>m>﹣m>n.考点:有理数大小比较.分析:先确定m、n、﹣m、﹣n的符号,再根据正数大于0,负数小于0即可比较m,n,﹣m,﹣n的大小关系.解答:解:根据正数大于一切负数,只需分别比较m和﹣n,n和﹣m.再根据绝对值的大小,得﹣n>m>﹣m>n,故答案为:﹣n>m>﹣m>n.点评:此题主要考查了实数的大小的比较,解决本题的关键熟记两个负数,绝对值大的反而小.13.写出一个比﹣1小的数是﹣2.考点:有理数大小比较.专题:开放型.分析:本题答案不唯一.根据有理数大小比较方法可得.解答:解:根据两个负数,绝对值大的反而小可得﹣2<﹣1,所以可以填﹣2.答案不唯一.点评:比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.7×(﹣2)的相反数是14.考点:有理数的乘法;相反数.分析:先计算7×(﹣2)=﹣14,再求相反数,即可解答.解答:解:7×(﹣2)=﹣14,﹣14的相反数是14,故答案为:14.点评:本题考查了有理数的乘法和相反数,解决本题的关键是熟记有理数的乘法法则.15.如图,数轴上A,B两点分别对应实数a、b,则a、b的大小关系为a<b.考点:实数大小比较;实数与数轴.专题:计算题.分析:先根据数轴上各点的位置判断出a,b的符号及|a|与|b|的大小,再进行计算即可判定选择项.解答:解:∵A在原点的左侧,B在原点的右侧,∴A是负数,B是正数;∴a<b.故答案为:a<b.点评:此题主要考查了实数的大小的比较,要求学生能正确根据数在数轴上的位置判断数的符号以及绝对值的大小.16.若|x|=3,y=2,则|x+y|=5或1.考点:绝对值.专题:计算题.分析:利用绝对值的代数意义求出x的值,即可确定出原式的值.解答:解:∵|x|=3,∴x=±3,当x=3,y=2时,原式=5;当x=﹣3,y=2时,原式=1,故答案为:5或1点评:此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.17.计算|﹣|﹣的结果是﹣.考点:有理数的减法;绝对值.分析:根据绝对值的性质和有理数的减法运算法则进行计算即可得解.解答:解:|﹣|﹣=﹣=﹣.故答案为:﹣.点评:本题考查了有理数的减法运算,绝对值的性质,是基础题,熟记运算法则和性质是解题的关键.18.武冈某天早晨气温是﹣5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为﹣7℃.考点:有理数的加减混合运算.专题:应用题.分析:把实际问题转化成有理数的加减法,可根据题意列式为:﹣5+5﹣3﹣4.解答:解:根据题意得:﹣5+5﹣3﹣4=﹣7(℃),故答案为:﹣7℃.点评:本题考查了有理数的混合运算,解决本题的关键是正确列出式子.19.已知a,b互为相反数,且都不为0,则(a+b﹣5)×(﹣3)=.考点:有理数的混合运算;相反数.专题:计算题.分析:利用互为相反数两数之和为0得到a+b=0,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,则原式=×3=,故答案为:点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.一组按规律排列的数:,,,,…请你推断第9个数是.考点:规律型:数字的变化类.分析:根据已知数据,找出规律,验证正确后,根据规律计算得到答案.解答:解:=,=,=,…第9个数是=,故答案为:.点评:本题考查的是数字的变化规律问题,根据给出的一组数据,正确找出其排列规律是解题的关键.三、简答题21.(16分)计算(1)3+(﹣)﹣(﹣)+2(2)(﹣12)÷(﹣)÷(﹣9)(3)﹣2﹣12×(﹣+)(4)﹣﹣(﹣)﹣|﹣|考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式第二项利用乘法分配律计算即可得到结果;(4)原式利用减法法则及绝对值的代数意义变形,计算即可得到结果.解答:解:(1)原式=(3﹣)+(+2)=3+3=6;(2)原式=﹣12××=﹣2;(3)原式=﹣2﹣4+3﹣6=﹣9;(4)原式=﹣+﹣=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.把下列各数写在相应的集合里﹣5,10,﹣4,0,+2,﹣2.15,0.01,+66,﹣,15%,,2003,﹣16正整数集合:10,+66,2003负整数集合:﹣5,﹣16正分数集合:+2,0.01,15%,负分数集合:﹣4,﹣2.15,﹣整数集合:﹣5,10,0,+66,2003,﹣16负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16正数集合:10,+2,0.01,+66,15%,,2003.考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:正整数集合:10,66,2003;负整数集合:﹣5,﹣16;正分数集合:+2,0.01,15%,;负分数集合:﹣4,﹣2.15,﹣;整数集合:﹣5,10,0,+66,2003,﹣16;负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16;正数集合:10,+2,0.01,+66,15%,,2003.点评:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.23.画出数轴,并在数轴上画出表示:﹣(﹣4),+(﹣2.5),﹣|﹣3|,+2,﹣(﹣1.5)考点:数轴.专题:计算题.分析:各项计算得到结果,表示在数轴上即可.解答:解:﹣(﹣4)=4,+(﹣2.5)=﹣2.5,﹣|﹣3|=﹣3,+2=2,﹣(﹣1.5)=1.5,点评:此题考查了数轴,绝对值,以及有理数的乘方,熟练掌握运算法则是解本题的关键.24.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损?盈余或亏损多少元?考点:正数和负数.分析:把所有收入情况相加,再根据正、负数的意义解答.解答:解:(+853.5)+(+237.2)+(﹣325))+(+138.5)+(﹣280)+(﹣520)+(+103),=853.5+237.2+138.5+103﹣325﹣280﹣520,=1332.2﹣1125,=207.2,答:盈余202.7元.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.为节约能源,电力部门按以下规定收取每月电费:用电不超过120度,按每月每度0.57元收费,如果超过120度,超过部分按每度0.69元收费,若某用户五月份共用电220度,该用户五月份应交电费多少元?考点:有理数的混合运算.专题:应用题.分析:根据题意的用电规定列出算式,计算即可得到结果.解答:解:根据题意得:120×0.57+(220﹣120)×0.69=68.4+69=137.4(元),则该用户五月份应交电费137.4元.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小石距离下午出发地点的距离多少千米?(2)若汽车耗油量为0.56升/千米,这天下午汽车共耗油多少升?考点:正数和负数.分析:(1)把所有行车里程相加,再根据正数和负数的意义解答;(2)求出所有行车里程的绝对值的和,再乘以0.56即可.解答:解:(1)15+(﹣3)+14+(﹣11)+10+(﹣12)+4+(﹣15)+16+(﹣18)=15﹣3+14﹣11+10﹣12+4﹣15+16﹣18=0(千米),答:将最后一名乘客送到目的地时,小石距离下午出发地点的距离0千米.(2)|15|+|﹣3|+|14|+|﹣11|+|10|+|﹣12|+|4|+|﹣15|+|16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118118×0.56=66.08(升),答:这天下午汽车共耗油66.08升.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.。

陕西省西安市长安区一中2015-2016学年高一下学期第一次月考数学试卷(普通班)

陕西省西安市长安区一中2015-2016学年高一下学期第一次月考数学试卷(普通班)

长安一中高一第二学期第一次月考数学试题一,选择题(每小题5分,共15小题75分) 1.函数x x y 21+-=的定义域为( )A.(]1,∞-B.[)+∞,0C.(][)+∞∞-,10,D.[]1,0 2.下列函数为偶函数的是( )A .y =sin xB .y =x3C .y =e xD .y =ln x 2+13.已知4.03=a ,2ln =b ,7.0log 2=c ,那么c b a ,,的大小关系为( )A.c b a >>B.c a b >>C.b a c >>D.b c a >>4.函数x x x f cos )(-=在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点5.如图,某几何体的主视图、左视图和俯视图分别是等边三角形、等腰三角形和菱形,则该几何体体积为( ).A ..4 C ..26.已知m ,n 是两条不同的直线,,β,γ是三个不同的平面,则下列命题正确的是( ).A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊆α,n ⊆β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若n ⊥α,n ⊥β,则α∥β 7、过两点A (2,)m -,B(m ,4)的直线倾斜角是45︒,则m 的值是() A 1- B 3 B 1 D 3-8.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( ).A .(x +1)2+(y -1)2=2B .(x -1)2+(y +1)2=2C .(x -1)2+(y -1)2=2D .(x +1)2+(y +1)2=29. 已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是 ( ) A .1 B .4 C .1或4 D .2或4 10. 角α的终边过点P (-1,2),则sin α等于( )A.55B.255C .-55D .-255 11. 已知0tan cos <θθ,那么θ是第几象限的角( ) A .第一或第二 B .第二或第三 C .第三或第四 D .第一或第四 12. cos629π的值为 ( )A. 12B .-12C .-32D .3213. 把函数)25sin(π-=x y 的图像向右平移π4个单位,再把所得函数图像上各点的横坐标缩短为原来的12,所得的函数解析式为( )A .)4310sin(π-=x y B .)2710sin(π-=x y C .)2310sin(π-=x yD .)4710sin(π-=x y 14. 已知简谐运动f (x )=A sin(ωx +φ) (|φ|<π2)的部分图像如图所示,则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π3 15. 给出下列四个命题,其中不正确的命题为( )①若cos α=cos β,则α-β=2k π,k ∈Z ; ②函数)32cos(π+=x y 的图像关于x =π12对称;③函数y =cos(sin x )(x ∈R)为偶函数; ④函数y =sin|x |是周期函数,且周期为2π. A .①② B .①④C .①②③D .①②④二,填空题(5小题,25分)16.函数)65ln()(2+-=x x x f 的单调增区间是______________. 17.坐标原点到直线4x +3y=12的距离为 . 18.))32ln(sin(π+=x y 的定义域为 .19.已知31)12sin(=+πα,则)127cos(πα+的值为________. 20.设定义在区间⎪⎭⎫⎝⎛20π,上的函数x y cos 6=的图像与x y tan 5=的图像交于点P ,过点P 作x 轴的垂线,垂足为1P ,直线1PP 与函数x y sin =的图像交于点2P ,则线段21P P 的长为________.三,解答题(共4小题,50分) 21题(13分)(1)化简:)3sin()3cos()23sin()2cos()tan(αππαπααπαπ-----++;(2)已知)2cos()tan()2cos()sin()(x x x x x f +-+---=ππππ,求)331(π-f 的值. 22题(12分).函数1)sin()(++=ϕωx A x f (A >0,ω>0,22-πϕπ<<)在3π=x 处取最大值为3,其图像相邻两条对称轴之间的距离为π2,(1)求函数)(x f 的解析式; (2)设⎥⎦⎤⎢⎣⎡∈20x π,,)(x f 求的值域.23题(12分).已知半径为5的圆C 的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切.(1)求圆C 的方程;(2)设直线ax -y +5=0与圆C 相交于A ,B 两点,求实数a 的取值范围.24题(13分).已知函数a x f x--=141)(. (1)求函数的定义域;(2)若()f x 为奇函数,求a 的值;(3)判断在()f x ),0( 上的单调性,并用定义证明.。

2022-2023学年人教版小学数学六年级下册《月考试卷》(含答案)

2022-2023学年人教版小学数学六年级下册《月考试卷》(含答案)

2022-2023学年六年级(下)月考数学试卷一、填空题。

1.如图,以三角形4cm的直角边所在的直线为轴旋转一周,可以得到一个,它的底面直径是cm,高是cm。

2.如图,正方形甲绕点A时针方向旋转°,就可以得到正方形乙;正方形乙绕点A时针旋转°就能得到正方形甲.3.一个圆柱形鼓,底面直径是6分米,高是2分米,它的侧面由铝皮围成,上、下底面蒙的是羊皮。

做一个这样的鼓,需要铝皮平方分米,羊皮平方分米。

4.(1)8a=15b(a、b均不为0),则b:a=:;(2)从2、3、4、6、9中选四个数组成比例,即:=:。

5.判断下面两种量成正比例还是反比例。

(1)圆的周长和圆的半径成比例。

(2)修一条路,每天修的米数和所需天数成比例。

(3)订阅《新文化报》的份数和总钱数成比例。

6.把一个棱长6cm的正方体木块削成一个最大的圆柱,圆柱的体积是,再把这个圆柱削成一个最大的圆锥,这个圆锥的体积是.7.明明买了一幅中国地图,比例尺是,即图上1厘米表示实际距离km。

在这幅地图上,明明量得上海到杭州的距离是 3.4cm,上海到杭州的实际距离是km。

8.一个圆柱,如果高增加1cm,那么圆柱的侧面积就增加6.28cm2。

现在这个圆柱的高是10cm,它现在的体积是cm3。

9.将一个底是5厘米,高是3厘米的三角形按3:1放大,得到图形的面积是平方厘米。

二、选择题,10.如图4个圆柱中,与圆锥的体积相等的是()(单位:cm)A.A B.B C.C D.D11.如果正方体、圆柱、圆锥的底面积相等,高也相等。

下面说法正确的是()A.圆柱的体积比正方体的体积小B.圆柱和正方体的表面积相同C.圆柱的体积是圆锥的D.圆锥的体积是正方体的12.根据a×b=c×d(均不为0 ),改写成比例是()A.c:a=d:b B.c:a=b:d C.a:b=c:d D.a:c=b:d 13.一个圆柱的侧面展开是一个正方形,这个圆柱的底面直径与高的比是()A.1:πB.π:1 C.1:1 D.1:2π14.如果甲数的等于乙数的,(甲、乙都不为0),则甲:乙=()A.8:3B.8:9C.9:8D.3:815.一张边长100厘米的正方形纸,要在上面画长180米、宽120米的操场平面图,选择()比例尺比较合适。

四年级下数学月考试题-综合考练(27)|15-16人教新课标

四年级下数学月考试题-综合考练(27)|15-16人教新课标

2015-2016学年新人教版四年级(下)月考数学试卷(4月份)(1)一、我会填.(42分每空1分)1.一个小数由、和三部分组成.2.把3.6的小数点向左移动一位是,把3.14的小数点向左移动两位是,把0.03扩大到它的倍是30,把42缩小倍是0.042,把1.2缩小是0.012.3.小数2.05读作,2表示,5表示.4.3个1,5个0.1和1个0.01写成小数是.5.8.02的计数单位是,它有个这样的计数单位.0.256的计数单位是,它有个这样的计数单位.6.大于8而小于9的一位小数有个.7.把168000改写成用“万”作单位的数是;省略万位后面的尾数是;把995000000元改写成以“亿元”为单位的数是,保留一位小数是.8.小数点向右移动一位,原数就,向左移两位,原数就.9.把1.5扩大倍是15,缩小倍是0.015.把0.73缩小为原数的十分之一是,扩大10倍是.10.13厘米=米,86克=千克.11.在横线里填上“>”、“<”或“=”.0.180.179 0.500.5 0.10.09994.954 4.96 6.8公顷6公顷8平方米108厘米10.1分米12.一个三角形有条高;一个平行四边形有条高.13.如果直角三角形的一个锐角是20°,那么另一个角一定是度.14.自行车三脚架,就是利用了三角形的特性.15.所有的等边三角形都是三角形.16.长方形的内角和是,三角形的内角和是.二、我来当法官.17.0.27吨等于27千克.(判断对错)18.5.05和5.049保留一位小数都是5.0.(判断对错)19.32.36中的两个“3”表示的意义相同.(判断对错)20.近似数是6.25的三位小数不止一个.(判断对错)21.一个大三角形和一个小三角形的三个内角和是不相等的.(判断对错)22.一个钝角三角形里最多有两个钝角.(判断对错)23.等边三角形也是锐角三角形.(判断对错)24.在三角形中,一个角是直角,另两外角一定是45度.(判断对错)三、单位换算.25.单位换算2.1元=元分3.08千米=米8米6厘米=厘米0.4平方米=平方厘米.四、比较下面每组数的大小.26.从小到大排列.0.8 0.801 0.81 0.811 0.799<<<<.五、画一画:27.画一个腰长为4厘米的等腰三角形,并画出三角形的一条高.六、28.把下面各数改写成以“万”作单位的数,再保留一位小数.7365003982008845702903200.七、解决问题.(共29分1题8分2、3、4每题7分)29.用5,0,6,4,0这五个数字完成下面各题.(各小题中每个数字只用一次)①只读一个0的最大的三位小数.②只读2个0的最小三位小数.③近似数为51的三位小数.④大于500的两位小数.30.1千克芝麻可以榨出芝麻油0.45千克,100千克芝麻可以榨出芝麻油多少千克?31.一个等腰三角形的顶角是96°,每个底角是多少度?32.在一个直角三角形中,∠1=20度,锐角∠2等于多少度?2015-2016学年新人教版四年级(下)月考数学试卷(4月份)(1)参考答案与试题解析一、我会填.(42分每空1分)1.一个小数由整数部分、小数点和小数部分三部分组成.【考点】小数的读写、意义及分类.【分析】根据小数的组成可知:一个小数是由整数部分、小数部分和小数部分三部分组成.【解答】解:一个小数是由整数部分、小数部分和小数部分三部分组成.故答案为:整数部分,小数部分,小数部分.2.把3.6的小数点向左移动一位是0.36,把3.14的小数点向左移动两位是0.0314,把0.03扩大到它的1000倍是30,把42缩小1000倍是0.042,把1.2缩小100倍是0.012.【考点】小数点位置的移动与小数大小的变化规律.【分析】根据小数点位置移动引起数的大小变化规律可知:把3.6的小数点向左移动一位是0.36,把3.14的小数点向左移动两位是0.0314,把0.03扩大到它的1000倍是30,把42缩小1000倍是0.042,把1.2缩小100倍是0.012;据此解答即可.【解答】解:把3.6的小数点向左移动一位是0.36,把3.14的小数点向左移动两位是0.0314,把0.03扩大到它的1000倍是30,把42缩小1000倍是0.042,把1.2缩小100倍是0.012.故答案为:0.36,0.0314,1000,1000,100倍.3.小数2.05读作二点零五,2表示2个一,5表示5个0.01.【考点】小数的读写、意义及分类.【分析】(1)小数的读法:整数部分按照整数的读法来读,小数点读作“点”,小数部分依次读出每一位上的数字据此读出此数即可;(2)2在个位上,表示2个一.【解答】解:(1)小数2.05读作二点零五;(2)2在个位上,表示2个一;5在百分位上,表示5个0.01.故答案为:二点零五,2个一,5个0.01.4.3个1,5个0.1和1个0.01写成小数是 3.51.【考点】小数的读写、意义及分类.【分析】3个1即个位上是3,5个0.1即十分位上是5,1个0.01即百分位上是1,据此写出.【解答】解:3个1,5个0.1和1个0.01写成小数是 3.51.故答案为:3.51.5.8.02的计数单位是0.01,它有802个这样的计数单位.0.256的计数单位是0.001,它有256个这样的计数单位.【考点】小数的读写、意义及分类.【分析】根据小数的意义可知:一位小数表示十分之几,计数单位是十分之一(0.1),两位小数表示百分之几,计数单位是百分之一(0.01),三位小数表示千分之几,计数单位是千分之一;据此解答即可.【解答】解:8.02的计数单位是0.01,它有802个这样的计数单位.0.256的计数单位是0.001,它有256个这样的计数单位;故答案为:0.01,802,0.001,256.6.大于8而小于9的一位小数有9个.【考点】小数大小的比较.【分析】由题意知题干中限制了小数的位数,所以大于8而小于9的一位小数有8.1,8.2,8.3,8.4,8.5,8.6,8.7,8.8,8.9;共有9个.【解答】解:大于8而小于9的一位小数有8.1,8.2,8.38.4,8.5,8.6,8.7,8.8,8.9;共有9个;故答案为:9.7.把168000改写成用“万”作单位的数是16.8万;省略万位后面的尾数是17万;把995000000元改写成以“亿元”为单位的数是9.95亿,保留一位小数是10.0亿.【考点】整数的读法和写法;整数的改写和近似数;近似数及其求法.【分析】把一个整数改成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;省略“万”后面的尾数求它的近似数,要把万位的下一位千位上的数进行四舍五入,再在数的后面带上“万”字;改写成用“亿”作单位的数,就是在亿位数的右下角点上小数点,然后把小数末尾的0去掉,在数的后面带上“亿”字;改写成用亿作单位的数,要想保留一位小数,就是要把百分位下的数进行四舍五入.【解答】解:168000=16.8万;168000≈17万;995000000=9.95亿;9.95亿≈10.0亿;故答案为:16.8万,17万,9.95亿,10.0亿.8.小数点向右移动一位,原数就扩大10倍,向左移两位,原数就缩小100倍.【考点】小数点位置的移动与小数大小的变化规律.【分析】根据小数点位置移动引起数的大小变化规律可知:小数点向右移动一位,原数就扩大10倍,向左移两位,原数就缩小100倍;据此解答.【解答】解:小数点向右移动一位,原数就扩大10倍,向左移两位,原数就缩小100倍;故答案为:扩大10倍,缩小100倍.9.把1.5扩大10倍是15,缩小100倍是0.015.把0.73缩小为原数的十分之一是0.073,扩大10倍是7.3.【考点】小数点位置的移动与小数大小的变化规律.【分析】根据小数点位置移动引起数的大小变化规律可知:1.5变成15,是小数点向右移动1位,则扩大10倍;1.5变成0.015,是小数点向左移动2位,则缩小100倍;把0.73缩小为原数的十分之一是0.073,扩大10倍是7.3;据此解答即可.【解答】解:把1.5扩大10倍是15,缩小100倍是0.015.把0.73缩小为原数的十分之一是0.073,扩大10倍是7.3.故答案为:10,100,0.073,7.3.10.13厘米=0.13米,86克=0.086千克.【考点】长度的单位换算;质量的单位换算.【分析】把13厘米换算为米数,用13除以进率100;把86克换算为千克,用86除以进率1000.【解答】解:13厘米=0.13米,86克=0.086千克;故答案为:0.13,0.086.11.在横线里填上“>”、“<”或“=”.0.18>0.179 0.50=0.5 0.1>0.09994.954< 4.96 6.8公顷>6公顷8平方米108厘米>10.1分米【考点】小数大小的比较.【分析】比较两个小数的大小,先看它们的整数部分,整数大的那个数就大;如果整数部分相同,十分位大的那个数就大.如果十分位上的那个数也相同,百分位上的数大的那个数就大,依此类推;【解答】解:0.18>0.179;0.50=0.5;0.1>0.0999;4.954<4.96;6.8公顷=6公顷8000平方米>6公顷8平方米;108厘米=10.8分米>10.1分米.故答案为:>;=;>;<;>;>.12.一个三角形有三条高;一个平行四边形有无数条高.【考点】平行四边形的特征及性质;三角形的特性.【分析】(1)因为三角形的高是指过顶点与对边垂直的线段,任意三角形都有三个顶点,所以一定有三个高;据此解答即可.(2)根据平行四边形高的含义:平行四边形的高是指对边之间的距离,那么,两组对边之间都可以画无数条垂直线段,所以,有无数条高.【解答】解:由分析知:(1)任何一个三角形都有三条高;(2)平行四边形有无数条高;故答案为:三、无数.13.如果直角三角形的一个锐角是20°,那么另一个角一定是70度.【考点】三角形的内角和.【分析】根据直角三角形两个锐角的和为90°,用90°减去已知锐角的度数,即可得另一个锐角度数.【解答】解:90°﹣20°=70°;答:那么另一个锐角是70°.故答案为:70.14.自行车三脚架,就是利用了三角形的稳定特性.【考点】三角形的特性.【分析】根据三角形的特性:三角形具有稳定性.进行填空即可.【解答】解:因为三角形具有稳定性,自行车三脚架是利用了三角形稳定性的特性;故答案为:稳定性.15.所有的等边三角形都是锐角三角形.【考点】三角形的分类.【分析】等边三角形的三个角都相等,都是60°,由此根据三角形按角分类的方法即可进行解答.【解答】解:等边三角形的三个角都是60°,都是锐角,所以所有的等边三角形都是锐角三角形.故答案为:锐角.16.长方形的内角和是360°,三角形的内角和是180°.【考点】三角形的内角和;长方形的特征及性质.【分析】因为三角形的内角和是180度,长方形有4个直角,所以长方形的内角和是90°×4=360°.据此解答.【解答】解:三角形的内角和是180°,长方形的内角和是:90°×4=360°.故答案为:360°;180°.二、我来当法官.17.0.27吨等于27千克.×(判断对错)【考点】质量的单位换算.【分析】把0.27吨换算成千克数,用0.27乘进率1000得270千克.【解答】解:0.27吨=270千克所以题干的说法是错误的.故答案为:×.18.5.05和5.049保留一位小数都是5.0.×(判断对错)【考点】近似数及其求法.【分析】运用“四舍五入”法取近似值:要看精确到哪一位,从它的下一位运用“四舍五入”取值.【解答】解:5.05≈5.1,5.049≈5.0;所以5.05和5.049保留一位小数都是5.0,说法错误;故答案为:×.19.32.36中的两个“3”表示的意义相同.×(判断对错)【考点】小数的读写、意义及分类.【分析】首先搞清这个数字在小数的什么数位上和这个数位的计数单位,它就表示有几个这样的计数单位;据此判断.【解答】解:32.36中左边的“3”在十位上,表示3个十,右边“3”在十分位上表示3个十分之一,所以32.36中的两个“3”表示的意义不相同;故答案为:×.20.近似数是6.25的三位小数不止一个.√(判断对错)【考点】近似数及其求法.【分析】6.25是一个三位小数的近似数,有两种情况:“四舍”得到的6.25比原数小,“五入”得到的6.25比原数大,由此即可判断解答问题.【解答】解:“五入”得到的6.25最小三位小数是6.245,因此这个数必须大于或等于6.245;“四舍”得到的6.25最大是6.254,所以近似数是6.25的三位小数不止一个,即本题说法正确;故答案为:√.21.一个大三角形和一个小三角形的三个内角和是不相等的.×(判断对错)【考点】三角形的内角和.【分析】依据三角形的内角和是180度,即可进行解答.【解答】解:一个三角形不论大小其内角和都是180度;所以一个大三角形和一个小三角形的三个内角和是相等的.故答案为:×.22.一个钝角三角形里最多有两个钝角.×(判断对错)【考点】三角形的分类;三角形的内角和.【分析】根据三角形内角和是180度,如果一个钝角三角形里有两个钝角,则三角形内角和大于180度,所以一个钝角三角形里不可能有两个钝角.【解答】解:根据三角形内角和是180度,一个钝角三角形里最多有一个钝角,不可能有两个钝角;故答案为:×.23.等边三角形也是锐角三角形正确.(判断对错)【考点】三角形的分类.【分析】根据等边三角形的特征:三条边都相等,三个角都是60度;因为三个角都是锐角,根据锐角三角形的含义得出结论.【解答】解:由分析知:等边三角形,三个角都是60度,即三个角都是锐角,所以是锐角三角形;故答案为:正确.24.在三角形中,一个角是直角,另两外角一定是45度.×(判断对错)【考点】三角形的内角和.【分析】根据三角形的内角和等于180度,另两个内角的和等于180﹣90=90度,另两个内角相加等于90度即可,解答判断即可.【解答】解:180﹣90=90(度)所以另两个内角可能是:10°和80°.30°和60°,45°和45°…故答案为:×.三、单位换算.25.单位换算2.1元=2元10分3.08千米=3080米8米6厘米=806厘米0.4平方米=4000平方厘米.【考点】货币、人民币的单位换算;长度的单位换算.【分析】(1)把2.1元换算成复名数,整数部分就是2元,把小数部分0.1元换算成分,用0.1乘进率100得10分.(2)把3.08千米换算成米数,用3.08乘进率1000即可.(3)6厘米单位一致不用化,8米=800厘米,再相加即可;(4)平方米和厘米之间的进率为10000,用0.4乘进率10000即可.【解答】解:2.1元=2元10分3.08千米=3080米8米6厘米=806厘米0.4平方米=4000平方厘米故答案为:2,10,3080,806,4000.四、比较下面每组数的大小.26.从小到大排列.0.8 0.801 0.81 0.811 0.7990.799<0.8<0.801<0.81<0.811.【考点】小数大小的比较.【分析】小数大小的比较,先看小数的整数部分,整数部分大的这个数就大,整数部分相同的就看十分位,十分位大的这个数就大,十分位相同的,再看百分位,百分位大的这个数就大…据此解答.【解答】解:根据小数大小的比较方法知:0.799<0.8<0.801<0.81<0.811,故答案为:0.799,0.8,0.801,0.81,0.811.五、画一画:27.画一个腰长为4厘米的等腰三角形,并画出三角形的一条高.【考点】作三角形的高.【分析】根据等腰三角形的定义,有两条边相等的三角形是等腰三角形,据此即可画出腰长为4厘米的等腰三角形;经过等腰三角形的顶点(与底相对的点)向对边(底)作垂线,顶点和垂足之间的线段就是等腰三角形底边上的高,用三角板的直角即可画出.【解答】解:六、28.把下面各数改写成以“万”作单位的数,再保留一位小数.7365003982008845702903200.【考点】近似数及其求法.【分析】改写成以万为单位的数,就是从右边起数到万的下一位千位,在前面点上小数点,去掉末尾的0,加上单位“万”即可;据此改写;再保留一位小数就是把改写后的数求它的近似数,要把百分位上的数字进行四舍五入,据此求出.【解答】解:736500=73.65万≈73.7万398200=39.82万≈39.8万884570=88.457万≈88.5万2903200=290.32万≈290.3万七、解决问题.(共29分1题8分2、3、4每题7分)29.用5,0,6,4,0这五个数字完成下面各题.(各小题中每个数字只用一次)①只读一个0的最大的三位小数.②只读2个0的最小三位小数.③近似数为51的三位小数.④大于500的两位小数.【考点】小数的读写、意义及分类.【分析】(1)写出只读一个“零”的最大三位小数,即一个0在个级末尾,另一个0在千分位上,然后把数字按照从大到小的顺序,从十位依次写出即可;(2)只读2个0的最小三位小数,只要把两个0一个放在十分位,一个放在百分位,然后把另外三个数按照从小到大的顺序从十位向右依次写出;(3)近似数为51的三位小数,即整数部分是50,小数部分是640,即这个数是50.640;(4)大于500的两位小数,只要整数部分是500,小数部分可以是46,据此写出.【解答】解:①只读一个0的最大的三位小数:60.540;②只读2个0的最小三位小数:45.006;③近似数为51的三位小数:50.640;④大于500的两位小数:500.46.30.1千克芝麻可以榨出芝麻油0.45千克,100千克芝麻可以榨出芝麻油多少千克?【考点】整数的乘法及应用.【分析】1千克芝麻可以出芝麻油0.45千克,根据乘法的意义可知,100千克芝麻可以出芝麻油0.45×100=45(千克).【解答】解:0.45×100=45(千克).答:100千克芝麻可以出芝麻油45千克.31.一个等腰三角形的顶角是96°,每个底角是多少度?【考点】三角形的内角和;等腰三角形与等边三角形.【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180°﹣120°=60°”求出两个底角的度数,再用“60°÷2=30°”即可求出每个底角的度数;列式解答即可.【解答】解:÷2=84°÷2=42°答:每个底角是42度.32.在一个直角三角形中,∠1=20度,锐角∠2等于多少度?【考点】三角形的内角和.【分析】因为三角形的内角和是180°,用180°﹣90°﹣∠1,即可求出∠2的度数,解答即可.【解答】解:180﹣90﹣20=90﹣20=70(度)答:∠2等于70度.2016年7月16日。

2015-2016八年级数学第一次月考试卷及答案

2015-2016八年级数学第一次月考试卷及答案

2015-2016学年度第一学期八年级第一次月考数 学 试 卷一、选择题(本大题共10小题,每小题3分,共30分)1.任意画一个三角形,它的三个内角之和为( )A .180°B .270°C .360°D .720°2.△ABC≌△DEF,且△ABC 的周长为100cm ,A 、B 分别与D 、E 对应,且AB=35cm ,DF=30cm ,则EF 的长为( )A .35cmB .30cmC .45cmD .55cm3.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A .2B .4C .6D .84.如图1,在四边形ABCD 中,AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对5.如图2,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度数是( )A .15° B.25° C .30°D .10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A .5B .6C .7D .87.如图3,已知点A 、D 、C 、F 在同一直线上,且AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加的一个条件是( )A .∠A=∠EDFB .∠B=∠EC .∠BCA=∠FD .BC∥EF8.具备下列条件的三角形ABC 中,不为直角三角形的是( )A .∠A+∠B=∠CB .∠A=∠B=∠C C .∠A=90°﹣∠BD .∠A﹣∠B=90°9.如图4,AM 是△ABC 的中线,若△ABM 的面积为4,则△ABC 的面积为( )A .2B .4C .6D .8图1 图2 图3 图4 图5 图610.如图5,在△ABC 中,∠ABC=45°,AC=8cm ,F 是高AD 和BE 的交点,则BF 的长是( )A .4cmB .6cmC .8cmD .9cm二、填空题(本大题共8个小题,每小题3分,共24分)11.三角形的重心是三角形的三条__________的交点.12.如图6,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是__________.13.如果一个等腰三角形有两边长分别为4和8,那么这个等腰三角形的周长为__________.14.如图,已知△ABD≌△CDB,且∠ABD=40°,∠CBD=20°,则∠A 的度数为__________.15.如图7,AB=AC ,要使△ABE≌△ACD,应添加的条件是__________(添加一个条件即可).16.下列条件:①一锐角和一边对应相等,②两边对应相等,③两锐角对应相等,其中能得到两个直角三角形全等的条件有__________(只填序号).17.如图9,已知∠B=46°,△ABC 的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=__________.18.如图1是二环三角形,可得S=∠A 1+∠A 2+…+∠A=360°,图2是二环四边形,可得S=∠A 1+∠A 2+…+∠A 7=720°,图3是二环五边形,可得S=1080°,…聪明的同学,请你根据以上规律直接写出二环n 边形(n≥3的整数)中,S=__________.(用含n 的代数式表示最后结果)三、解答题(本大题共8小题,共66分)19.如图,点B 在线段AD 上,BC∥DE,AB=ED ,BC=DB .求证:∠A=∠E.图4图7 图8 图920.一个多边形的外角和是内角和的,求这个多边形的边数.21.如图所示,将长方形ABCD沿DE折叠,使点C恰好落在BA边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.22.如图,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分线.(1)求∠DAE的度数;(2)写出以AD为高的所有三角形.23.如图,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF=EF.24.如图,O是△ABC内任意一点,连接OB、OC.(1)求证:∠BOC>∠A;(2)比较AB+AC与OB+OC的大小,并说明理由.25.看图回答问题:(1)内角和为2014°,小明为什么不说不可能?(2)小华求的是几边形的内角和?(3)错把外角当内角的那个外角的度数你能求出来吗?它是多少度?26.如图1,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE 的异侧,BD⊥AE于点D,CE⊥AE于点E.(1)求证:BD=DE+CE;(2)若直线AE绕点A旋转到图2位置时(BD<CE),其余条件不变,问BD与DE,CE 的关系如何,请证明;(3)若直线AE绕点A旋转到图3时(BD>CE),其余条件不变,BD与DE,CE的关系怎样?请直接写出结果,不须证明.(4)归纳(1),(2),(3),请用简捷的语言表述BD与DE,CE的关系.参考答案一、选择题1.:A.2. A.3 B.4.:C.5. A.6. D.7. B.8. D.9. D.10. C.二、填空题(本大题共8个小题,每小题3分,共24分)11:中线.12:三角形的稳定性.13.:20.14.120°.15.∠B=∠C或AE=AD.16①②.17.67°.18. 360(n﹣2)度.三、解答题(本大题共8小题,共66分)19.证明:如图,∵BC∥D E,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.20..解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.21.解:由题意得△DEC≌△DEC',∴∠CED=∠DEC',∵∠C′EB=40°,∴∠CED=∠DEC'=,∴∠EDC′=90°﹣70°=20°.22.解:(1)∵在△ABC中,AE是∠BAC的平分线,且∠B=40°,∠C=60°,∴∠BAE=∠EAC=(180°﹣∠B﹣∠C)=(180°﹣40°﹣60°)=40°.在△ACD中,∠ADC=90°,∠C=60°,∴∠DAC=180°﹣90°﹣60°=30°,∠EAD=∠EAC﹣∠DAC=40°﹣30°=10°.(2)以AD为高的所有三角形:△ABC、△ABD、△ACE、△ABE、△ADF和△ACD.23.(1)解:△ADC≌△ABE,△CDF≌△EBF;(2)证法一:连接CE,∵Rt△ABC≌Rt△ADE,∴AC=AE.∴∠ACE=∠AEC(等边对等角).又∵Rt△ABC≌Rt△ADE,∴∠ACB=∠AE D.∴∠ACE﹣∠ACB=∠AEC﹣∠AED.即∠BCE=∠DEC.∴CF=EF.24.解:(1)证明:延长BO交AC于点D,∴∠BOC>∠ODC,又∠ODC>∠A,∴∠BOC>∠A;(2)AB+AC>OB+OC,∵AB+AD>OB+OD,OD+CD>OC,∴AB+AD+CD>OB+OC,即:AB+AC >OB+OC.25.解:(1)∵n边形的内角和是(n﹣2)•180°,∴内角和一定是180度的倍数,∵2014÷180=11…34,∴内角和为2014°不可能;(2)依题意有(x﹣2)•180°<2014°,解得x<13.因而多边形的边数是13,故小华求的是十三边形的内角和;(2)13边形的内角和是(13﹣2)×180°=1980°,2014°﹣1980°=34°,因此这个外角的度数为34°.26.(1)证明:在△ABD和△CAE中,∵∠CAD+∠BAD=90°,∠BAD+∠ABD=90°,∴∠CAD=∠ABD.又∠ADB=∠AEC=90°,AB=AC,∴△ABD≌△CAE.(AAS)∴BD=AE,AD=CE.又AE=AD+DE,∴AE=DE+CE,即BD=DE+CE.(2)BD=DE﹣CE.证明:∵∠BAC=90°,∴∠BAD+∠CAE=90°.又∵BD⊥DE,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE.又AB=AC,∠ADB=∠CEA=90°,∴△ADB≌△CEA.∴BD=AE,AD=CE.∵DE=AD+AE,∴DE=CE+BD,即 BD=DE﹣CE.(3)同理:BD=DE﹣CE.(4)当点BD、CE在AE异侧时,BD=DE+CE;当点BD、CE在AE同侧时,BD=DE﹣CE.。

高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。

广东省高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

广东省高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

某某省2016-2017学年高一数学下学期第一次月考试卷一.选择题本大题共25小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.102.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则A∩(∁U B)为()A.{0,1,3} B.{1,3} C.{0,2,4} D.{0,2,3,4}3.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}4.侧面都是直角三角形的正三棱锥,底面边长为2,则此棱锥的全面积是()A.B.C.D.5.已知正方体的棱长为2,则此正方体全面积是()A.4 B.12 C.24 D.486.棱长为4的正方体的内切球的表面积为()A.4πB.12π C.16π D.20π7.湖面上漂着一球,湖结冰后将球取出,冰面上留下了一个直径为24cm,深为8cm的空穴,则该球的表面积为()A.64π B.320πC.576πD.676π8.若两个球的体积之比为1:8,则这两个球的表面积之比为()A.1:2 B.1:4 C.1:8 D.1:169.已知正方体的外接球的体积是π,则这个正方体的体积是()A.B.C.D.10.球的半径扩大为原来的2倍,它的体积扩大为原来的()倍.A.4 B.8 C.16 D.6411.下列三视图所对应的直观图是()A.B.C.D.12.若A(﹣2,3),B(3,﹣2),C(1,m)三点共线,则m的值为()A.B.﹣1 C.﹣2 D.013.若经过点A(3,a)、B(4,﹣4)的直线与经过点C(﹣2,0)且斜率为2的直线垂直,则a的值为()A.﹣ B.C.10 D.﹣1014.已知直线l1的斜率为1,且l1⊥l2,则l2的倾斜角为()A.0°B.135°C.90° D.180°15.已知A(2,0),B(3,),直线 l∥AB,则直线l的倾斜角为()A.135°B.120°C.60° D.45°16.经过点M(m,3)和N(1,m)的直线l与斜率为﹣1的直线互相垂直,则m的值是()A.4 B.1 C.2 D.317.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.18.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为()A.B.C.D.19.已知函数f(x)=2x+2,则f(2)的值为()A.2 B.3 C.4 D.620.函数的定义域是()A.(﹣∞,2)B.(﹣∞,2] C.(2,+∞)D.)的最小、最大值分别为()A.3,5 B.﹣9,1 C.1,9 D.1,﹣925.log39=()A.5 B.2 C.3 D.42016-2017学年某某省北师大某某石竹附中国际班高一(下)第一次月考数学试卷参考答案与试题解析一.选择题本大题共25小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【考点】12:元素与集合关系的判断.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B 中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则A∩(∁U B)为()A.{0,1,3} B.{1,3} C.{0,2,4} D.{0,2,3,4}【考点】1H:交、并、补集的混合运算.【分析】根据全集U、集合B和补集的运算求出∁U B,再由交集的运算求出A∩∁U B即可.【解答】解:由全集U={0,1,2,3,4}、B={2,4}得,∁U B={0,1,3},又集合A={1,2,3},所以A∩∁U B={1,3},故选:B.3.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}【考点】1H:交、并、补集的混合运算.【分析】由题已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},可先求出两集合A,B的补集,再由交的运算求出(∁U A)∩(∁U B)【解答】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B4.侧面都是直角三角形的正三棱锥,底面边长为2,则此棱锥的全面积是()A.B.C.D.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】设正三棱锥的侧棱长为b,推出侧棱与底面边长的关系,求出侧棱长,然后求出表面积.【解答】解:设正三棱锥的侧棱长为b,则由条件知2b2=22=4,∴S表=×22+3×××22=+3.故选:A.5.已知正方体的棱长为2,则此正方体全面积是()A.4 B.12 C.24 D.48【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】根据正方体的性质,面积公式求解.【解答】解:根据正方体的表面为全等的正方形,∵正方体棱长为2,∴该正方体的全面积为6×22=24,故选:C.6.棱长为4的正方体的内切球的表面积为()A.4πB.12π C.16π D.20π【考点】L2:棱柱的结构特征.【分析】棱长为4的正方体的内切球的半径r=2,由此能求出其表面积.【解答】解:棱长为4的正方体的内切球的半径r=2,表面积=4πr2=16π.故选C.7.湖面上漂着一球,湖结冰后将球取出,冰面上留下了一个直径为24cm,深为8cm的空穴,则该球的表面积为()A.64π B.320πC.576πD.676π【考点】LG:球的体积和表面积.【分析】先设出球的半径,进而根据球的半径,球面上的弦构成的直角三角形,根据勾股定理建立等式,求得r,最后根据球的表面积公式求得球的表面积.【解答】解:设球的半径为r,依题意可知122+(r﹣8)2=r2,解得r=13.∴球的表面积为4πr2=676π故选D.8.若两个球的体积之比为1:8,则这两个球的表面积之比为()A.1:2 B.1:4 C.1:8 D.1:16【考点】LG:球的体积和表面积.【分析】设这两球的半径分为r,R,由两个球的体积之比为1:8,得到r:R=1:2,由此能求出这两个球的表面积之比.【解答】解:设这两球的半径分为r,R,∵两个球的体积之比为1:8,∴=r3:R3=1:8,∴r:R=1:2,∴这两个球的表面积之比为4πr2:4πR2=1:4.故选:B.9.已知正方体的外接球的体积是π,则这个正方体的体积是()A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【分析】求出正方体的外接球的半径R=2,设这个正方体的棱长为a,则R==2,求出a=,由此能求出这个正方体的体积.【解答】解:∵正方体的外接球的体积是π,∴正方体的外接球的半径R=2,设这个正方体的棱长为a,则R==2,解得a=,∴这个正方体的体积V==.故选:B.10.球的半径扩大为原来的2倍,它的体积扩大为原来的()倍.A.4 B.8 C.16 D.64【考点】LG:球的体积和表面积.【分析】设球原来的半径为 r,则扩大后的半径为 2r,求出球原来的体积和后来的体积,计算球后来的体积与球原来的体积之比【解答】解:设球原来的半径为 r,则扩大后的半径为 2r,球原来的体积为,球后来的体积为,∴半径扩大后球的体积与球原来的体积之比为8:1.故选:B11.下列三视图所对应的直观图是()A.B.C.D.【考点】LC:空间几何体的直观图.【分析】直接利用三视图,判断几何体即可.【解答】解:由题意可知,几何体的直观图下部是长方体,上部是圆柱,并且高相等.应该是C.故选:C.12.若A(﹣2,3),B(3,﹣2),C(1,m)三点共线,则m的值为()A.B.﹣1 C.﹣2 D.0【考点】I6:三点共线.【分析】根据三点共线与斜率的关系即可得出.【解答】解:k AB==﹣1,k AC==.∵A(﹣2,3),B(3,﹣2),C(1,m)三点共线,∴﹣1=,解得m=0.故选:D.13.若经过点A(3,a)、B(4,﹣4)的直线与经过点C(﹣2,0)且斜率为2的直线垂直,则a的值为()A.﹣B.C.10 D.﹣10【考点】I3:直线的斜率.【分析】求出直线AB的斜率,得到关于a的方程,解出即可.【解答】解:经过C(﹣2,0)且斜率为2的直线的斜率是2,经过点A(3,a)、B(4,﹣4)的直线的斜率是﹣,故=﹣,解得:a=﹣,故选:A.14.已知直线l1的斜率为1,且l1⊥l2,则l2的倾斜角为()A.0°B.135°C.90° D.180°【考点】I2:直线的倾斜角.【分析】根据直线的垂直关系求出直线l2的斜率,从而求出l2的倾斜角即可.【解答】解:直线l1的斜率为1,且l1⊥l2,则l2的斜率是﹣1,故直线l2的倾斜角是135°,故选:B.15.已知A(2,0),B(3,),直线 l∥AB,则直线l的倾斜角为()A.135°B.120°C.60° D.45°【考点】I2:直线的倾斜角.【分析】求出直线AB的斜率,从而求出直线l的倾斜角即可.【解答】解:∵A(2,0),B(3,),∴直线 l∥AB,∴直线l的斜率k=K AB==﹣,故直线l的倾斜角是120°,故选:B.16.经过点M(m,3)和N(1,m)的直线l与斜率为﹣1的直线互相垂直,则m的值是()A.4 B.1 C.2 D.3【考点】IJ:直线的一般式方程与直线的垂直关系.【分析】利用直线垂直的性质直接求解.【解答】解:∵经过点M(m,3)和N(1,m)的直线l与斜率为﹣1的直线互相垂直,∴k MN==1,解得m=2.故选:C.17.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.【解答】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C18.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3×1=3种,故他们选择相同颜色运动服的概率为 P==,故选:A19.已知函数f(x)=2x+2,则f(2)的值为()A.2 B.3 C.4 D.6【考点】3T:函数的值.【分析】把x=2代入函数表达式,能求出f(2)的值.【解答】解:∵函数f(x)=2x+2,∴f(2)=22+2=6.故选:D.20.函数的定义域是()A.(﹣∞,2)B.(﹣∞,2] C.(2,+∞)D.)的最小、最大值分别为()A.3,5 B.﹣9,1 C.1,9 D.1,﹣9【考点】3F:函数单调性的性质.【分析】利用一次函数的单调性求最大值和最小值.【解答】解:因为f(x)=﹣2x+1(x∈)是单调递减函数,word所以当x=5时,函数的最小值为﹣9,当x=0时,函数的最大值为1.故选B.25.log39=()A.5 B.2 C.3 D.4【考点】4H:对数的运算性质.【分析】根据对数的运算性质的计算即可【解答】解:log39=log332=2log33=2,故选:B- 11 - / 11。

人教版一年级上数学第一次月考试卷

人教版一年级上数学第一次月考试卷

丽景学校2014—2015学年度第一学期第一次月考
一年级数学试卷
总分100分 考试时间60分钟 成绩
一、看图写数。

(10分)
二、看图数数,连一连。

(每小题1分,共10分)
三、数一数,比一比,填一填。

(18分)
1. 2.
3. 4.
四、照样子,画一画。

(9分)
五、 在○内填“>”、“<”或者“=”。

(16分)
3○2 4○5 2○1 5○2 4○4 1○3 5○4 4○2
学校: 座位号: 考号: 班级: 姓名:
-------------------------------------- 装------------------------------------- 订--------------------------------------线--------------------------------------------------------


④ ⑤
⑥ ⑦ ⑧ ⑨

六、比一比。

(14分)
1.在多的后面画√。

2.在少的后面画○。



3.比一比,最多的后面画“√”,最少的画“×”。

七、按要求画一画。

(9分)
1.画
比多。

2、画比
3.画
八、数一数,填一填。

(14分)
1.一共有( )只动物。

2.从左数排第( ),排第( )。

3.从右数排在第(),排在第()。

4.把右边的三只动物圈起来,把左边的第二只动物用铅笔图上颜色。

河南省安阳一中2015-2016学年高一数学下册第一次月考试题

河南省安阳一中2015-2016学年高一数学下册第一次月考试题

安阳一中2015-2016第一学期第一阶段考试高一数学试题卷命题人 :朱立军审题人:李学涛一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}10A x x =->,{}2xB yy ==,则AB = ( )A.{}0x x > B.{}1x x > C.{}1x x <- D.∅ 【考点】集合的运算 【试题解析】A={x|x>1},B={x|x>0},所以=。

【答案】B 2. 函数()312-+-=x x x f 的定义域是 ( ) A .[)+∞,2B .{}3,≠∈x R x xC .[)2,3∪()+∞3,D .()2,3∪()+∞3, 【考点】函数的定义域与值域 【试题解析】要使函数有意义,需满足:且所以函数的定义域为:∪。

【答案】C3.下列各组中的函数)(x f 与)(x g 相等的是 ( ) A .2)()(,)(x x g x x f == B.xx x g x x f ==)(,)(0C .x x g x x f ==)(,)(2D.1)(,11)(2-=+-=x x g x x x f 【考点】函数及其表示 【试题解析】若函数的定义域和对应关系相同,则函数相等。

对A :的定义域为R ,的定义域为,故不同;对B:的定义域为{x|x},的定义域为{x|x},都相同,所以两函数相等; 对C:,,对应关系不同,故不同;对D:的定义域为定义域为R,故不同。

【答案】B4.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是 ( )A .()f x ()g x 是偶函数B.|()f x |()g x 是奇函数 C .()f x |()g x |是奇函数D. |()f x ()g x |是奇函数 【考点】函数的奇偶性 【试题解析】是奇函数,则||是偶函数;是偶函数,则||是偶函数,所以为奇函数;故A 错;||是偶函数,故B 错;||是偶函数,故D 错;||是奇函数,故C 正确。

九年级数学下学期第一次月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

九年级数学下学期第一次月考试题(含解析)  新人教版-新人教版初中九年级全册数学试题

某某省池州市石台中学2015-2016学年九年级数学下学期第一次月考试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?2015-2016学年某某省池州市石台中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师X超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米==2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值X围是()A.x>1 B.x≠1C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]]=2;[π]=3,按此规定[2020﹣]= 2015 .【考点】估算无理数的大小.【分析】先求出的X围,再求出2020﹣的X围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2= 4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200 .【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,AA1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ,∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC,CD的长,即可求出钢管ABCD的长度.【解答】解:在△BCG中,∠GBC=30°,BC=2BG=80cm,CD=≈41.2,钢管ABCD的长度=AB+BC+CD=25+80+41.2=146.2≈146cm.答:钢管ABCD的长度为146cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图某某息解答下列问题.(1)本次调查的学生人数为60 人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD (只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数 y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b 的取值X围;(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么X围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值X围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值X围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。

2014-2015学年度六年级数学第一次月考试卷 (1)、小升初数学试卷

2014-2015学年度六年级数学第一次月考试卷  (1)、小升初数学试卷

2014---2015学年度第二学期数学第一次月考测试卷 同学们,将近一个月的学习,相信你们一定积累了不少的知识,下面这些练习,请你认真完成,相信你一定能做得很好。

做完记得还要认真检查哦! 一、 填空。

30分 1、在0.5,-3,+90%,12,0,- 9.6 这几个数中,正数有( ),负数有( ),( )既不是正数,也不是负数。

2、+4.05读作( ),负四分之三写作( ) 3、在数轴上,从左往右的顺序就是数从( )到( )的顺序。

4、所有的负数都在0的( )边,也就是负数都比0( );而正数都比0( ),负数都比正数( )。

5、一包盐上标:净重(500 ± 5)克,表示这包盐最重是( )克,最少有( )克。

6、大于-3而小于2之间有( )个整数,他们分别是( )。

7、在数轴上,-2在-5的( )边。

8、3立方米60立方分米=( )立方米 3500毫升=( )升 ⒈2升=( )立方厘米 6.25平方米=( )平方米( )平方分米9、一个圆柱底面直径是4厘米,高是10厘米,它的侧面积是( ),表面积是( )。

10、一个圆柱侧面积是12.56平方分米,高是2分米,它的体积是( )。

11、某班有50人,新转来2名同学,现有人数比原来增加了( )%。

12、某班男女生人数比是5:8,女生比男生人数多( )%。

13、某商品打七五折销售,说明现价比原价少( )%。

14、一件原价45元的商品,降价40%后是( )元。

15、一种商品原价80元,现在比原来降低了20%,现价( )元? 16、一种商品售价80元,比过去降低了20元,降低了( )%。

二、判断题。

(5分)1、圆柱体的底面半径扩大到原来的2倍,圆柱体的体积就扩大 4 倍。

()2、如果圆柱体的高与底面周长相等,那么它的侧面展开图是一个正方形。

()3、等底等高的长方体和圆柱体体积相等。

()4、一个圆柱形的玻璃杯可盛水1立方分米,我们就说玻璃杯容积是1升。

2015-2016学年第一学期月考考成绩表 (空白) - 副本

2015-2016学年第一学期月考考成绩表 (空白) - 副本
特优率 后20%平均分
四(2)
学号 姓名
1 陈涵
2 钟铭淦
3 肖文杰
4
刘卓熙
5 赖允祺
6 曾少羿
7 吴雨舒
8 黄雪涵
9 叶柳妃
10 赖诗涵
11 欧阳金
12 刘槿雯
13 林煌东
14 蔡丰泽
15 叶晶晴
16 肖烨
17 曾馨缘
18 刘莹钦
19 钟其宏
20 黄文涛
21 叶静茹
22 刘薇
23 林瑶
24 刘议联
达标率 优秀人数(80分
优秀率 特优人数(90以
特优率 后20%平均分
五(2) 学号 姓名
1 叶芸萱 2 叶灵 3 叶智鹏 4 刘龙建 5 黄朦瑶 6 蔡惠 7 黄明强 8 曾文杰 9 廖宁锋 10 李晋成 11 钟榕 12 李位杰 13 刘帅 14 杨子韬 15 吴一雄 16 肖舒彤 17 徐智超 18 钟菊 19 钟培 20 刘钰烁 21 钟治语 22 邱庆松 23 赖鸿涛 24 邱泽豪 25 刘俊伟 26 李美靓 27 钟宇林 28 廖胤宇 29 廖鑫源 30 刘宏曜 31 唐文昱 32 刘楠 33 叶怡成 34 李芳萍 35 李家建 36 钟日城 37 刘煌晖 38 谢冰 39 黄建翀
龙南实验中学2015——2016学年第一学期月考考试 成绩统计表
语文
数学
总分
名次
0.70
平均分
及格人数 及格率
达标人数(70 达标率
优秀人数(80分 优秀率
特优人数(90以 特优率
后20%平均分
两科均 及格人
数 语数及格率
两科均达标人
两科均达标率
两科均优秀人
两科均优秀率 龙南实验中学2015——2016学年第一学期月考考试

高一年(下)第一次月考数学试卷

高一年(下)第一次月考数学试卷

(2)因为
所以
∽△MBG,所以
,即
,所以 MB=1,
因为 AE=1,所以四边形 ABME 是矩形,所以 EM⊥BB1 又平面 ABB1A1⊥平面 BCC1B1,且 EM 在平面 ABB1A1 内,所以 (3) 所以 面 BF, , MH, , 面 。
13. 已 知 直 线 a ⊥ 直 线 b, a// 平 面 , 则 b 与 的 位 置 关 系 为 .
P
14.如图,ABC 是直角三角形, ACB= 90 , PA 平面 ABC,此图形中有 个直角三角形
A B C
1 15.一个横放的圆柱形水桶,桶内的水占底面周长的 ,则当水桶直立时,水的 4

B1
CD1 在 RtA1D1C 中, A1D1 1 ,
A O
D C
tanCA1 D1
CD1 3 A1 D1 ,
0
CA1 D1 600 ,
B
即异面直线 A1C 与 AD 所成角为 60 . 21.证明:(1)在△ABD 中,由于 AD=4,BD=8, AB 4 5 , 所以 AD +BD =AB .故 AD⊥BD. 又平面 PAD⊥平面 ABCD, 平面 PAD∩平面 ABCD=AD, BD 平面 ABCD, 所以 BD⊥平面 PAD,
M 平面 A1 ACC1 . C1 是平面 A1 ACC1 与平面 DBC1 的公共点.又 M AC,
M BD, M 平面 DBC1 . M 也是平面 A1 ACC1 与平面 DBC1 的公共点.
C1M 是平面 A1 ACC1 与平面 DBC1 的交线. O 为 AC 1 与截面 DBC1 的交点,
8. 在正方体 ABCD A1B1C1D1 中, 若 E 是 AC 则直线 CE 垂直于 ( 1 1 的中点, A. AC B. BD C. A1D D. A1D1

辽宁省沈阳市青松中学2015-2016学年高一下学期第一次月考数学试卷 含解析

辽宁省沈阳市青松中学2015-2016学年高一下学期第一次月考数学试卷 含解析

2015—2016学年辽宁省沈阳市青松中学高一(下)第一次月考数学试卷一、选择题(共12个小题,每小题5分,共60分,每题的四个选项中,只有一个符合) 1.用二分法求方程x2﹣2=0的近似根的算法中要用哪种算法结构()A.顺序结构 B.条件结构 C.循环结构 D.以上都用2.对赋值语句的描述正确的是()①可以给变量提供初值;②将表达式的值赋给变量;③可以给一个变量重复赋值;④不能给同一变量重复赋值.A.①②③ B.①②C.②③④ D.①②④3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.35 B.﹣3 C.3 D.﹣0。

54.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A.5、10、15、20、25、30 B.3、13、23、33、43、53C.1、2、3、4、5、6 D.2、4、8、16、32、485.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15人,则该班的学生人数是()A.45 B.50 C.55 D.606.如图是求x1,x2…x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S×(n+1) B.S=S×x nC.S=S×n D.S=S×x n+17.下列叙述错误的是()A.频率是随机的,在试验前不能确定,随着试验次数的增加,频率一般会越来越接近概率B.若随机事件A发生的概率为P(A),则0≤P(A)≤1C.互斥事件不一定是对立事件,但是对立事件一定是互斥事件D.5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同8.已知f(x)=x5+2x4+3x3+4x2+5x+6,用秦九韶算法求这个多项式当x=2时的值的过程中,不会出现的结果是()A.11 B.28 C.57 D.1209.若P(A∪B)=P(A)+P(B)=1,事件A与事件B的关系是()A.互斥不对立B.对立不互斥C.互斥且对立D.以上答案都不对10.在棱长为3的正方体内任取一个点,则这个点到各面的距离大于1的概率为()A.B.C.D.11.某种商品的广告费支出x与销售额y(单位:万元)之间有如下对应数据,根据表中提供的数据,得出y与x的线性回归方程为,则表中的m的值为()x 2 4 5 6 8y 30 40 m 50 70A.45 B.50 C.55 D.6012.在△AOB中,∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,△AOC为钝角三角形的概率是()A.0。

2015-2016学年青岛版六年级(下)第一次月考数学试卷

2015-2016学年青岛版六年级(下)第一次月考数学试卷

2015-2016学年青岛版六年级(下)第一次月考数学试卷一、填空.1.0.375==÷16=:8=%2.5A=4B(A、B不等于0).A:B=:.3.:化成最简整数比是.4.如果=,那么a和b成比例关系.5.底面直径和高都是6分米的圆柱的体积是.6.一个圆柱的底面半径是5米,体积是157立方米,它的高是米.7.在一个比例里,两个内项互为倒数,一个外项是,另一个外项是.8.一块长方形的地,长75米,宽30米,用的比例尺把它画在图纸上,长画厘米,宽画厘米.9.一个圆柱的底面半径是2厘米,高是2厘米,如果沿高剪开,它的侧面展开图是形,这个图形的周长是厘米,面积是平方厘米.10.:8的比值是,如果再写一个比与它组成的比例,这个比例可以是.11.已知A、B、C三种量的关系是A÷B=C,如果A一定,那么B和C成比例关系,如果C一定,A和B成比例关系.12.六年级数学竞赛及格人数占不及格人数的,这次竞赛六年级同学的及格率是.13.一种盐水,按盐和水1:100配制而成.现要配制这种盐水808克,需要盐千克.14.一个比例的两个外项分别是5和6,它们的比值是3,这个比例是.15.在比例尺是1:4000000的中国地图上,量得两地的距离是30厘米,这两地的实际距离是千米.16.长度一定的铁丝,平均分成若干段,每段的长度和截的段数成比例.二、选择.17.下面能与:组成比例的是()A.3:4 B.4:3 C.:18.把1克糖放入100克水中,糖和糖水的比是()A.100:101 B.1:101 C.1:99 D.1:10019.在比例里,两个外项的积一定,两个内项成()比例.A.正比例B.反比例C.不成比例 D.无法判断20.现有三个数9、3、,从下面选()就可以组成比例.A.B.C.4 D.221.解比例:=2:1,x=()A.6 B.1.5 C.0.7 D.922.互为倒数的两个数,它们一定()A.成正比例 B.成反比例 C.不成比例 D.无法判断23.小王的身高与体重成()A.正比例B.反比例C.不成比例 D.无法判断24.小圆的半径是2厘米,大圆的半径是3厘米.小圆和大圆面积比是()A.2:3 B.3:2 C.4:9 D.9:425.一项工程,已经完成的与这项工程的比是3:5,还剩这项工程的()A.60% B.40% C.20% D.166.6%26.图上距离是3厘米,实际距离是1.5毫米,比例尺是()A.1:20 B.20:1 C.1:200 D.200:127.全班人数一定,出席人数和缺席人数成()A.正比例B.反比例C.不成比例 D.无法判断28.一个圆柱,如果高不变,底面积扩大到原来的3倍,它的体积扩大到原来的()A.3倍B.6倍C.9倍D.27倍三、判断.29.订阅《小火炬》的总钱数和订的份数成正比例..(判断对错)30.圆柱的体积比与它等底等高的圆锥的体积多..(判断对错)31.比例尺是,图上1厘米表示实际距离20千米..(判断对错)32.全班有55名学生,男、女生人数的比是5:6,那么这个班有30名男生..(判断对错)33.两个圆柱的侧面积相等,它们的底面积周长也相等..(判断对错)34.在比例中,两个外项的积是10 一个内项是5,另一个内项也是5..(判断对错)35.=B,那么A和B成反比例..(判断对错)36.圆的周长和直径是成正比例的量..(判断对错)四、正确计算37.直接写出得数.×= ÷= 7×÷7×= 3﹣1=+= 10÷1%= ﹣= ÷3﹣=38.用简便方法计算(﹣+)×12×+÷.五、解比例.39.解比例=:=:x =40:x=2.5:15 :x=5:16 :=20:x.六、应用题.40.做10节圆柱形通风管,底面周长是30厘米,长1.2米.至少需要铁皮多少平方米?41.一间房子要用方砖铺地,面积9平方分米的方砖需要96块,如果用边长4分米的方砖需要多少块?(用比例解)42.在比例尺是1:500000的地图上,量得甲地到乙地的距离是1.8厘米.王明以每小时3.6千米的速度从甲地到乙地,需要几小时?43.农场收割小麦,前3天收割了165公顷,照这样计算,要收割440公顷小麦需要多少天?44.新兴服装厂2月份生产服装6000件,比1月份增产20%,1月份生产服装多少件?2015-2016学年青岛版六年级(下)第一次月考数学试卷参考答案与试题解析一、填空.1.0.375==6÷16=3:8=37.5%【考点】比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.【分析】解决此题关键在于0.375,0.375可改写成37.5%,也可改写成成,改写成,也可改写成3÷8,进一步改写成6÷16,也可改写成3:8.【解答】解:0.375==6÷16=3:8=37.5%.故答案为:24,6,3,37.5.2.5A=4B(A、B不等于0).A:B=4:5.【考点】比例的意义和基本性质.【分析】根据比例的性质,把所给的等式5A=4B改写成比例的形式,如果把A当作比例的一个外项,则和它相乘的数5就当作比例的另一个外项;那么B和4就得当作比例的两个内项;据此写出比例即可.【解答】解:因为5A=4B,所以A:B=4:5.故答案为:4,5.3.:化成最简整数比是2:3.【考点】求比值和化简比.【分析】根据比的基本性质作答,即比的前项和后项同时乘或除以一个数(0除外)比值不变.【解答】解::,=(×24):(×24),=2:3,故答案为:2:3.4.如果=,那么a和b成正比例关系.【考点】辨识成正比例的量与成反比例的量.【分析】判断a和b之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:因为果=,所以a:b=2(一定),符合正比例的意义,所以a和b成正比例,故答案为:正.5.底面直径和高都是6分米的圆柱的体积是169.56立方分米.【考点】圆柱的侧面积、表面积和体积.【分析】底面直径是6分米,则圆柱的底面半径是6÷2=3分米,圆柱的体积=πr2h,由此代入数据即可解答.【解答】解:6÷2=3(分米),3.14×32×6,=3.14×9×6,=169.56(立方分米),答:它的体积是169.56立方分米.故答案为:169.56立方分米.6.一个圆柱的底面半径是5米,体积是157立方米,它的高是2米.【考点】圆柱的侧面积、表面积和体积.【分析】因为圆柱体的体积是v=sh,求高是多少,即h=v÷s,也就是用圆柱体的体积除以底面积即可.【解答】解:157÷(3.14×52),=157÷(3.14×25),=157÷78.5,=2(米);答:它的高是2米.故答案为:2.7.在一个比例里,两个内项互为倒数,一个外项是,另一个外项是.【考点】比例的意义和基本性质.【分析】比例的性质:在比例里,两个内项的积等于两个外项的积.根据比例的性质可知两个内项互为倒数,那么两个外项也互为倒数,又互为倒数的两个数的乘积是1,所以用1除以其中一个外项,即得另一个外项的数值.【解答】解:根据比例的性质可知两个内项互为倒数,那么两个外项也互为倒数,的倒数是:1÷=.答:另一个外项是;故答案为:.8.一块长方形的地,长75米,宽30米,用的比例尺把它画在图纸上,长画7.5厘米,宽画3厘米.【考点】比例尺应用题.【分析】长方形的长和宽的实际长度和比例尺已知,依据“图上距离=实际距离×比例尺”即可求得长和宽的图上距离.【解答】解:因为75米=7500厘米,30米=3000厘米,则7500×=7.5(厘米),3000×=3(厘米);答:长应画7.5厘米,宽画3厘米.故答案为:7.5、3.9.一个圆柱的底面半径是2厘米,高是2厘米,如果沿高剪开,它的侧面展开图是长方形,这个图形的周长是29.12厘米,面积是25.12平方厘米.【考点】圆柱的特征;圆柱的展开图;圆柱的侧面积、表面积和体积.【分析】根据“圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高”,进而先根据“圆柱的底面周长=2πr”求出展开后的长方形的长,然后根据“长方形的周长=(长+宽)×2”求出这个图形的周长,根据“长方形的面积=长×宽”求出长方形的面积.【解答】解:一个圆柱的底面半径是2厘米,高是2厘米,如果沿高剪开,它的侧面展开图是长方形;周长:(2×3.14×2+2)×2,=14.56×2,=29.12(厘米);面积:(2×3.14×2)×2,=12.56×2,=25.12(平方厘米);故答案为:长方,19.12,25.12.10.:8的比值是,如果再写一个比与它组成的比例,这个比例可以是:8=:1,.【考点】求比值和化简比;比例的意义和基本性质.【分析】(1)用比的前项除以后项即可;(2)根据比例的意义知道,表示两个比相等的式子叫做比例,由此根据(1)求出的比值再写一个与此比值相等的比即可.【解答】解:(1):8,=÷8,=;(2)因为,:1=,所以,比例为::8=:1,故答案为:;:8=:1.11.已知A、B、C三种量的关系是A÷B=C,如果A一定,那么B和C成反比例关系,如果C一定,A和B成正比例关系.【考点】正比例和反比例的意义.【分析】依据正、反比例的意义,即若两个量的商一定,则这两个量成正比例,若两个量的乘积一定,则这两个量成反比例,从而可以进行解答.【解答】解:(1)因为A÷B=C,则BC=A(一定),所以B和C成反比例关系;(2)因为=C(一定),所以A和B成正比例关系.故答案为:反、正.12.六年级数学竞赛及格人数占不及格人数的,这次竞赛六年级同学的及格率是12.5%.【考点】百分率应用题.【分析】把及格人数占不及格人数的理解为及格人数与不及格人数的比是1:7,假设及格的有1人,则不及格人数有7人,则参加数学竞赛的人数共有(1+7)=8人,求及格率,根据及格率=×100%,由此解答即可.【解答】解:×100%=12.5%,答:这次竞赛六年级同学的及格率是12.5%.故答案为:12.5%.13.一种盐水,按盐和水1:100配制而成.现要配制这种盐水808克,需要盐8千克.【考点】按比例分配应用题.【分析】由“一种盐水,按盐和水1:100配制而成”,可知这种盐水中盐的质量占盐水的.那么要配制这种盐水808克,需要盐的质量是808×,解决问题.【解答】解:808×=8(千克)答:需要盐8千克.故答案为:8.14.一个比例的两个外项分别是5和6,它们的比值是3,这个比例是5:=18:6.【考点】比例的意义和基本性质.【分析】根据题意,可知组成比例的两个比,第一个比缺少后项,就用前项5除以比值3即可求得;第二个比缺少前项,就用后项6乘比值3即可求得;进而写出这个比例即可.【解答】解:第一个比的后项是:5÷3=,第二个比的前项是:6×3=18,这个比例是:5:=18:6;故答案为:5:=18:6.15.在比例尺是1:4000000的中国地图上,量得两地的距离是30厘米,这两地的实际距离是1200千米.【考点】比例尺应用题.【分析】已知比例尺、图上距离,求实际距离,根据图上距离÷比例尺=实际距离列式求得实际距离.【解答】解:30÷=120000000(厘米),120000000厘米=1200千米,答:这两地的实际距离是1200千米.故答案为:1200.16.长度一定的铁丝,平均分成若干段,每段的长度和截的段数成反比例.【考点】辨识成正比例的量与成反比例的量.【分析】判断每段的长度和截的段数成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.【解答】解:因为每段的长度×截的段数=铁丝的长度(一定),是乘积一定,所以每段的长度和截的段数成反比例;故答案为:反.二、选择.17.下面能与:组成比例的是()A.3:4 B.4:3 C.:【考点】比例的意义和基本性质.【分析】根据比例的意义:表示两个比相等的式子叫做比例.所以先求出:的比值,然后求出各答案中的比的比值,哪个比的比值与:的比值相等,就是能与:组成比例的比,据此解答.【解答】解::=,3:4=,4:3=,:=,所以能与:组成比例的比是4:3;故选:B.18.把1克糖放入100克水中,糖和糖水的比是()A.100:101 B.1:101 C.1:99 D.1:100【考点】比的意义.【分析】先求出糖水的总重量,然后根据比的意义,用糖总重量:糖水的总重量再化简即可.【解答】解:1:,=1:101,=1:101.故选:B.19.在比例里,两个外项的积一定,两个内项成()比例.A.正比例B.反比例C.不成比例 D.无法判断【考点】比例的意义和基本性质;正比例和反比例的意义.【分析】根据比例的性质,可知在比例里,两个外项的积一定,两个内项的积也一定,所以两个内项成反比例,据此进行选择.【解答】解:在比例里,两个外项的积一定,两个内项成反比例;故选:B.20.现有三个数9、3、,从下面选()就可以组成比例.A.B.C.4 D.2【考点】比例的意义和基本性质.【分析】用三个数9、3、中的两个数先组成一个比,求得它的比值,再根据比例的意义,进一步用第三个数除以比值即得第四个数.【解答】解:9:3=9÷3=3,÷3=×=;故选:B.21.解比例:=2:1,x=()A.6 B.1.5 C.0.7 D.9【考点】解比例.【分析】根据比例的基本性质:两内项之积等于两外项之积,得出关于x的方程,再利用等式的性质解方程即可解答问题.【解答】解:=2:1x:3=2:1x=6.故选:A.22.互为倒数的两个数,它们一定()A.成正比例 B.成反比例 C.不成比例 D.无法判断【考点】辨识成正比例的量与成反比例的量;倒数的认识.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:如果a和b互为倒数,则有ab=1(一定),是a和b对应的乘积一定,那么a和b一定成反比例;故选:B.23.小王的身高与体重成()A.正比例B.反比例C.不成比例 D.无法判断【考点】辨识成正比例的量与成反比例的量.【分析】判断身高和体重是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.【解答】解:因为,小王的身高与体重不是两个相关联的量,所以比值或积不一定,所以小王的身高与体重不成正比例.故选:C.24.小圆的半径是2厘米,大圆的半径是3厘米.小圆和大圆面积比是()A.2:3 B.3:2 C.4:9 D.9:4【考点】圆、圆环的面积;比的意义.【分析】根据圆的面积公式:S=πr2,据此求出大小圆的面积,然后求比,再根据比的基本性质化简比.【解答】解:小圆的面积是:π×22=4π,大圆的面积是:π×32=9π,小圆面积和大圆面积的比是:4π:9π=4:9;故选:C.25.一项工程,已经完成的与这项工程的比是3:5,还剩这项工程的()A.60% B.40% C.20% D.166.6%【考点】百分数的实际应用.【分析】已经完成的与这项工程的比是3:5,把这项工程的总量看做5份,完成了3份,那么还剩2份.因此,还剩这项工程的2÷5,计算即可.【解答】解:(5﹣3)÷5,=2÷5,=40%;答:还剩这项工程的40%.故选:B.26.图上距离是3厘米,实际距离是1.5毫米,比例尺是()A.1:20 B.20:1 C.1:200 D.200:1【考点】比例尺.【分析】根据比例尺的意义作答,即比例尺是图上距离与实际距离的比.【解答】解:3厘米=30毫米,30:1.5=20:1,答:这幅图的比例尺是20:1.故选:B.27.全班人数一定,出席人数和缺席人数成()A.正比例B.反比例C.不成比例 D.无法判断【考点】辨识成正比例的量与成反比例的量.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解;出席人数+缺席人数=全班人数(一定),是和一定,故出席人数和缺席人数不成比例.故选:C.28.一个圆柱,如果高不变,底面积扩大到原来的3倍,它的体积扩大到原来的()A.3倍B.6倍C.9倍D.27倍【考点】圆柱的侧面积、表面积和体积.【分析】根据圆柱体积的计算公式,则圆柱的高=.因为,圆柱的高一定,所以圆柱的底面积扩大几倍,圆柱的体积就扩大几倍(比的基本性质).已知圆柱的底面积扩大到原来的3倍,因此圆柱的体积也扩大3倍.【解答】解:因为:=圆柱的高(一定),底面积扩大3倍,所以:圆柱的体积也扩大3倍.(比的基本性质)答:它的体积扩大到原来的3倍.故选:A.三、判断.29.订阅《小火炬》的总钱数和订的份数成正比例.√.(判断对错)【考点】辨识成正比例的量与成反比例的量.【分析】订阅《小火炬》的份数与总钱数是两种相关联的量,总钱数÷总份数=每份的钱数,每份的钱数,即单价一定,也就是这两种量的比值一定,所以成正比例,由此即可判断.【解答】解:总钱数÷总份数=每份的钱数,每份的钱数,即单价一定,也就是这两种量的比值一定,所以成正比例;故答案为:√.30.圆柱的体积比与它等底等高的圆锥的体积多.×.(判断对错)【考点】圆锥的体积.【分析】因为一个圆柱的体积是与它等底等高的圆锥体积的3倍,所以圆柱体积比与它等底等高的圆锥体积大2倍.【解答】解:因为一个圆柱的体积是与它等底等高的圆锥体积的3倍,所以圆柱体积比与它等底等高的圆锥体积大:(3﹣1)÷1=2倍.故答案为:×.31.比例尺是,图上1厘米表示实际距离20千米.√.(判断对错)【考点】比例尺.【分析】由“比例尺=图上距离:实际距离”可得“实际距离=图上距离÷比例尺”,即可求出1厘米表示的实际距离,从而可以作出正确判断.【解答】解:1÷=2000000(厘米)2000000厘米=20千米图上距离1厘米表示实际距离20千米.原题说法正确.故答案为:√.32.全班有55名学生,男、女生人数的比是5:6,那么这个班有30名男生.×.(判断对错)【考点】比的应用.【分析】此题要分配的总量是55名学生,是按照男、女生人数比为5:6进行分配,先求出男女生人数的总份数,进一步求出男生数占总人数的几分之几,最后求得男生的人数,列式解答后再判断即可.【解答】解:总份数:5+6=11这个班男生人数:55×=25(人).答:这个班有25名男生.故答案为:×.33.两个圆柱的侧面积相等,它们的底面积周长也相等.×.(判断对错)【考点】圆柱的侧面积、表面积和体积.【分析】根据圆柱的侧面积公式,S=ch,知道圆柱的侧面积与底面周长和高有关,如果两个圆柱的侧面积相等,它们的底面积和周长不一定相等,由此做出判断.【解答】解:因为,圆柱的侧面积公式,S=ch,所以,圆柱的侧面积与底面周长和高有关,并不是只和周长有关,由此得出,如果两个圆柱的侧面积相等,它们的底面积和周长不一定相等,故判断为:×.34.在比例中,两个外项的积是10 一个内项是5,另一个内项也是5.×.(判断对错)【考点】比例的意义和基本性质.【分析】根据比例的基本性质“两个外项的积等于两个内项的积”,因为两个外项的积是10,两个内项的积也是10,一个内项是5,另一个内项10÷5=2,据此判断即可.【解答】解:根据比例的基本性质“两个外项的积等于两个内项的积”,可得两个内项的积也是10,所以一个内项是5,另一个内项是10÷5=2.故答案为:×.35.=B,那么A和B成反比例.×.(判断对错)【考点】辨识成正比例的量与成反比例的量.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:=B,即A:B=8,是比值一定,那么A和B成正比例.故答案为:×.36.圆的周长和直径是成正比例的量.√.(判断对错)【考点】辨识成正比例的量与成反比例的量.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【解答】解:圆的周长÷直径=π(一定),是比值一定,所以圆的周长和直径成正比例;故答案为:√.四、正确计算37.直接写出得数.×= ÷= 7×÷7×= 3﹣1=+= 10÷1%= ﹣= ÷3﹣=【考点】分数的加法和减法;分数除法.【分析】根据分数四则运算的计算法则进行计算即可,7×÷7×运用乘除抵消简算.【解答】解:×=÷=7×÷7×=3﹣1=1+=10÷1%=1000 ﹣=÷3﹣=038.用简便方法计算(﹣+)×12×+÷.【考点】分数的简便计算.【分析】(﹣+)×12,运用乘法分配律简算;×+÷,把除数转化为乘它的倒数,再运用乘法分配律简;【解答】解:(﹣+)×12==4﹣2+3=2+3=5;×+÷===2×=.五、解比例.39.解比例=:=:x =40:x=2.5:15 :x=5:16 :=20:x.【考点】解比例.【分析】(1)首先根据比例的基本性质改写成2x=8×9,然后根据等式的性质,两边同时除以2即可.(2)首先根据比例的基本性质改写成x=×,然后根据等式的性质,两边同时乘2即可.(3)首先根据比例的基本性质改写成0.25x=1.25×1.6,然后根据等式的性质,两边同时除以0.25即可.(4)首先根据比例的基本性质改写成2.5x=40×15,然后根据等式的性质,两边同时除以2.5即可.(5)首先根据比例的基本性质改写成5x=×16,然后根据等式的性质,两边同时除以5即可.(6)首先根据比例的基本性质改写成x=×20,然后根据等式的性质,两边同时乘即可.【解答】解:(1)=2x=8×92x÷2=72÷2x=36(2):=:xx=×x×2=××2x=(3)=0.25x=1.25×1.60.25x÷0.25=2÷0.25x=8(4)40:x=2.5:152.5x=40×152.5x÷2.5=600÷2.5x=240(5):x=5:165x=×165x÷5=8÷5x=1.6(6):=20:xx=×20x×=4×x=六、应用题.40.做10节圆柱形通风管,底面周长是30厘米,长1.2米.至少需要铁皮多少平方米?【考点】圆柱的侧面积、表面积和体积.【分析】求需要铁皮多少平方厘米,就是求圆柱形通风管的侧面积,圆柱侧面积=底面周长×高,由此列式计算出1节圆柱形通风管的侧面积,再乘10即可.【解答】解:1.2米=120厘米30×120×10=3600×10=36000(平方厘米)=3.6(平方米);答:至少需要铁皮3.6平方米.41.一间房子要用方砖铺地,面积9平方分米的方砖需要96块,如果用边长4分米的方砖需要多少块?(用比例解)【考点】正、反比例应用题.【分析】根据一间房子的面积一定,方砖的面积与方砖的块数成反比例,由此列出比例解答即可.【解答】解:设需要x块,4×4×x=9×96,16x=9×96,x=,x=54,答:需要54块.42.在比例尺是1:500000的地图上,量得甲地到乙地的距离是1.8厘米.王明以每小时3.6千米的速度从甲地到乙地,需要几小时?【考点】比例尺应用题.【分析】已知比例尺和图上距离求实际距离,求出实际距离,再根据路程÷速度=时间,列式解答.【解答】解:1.8÷=900000(厘米)900000厘米=9千米9÷3.6=2.5(小时)答:需要2.5小时.43.农场收割小麦,前3天收割了165公顷,照这样计算,要收割440公顷小麦需要多少天?【考点】整数、小数复合应用题.【分析】前3天收割了165公顷,根据除法的意义可知,平均每天收165÷3=55公顷,则要收割440公顷小麦需要:440÷天.【解答】解:440÷=440÷55,=8(天);答:要收割440公顷小麦需要8天.44.新兴服装厂2月份生产服装6000件,比1月份增产20%,1月份生产服装多少件?【考点】百分数的实际应用.【分析】把1月份的生产量看成单位“1”,它的(1+20%)对应的数量是6000件,由此用除法求出1月份的生产量.【解答】解:6000÷(1+20%),=6000÷1.2,=5000(件);答:1月份生产服装5000件.。

安徽第一卷2015-2016学年度九年级上期月考试卷一数学人教版

安徽第一卷2015-2016学年度九年级上期月考试卷一数学人教版

口X
(a
辈 O)
当 a 越 大图象开 口 越 小
.
越小图象 开 门 越 大
辈 O)
不论 a 是正 数还是 负数 抛 物线 y
a C +
2
2 t Lt +
)
·
(
的顶点是 ( 1 0 )
2 0 15 2 0 16 学年 安 徽 省 九 年 级 第
学 期月考 试卷 (
数学试 题 ( 人教 版 ) 第 1 页 共 8 页
若抛 物线
V. 4
的解 析式 为 傾
×
2
+

确定对 称抛物 线 仍 的解 析式
确定 对 称抛 物线
Cr

(2) 若
且 四 边形 A N A M 是矩形时
和 C 2 的解析式
y
C2
Å
B
Ct
第2 3趣 图
&
x
s
Bt ï ! B rh -
I
f
î
d
! <w
:j :
p
>
n
f Bu
J
,
一 2 0 1 5 2 0 16 学 年 安 徽 合 九 年 级 第
2 0 15)
十 与时
B (×

B
2 0 15 ) 是 二 次 函数 傾乕a
bx
+
3 (a # O) 的 图象上 两 点
则当X
A
°
X
,
次 函 数 的值 是
2b
a
2

c 2 0 15
b2
4a
+ 3
+
3

2015-2016学年第二学期八年级第一次月考成绩录入表

2015-2016学年第二学期八年级第一次月考成绩录入表

2015-2016学年第二学期八年级第一次月考成绩录入表 跟踪编号 姓名 语文 数学 英语 物理 qz2014013 王钘钼 77 qz2014002 叶茂青 83 qz2014009 文苗 90 qz2014001 陈曼婷 87 qz2014027 朱晓颖 75 qz2014255 陈稣鹏 97 qz2014003 谢燕怡 87 qz2014166 陈俊铭 81 qz2014240 李文森 68 qz2014596 樊琳灵 86 qz2014068 陈丽丽 74 qz2014018 方增悦 70 qz2014084 杨欣欣 81 qz2014096 杨灏 84 qz2014193 海杰全 89 qz2014050 蒋骥 86 qz2014031 樊彦君 85 qz2014005 吕玉娜 65 qz2014024 刘淑坪 83 qz2014144 薛文娇 83 qz2014134 刘嘉誉 89 qz2014073 陈桂秀 95 qz2014020 谷显雪 92 qz2014114 吴晨康 82 qz2014025 汪艳纯 76 qz2014641 孙嘉芬 70 qz2014164 许世民 75 qz2014054 张连宜 83 qz2014659 曾津 58 qz2014016 黄嘉敏 78 qz2014023 叶菲 80 qz2014233 王业 73 qz2014008 李婷婷 74 qz2014161 王思琪 78 qz2014169 李丹明 83 qz2014019 赖慧珊 87 qz2014041 钟文婷 73 qz2014028 李在文 82 qz2014011 肖潜龙 85 qz2014239 方季声 80 qz2014197 廖佳伟 85 qz2014067 庄心怡 71 qz2014601 代芳 90 qz2014030 林格格 76 qz2014021 陈秋婷 70

九年级数学上学期第一次月考试卷(含解析) 新人教版五四制

九年级数学上学期第一次月考试卷(含解析) 新人教版五四制

2015-2016学年山东省莱芜市莱城区刘仲莹中学九年级(上)第一次月考数学试卷一、选择题:(本题共12小题,每小题3分,共36分.)1.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)2.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.3.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A. B. C. D.h•sinα4.点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.15.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m6.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1 B.2 C. D.8.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B 点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+)米9.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米10.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.11.在△ABC中,若三边BC、CA、AB满足BC:CA:AB=5:12:13,则cosB=()A. B. C. D.12.如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1 B.0<x<1或x<﹣5 C.﹣6<x<1 D.0<x<1或x<﹣6二、填空题(本共5小题,共20分,只求填写最后结果,每小题填对得4分.)13.已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则______<______<______(填y1,y2,y3).14.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为______.15.已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是______.16.如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为______米.17.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为______.三、解答题:18.计算:(1)6tan230°﹣sin60°﹣2sin45°(2)2cos30°﹣|1﹣tan60°|+tan45°•sin45°.19.如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B (n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.20.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到 1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x ≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.23.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)24.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.2015-2016学年山东省莱芜市莱城区刘仲莹中学九年级(上)第一次月考数学试卷(五四学制)参考答案与试题解析一、选择题:(本题共12小题,每小题3分,共36分.)1.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.2.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A. B. C. D.【考点】勾股定理;锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.3.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A. B. C. D.h•sinα【考点】解直角三角形的应用-坡度坡角问题.【分析】由已知转化为解直角三角形问题,角α的正弦等于对边比斜边求出滑梯长l.【解答】解:由已知得:sinα=,∴l=,故选:A.4.点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.1【考点】反比例函数图象上点的坐标特征.【分析】把点A(﹣1,1)代入函数解析式,即可求得m的值.【解答】解:把点A(﹣1,1)代入函数解析式得:1=,解得:m+1=﹣1,解得m=﹣2.故选B.5.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m【考点】解直角三角形的应用-坡度坡角问题.【分析】由河堤横断面迎水坡AB的坡比是1:,可得到∠BAC=30°,所以求得AB=2BC,得出答案.【解答】解:河堤横断面迎水坡AB的坡比是1:,即tan∠BAC===,∴∠BAC=30°,∴AB=2BC=2×5=10m,故选:A.6.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值和三角形的内角和定理求出角的度数,再进行判断.【解答】解:∵cosA=,tanB=,∴∠A=45°,∠B=60°.∴∠C=180°﹣45°﹣60°=75°.∴△ABC为锐角三角形.故选A.7.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限.若反比例函数y=的图象经过点B,则k的值是()A.1 B.2 C. D.【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【分析】首先过点B作BC垂直OA于C,根据AO=2,△ABO是等边三角形,得出B点坐标,进而求出反比例函数解析式.【解答】解:过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC=,∴点B的坐标是(1,),把(1,)代入y=,得k=.故选C.8.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B 点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+)米【考点】解直角三角形的应用-坡度坡角问题.【分析】设CD=x,则AD=2x,根据勾股定理求出AC的长,从而求出CD、AC的长,然后根据勾股定理求出BD的长,即可求出BC的长.【解答】解:设CD=x,则AD=2x,由勾股定理可得,AC==x,∵AC=3米,∴x=3,∴x=3米,∴CD=3米,∴AD=2×3=6米,在Rt△ABD中,BD==8米,∴BC=8﹣3=5米.故选A.9.如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米【考点】解直角三角形的应用.【分析】出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.【解答】解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴=,∴PB===11米,∴BC=PB﹣PC=(11﹣4)米.故选:D.10.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A.12秒B.16秒C.20秒D.30秒.【考点】勾股定理的应用.【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.故选:B.11.在△ABC中,若三边BC、CA、AB满足BC:CA:AB=5:12:13,则cosB=()A. B. C. D.【考点】勾股定理的逆定理;锐角三角函数的定义.【分析】设比例的每一份为k,由比例式表示出三角形的三边,然后利用勾股定理的逆定理判断出此三角形为直角三角形,根据锐角三角函数定义,用∠B的对边AC比上斜边AB,化简后可得出cosB的值.【解答】解:由△ABC三边满足BC:CA:AB=5:12:13,可设BC=5k,CA=12k,AB=13k,∵BC2+CA2=(5k)2+(12k)2=25k2+144k2=169k2,AB2=(13k)2=169k2,∴BC2+CA2=AB2,∴△ABC为直角三角形,∠C=90°,则cosB===.故选:C.12.如图,在平面直角坐标系中,A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的解析式为y2=k2x+b,当y1>y2时,x的取值范围是()A.﹣5<x<1 B.0<x<1或x<﹣5 C.﹣6<x<1 D.0<x<1或x<﹣6【考点】反比例函数与一次函数的交点问题.【分析】由△AOB是等腰三角形,先求的点B的坐标,然后利用待定系数法可求得双曲线和直线的解析式,然后将将y1=与y2=联立,求得双曲线和直线的交点的横坐标,然后根据图象即可确定出x的取值范围.【解答】解:如图所示:∵△AOB为等腰直角三角形,∴OA=OB,∠3+∠2=90°.又∵∠1+∠3=90°,∴∠1=∠2.∵点A的坐标为(﹣3,1),∴点B的坐标(1,3).将B(1,3)代入反比例函数的解析式得:3=,∴k=3.∴y1=将A(﹣3,1),B(1,3)代入直线AB的解析式得:,解得:,∴直线AB的解析式为y2=.将y1=与y2=联立得;,解得:,当y1>y2时,双曲线位于直线线的上方,∴x的取值范围是:x<﹣6或0<x<1.故选:D.二、填空题(本共5小题,共20分,只求填写最后结果,每小题填对得4分.)13.已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数y=(k>0)中k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣1<0,﹣1<0,∴点A(﹣1,y1)位于第三象限,∴y1<0,∴B(1,y2)和C(2,y3)位于第一象限,∴y2>0,y3>0,∵1<2,∴y2>y3,∴y1<y3<y2.故答案为:y1,y3,y2.14.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为24 .【考点】菱形的性质;解直角三角形.【分析】连接BD,交AC与点O,首先根据菱形的性质可知AC⊥BD,解三角形求出BO的长,利用勾股定理求出AO的长,即可求出AC的长.【解答】解:连接BD,交AC与点O,∵四边形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵AB=15,sin∠BAC=,∴sin∠BAC==,∴BO=9,∴AB2=OB2+AO2,∴AO===12,∴AC=2AO=24,故答案为24.15.已知一个正比例函数的图象与一个反比例函数的图象的一个交点为(1,3),则另一个交点坐标是(﹣1,﹣3).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(﹣1,﹣3).故答案为:(﹣1,﹣3).16.如图,先锋村准备在坡角为α=30°山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为米.【考点】解直角三角形的应用-坡度坡角问题.【分析】运用余弦函数求两树在坡面上的距离AB.【解答】解:由于相邻两树之间的水平距离为5米,坡角为α=30°,则两树在坡面上的距离AB==(米).17.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为﹣.【考点】反比例函数与一次函数的交点问题;坐标与图形变化-对称;翻折变换(折叠问题).【分析】先过点C作CD⊥x轴于D,作CE⊥y轴于E,构造矩形CDOE,再根据折叠的性质求得AC=2,∠ACD=30°,根据直角三角形的性质以及勾股定理,求得AD与CD的长,得出点C 的坐标,最后计算反比例函数解析式即可.【解答】解:过点C作CD⊥x轴于D,作CE⊥y轴于E,则CE=DO,CD=EO,∵A(﹣2,0),∴AO=2,由折叠得,AC=AO=2,∠CAO=2∠BAO=60°,∴Rt△ACD中,∠ACD=30°,∴AD=AC=1,CD==,∴DO=AO﹣AD=2﹣1=1,OE=,又∵点C在第二象限,∴C(﹣1,),∵点C在双曲线y=(k≠0)上,∴k=﹣1×=﹣,故答案为:﹣三、解答题:18.计算:(1)6tan230°﹣sin60°﹣2sin45°(2)2cos30°﹣|1﹣tan60°|+tan45°•sin45°.【考点】实数的运算;特殊角的三角函数值.【分析】(1)先根据特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先分别根据绝对值的性质、特殊角三角函数值、分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(1)6tan230°﹣sin60°﹣2sin45°=6×()2﹣×﹣2×=﹣;(2)2cos30°﹣|1﹣tan60°|+tan45°•sin45°=2×﹣+1+1×=1+.19.如图,已知反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B (n,﹣2).(1)求反比例函数和一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A的坐标代入反比例函数的解析式,求出m的值,从而确定反比例函数的解析式,把B的坐标代入反比例函数解析式求出B的坐标,把A、B的坐标代入一次函数的解析式,即可求出a,b的值,从而确定一次函数的解析式;(2)根据函数的图象即可得出一次函数的值小于反比例函数的值的x的取值范围.【解答】解:(1)∵反比例函数y=的图象过点A(1,4),∴4=,即m=4,∴反比例函数的解析式为:y=.∵反比例函数y=的图象过点B(n,﹣2),∴﹣2=,解得:n=﹣2∴B(﹣2,﹣2).∵一次函数y=ax+b(k≠0)的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得.∴一次函数的解析式为:y=2x+2;(2)由图象可知:当x<﹣2或0<x<1时,一次函数的值小于反比例函数的值.20.为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到 1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)【考点】解直角三角形的应用.【分析】(1)在RT△ACD中利用勾股定理求AD即可.(2)过点E作EF⊥AB,在RT△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.【解答】解:(1)∵在RT△ACD中,AC=45cm,DC=60cm,∴AD==75,∴车架档AD的长为75cm,(2)过点E作EF⊥AB,垂足为点F,∵AE=AC+CE=45+20(cm)∴EF=AEsin75°=(45+20)sin75°≈62.7835≈63cm,∴车座点E到车架档AB的距离是63cm.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x ≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【考点】反比例函数的应用;一次函数的应用.【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.如图,已知反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把A点坐标代入y=可求得k1=8,则可得到反比例函数解析式,再把B(﹣4,m)代入反比例函数求得m,得到B点坐标,然后利用待定系数法确定一次函数解析式即可求得结果;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为(0,6),可求S△AOB=×6×2+×6×1=15;(3)根据反比例函数的性质即可得到结果.【解答】解:(1)∵反比例函数y=与一次函数y=k2x+b的图象交于点A(1,8)、B(﹣4,m),∴k1=8,B(﹣4,﹣2),解,解得;(2)由(1)知一次函数y=k2x+b的图象与y轴的交点坐标为C(0,6),∴S△AOB=S△COB+S△AOC=×6×4+×6×1=15;(3)∵比例函数y=的图象位于一、三象限,∴在每个象限内,y随x的增大而减小,∵x1<x2,y1<y2,∴M,N在不同的象限,∴M(x1,y1)在第三象限,N(x2,y2)在第一象限.23.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据坡度定义直接解答即可;(2)作DS⊥BC,垂足为S,且与AB相交于H.证出∠GDH=∠SBH,根据=,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS.【解答】解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴=,∵DG=EF=2m,∴GH=1m,∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m≈4.5m.24.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.【考点】反比例函数与一次函数的交点问题;待定系数法求一次函数解析式;轴对称-最短路线问题.【分析】(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A 的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.【解答】解:(1)把点A(1,a)代入一次函数y=﹣x+4,得:a=﹣1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,﹣1).设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,∴直线AD的解析式为y=﹣2x+5.令y=﹣2x+5中y=0,则﹣2x+5=0,解得:x=,∴点P的坐标为(,0).S△PAB=S△ABD﹣S△PBD=BD•(x B﹣x A)﹣BD•(x B﹣x P)=×[1﹣(﹣1)]×(3﹣1)﹣×[1﹣(﹣1)]×(3﹣)=.。

2015-2016学年人教版八年级上第一次月考数学试题及答案

2015-2016学年人教版八年级上第一次月考数学试题及答案

AC B A 'C 'B '3050(第9题)NM PBAO睢中附属学校2015-2016学年度第一学期第一次月考八 年 级 数 学 试 题命题人:任润水(考试时间:90分钟,满分:120分 )一、 选择题: (每题3分,共30分)请将正确答案填写在下列方框内题 号 1 2 3 4 5 6 7 8 9 10 答 案1、下面有4个汽车标致图案,其中不是轴对称图形的是( ▲ )A .B .C .D .2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为 ( ▲ ) A .2 B.3 C.5 D.2.53、如图,与关于直线对称,则的度数为( ▲ ) A . B . C .D .4、下列说法中,正确的是 ( ▲ ) A.关于某直线对称的两个三角形是全等三角形B.全等三角形一定是关于某直线对称的C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.有一条公共边的两个全等三角形关于公共边所在的直线对称5、下列条件中不能判断两个三角形全等的是 ( ▲ )A.有两边和它们的夹角对应相等.B.有两边和其中一边的对角对应相等.C.有两角和它们的夹边对应相等.D.有两角和其中一角的对边对应相等.6、在ΔABC 和ΔFED 中,∠A=∠F ,∠B=∠E ,要使这两三角形全等,还需要的条件是 ( ▲ ) A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D7、如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有 ( ▲ )A . 2对 B.3 对 C.4对 D.5对 8、工人师傅常用角尺平分一个任意角,如图在∠AOB 的边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,得到∠AOB 的平分线OP ,做法中用到三角形全等的判定方法是. ( ▲ ) A.SAS B.SSS C.ASA D.HL第7题 第9题F EDABCADCBEF 姓名_____________ 班级____________________ 考号:________________________··························密·························封······················线·· (8)9、AD 是的中线, .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ; ④△BDF ≌△CDE .其中正确的有 ( ▲ )A.1个B.2个C.3个D.4个10、△ABC 中,AB=AC=12厘米,∠B=∠C ,BC=8厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( ▲ ) A.2 B.3 C.2或3 D.1或5 二、填空题:(每题3分,共24分)11、国旗上的一个五角星有 条对称轴.12、如图,已知△ABC 的两条高AD 、BE 交于F ,AE =BE ,若要运用“HL ”说明△AEF ≌△BEC ,还需添加条件: .13、某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第__________块去(填序号)14、如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3 = °.第12题 第14题 第15题 15、如图,方格纸中△ABC 的三个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,则在图中能够作出与△ABC 全等且有一条公共边的格点三角形(不含△ABC )的个数是__________个16、工人师傅在做完门框后,为防止变形,经常如图所示钉上两条斜拉的木条(即图中的AB 、CD 两根木条),这样做根据的数学原理是 _______ __ . 17、如图,给出下列四组条件:①AB=DE,BC=EF ,AC=DF ; ②AB=DE,∠B=∠E,BC=EF ; ③∠B=∠E,BC=EF ,∠ACB =∠DFE ;④AB=DE,AC=DF ,∠B=∠E.其中,能使△ABC≌△DEF 的条件是 ;(填序号)18、如图,在△ABC 中,∠B=∠C ,BF=CD ,BD=CE ,∠FDE=α ,则∠B_________α(填“>”“﹦”或“<”)ADC B E F(第18题)αFEDCBA 第16题第17题①②③第13题三、作图题(本大题共2小题,共8分)19、用直尺和圆规按下列要求作图:(不写作法,保留作图痕迹) (1)作出△ABC 关于直线l 对称的△DEF ;CAB l第(1)题 第(2)题(2)如图②:在3×3网格中,已知线段AB 、CD ,以格点为端点再画1条线段,使它与AB 、CD 组成轴对称图形.(画出所有可能情况)四、解答题(本大题共有6小题,共58分,解答时应写出文字说明、推理过程或演算步骤) 20、( 8分)已知: 如图, AC 、BD 相交于点O , ∠A =∠D , AB=CD.求证:△AOB ≌△DOC ,。

高三数学上学期第一次月考试卷(含解析)-人教版高三全册数学试题

高三数学上学期第一次月考试卷(含解析)-人教版高三全册数学试题

2015-2016学年某某省某某市姜堰市区罗塘高级中学高三(上)第一次月考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.已知A={1,3,4},B={3,4,5},则A∩B=.2.命题”∀x>0,x3﹣1>0”的否定是.3.命题:“若a>0,则a2>0”的否命题是.4.函数y=的定义域为.5.函数f(x)=log5(2x+1)的单调增区间是.6.函数y=(x≥e)的值域是.7.设f(x)=4x3+mx2+(m﹣3)x+n(m,n∈R)是R上的单调增函数,则m的值为.8.若命题“∃x∈R,使得x2+(a﹣1)x+1≤0”为假命题,则实数a的X围.9.若曲线C1:y=ax3﹣6x2+12x与曲线C2:y=e x在x=1处的两条切线互相垂直,则实数a的值为.10.已知函数f(x)=x|x﹣2|,则不等式的解集为.11.下列四个命题:(1)“∃x∈R,x2﹣x+1≤0”的否定;(2)“若x2+x﹣6≥0,则x>2”的否命题;(3)在△ABC中,“A>30°”是“sinA>”的充分不必要条件;(4)“k=2”是“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”的充要条件.其中真命题的序号是(真命题的序号都填上)12.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<﹣e的解集为.13.已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值X围是.14.已知函数f(x)=3x+a与函数g(x)=3x+2a在区间(b,c)上都有零点,则的最小值为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤15.已知集合A={x||x﹣4|≤2,x∈R},B={x|>0,x∈R},全集U=R.(1)求A∩(∁U B);(2)若集合C={x|x<a,x∈R},A∩C=∅,某某数a的取值X围.16.设命题P:“任意x∈R,x2﹣2x>a”,命题Q“存在x∈R,x2+2ax+2﹣a=0”;如果“P 或Q”为真,“P且Q”为假,求a的取值X围.17.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,某某数x的取值X围;(2)¬p是¬q的充分不必要条件,某某数a的取值X围.18.如图,有一个长方形地块ABCD,边AB为2km,AD为4km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S (单位:km2).(1)求S关于t的函数解析式,并指出该函数的定义域;(2)是否存在点P,使隔离出的△BEF面积S超过3km2?并说明理由.19.设函数f(x)=lnx+,m∈R(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)﹣零点的个数;(3)(理科)若对任意b>a>0,<1恒成立,求m的取值X围.20.已知函数f(x)=1+lnx﹣,其中k为常数.(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程.(2)若k=5,求证:f(x)有且仅有两个零点;(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.2015-2016学年某某省某某市姜堰市区罗塘高级中学高三(上)第一次月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.已知A={1,3,4},B={3,4,5},则A∩B={3,4} .【考点】交集及其运算.【专题】集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={1,3,4},B={3,4,5},∴A∩B={3,4}.故答案为:{3,4}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题”∀x>0,x3﹣1>0”的否定是∃x>0,x3﹣1≤0.【考点】命题的否定.【专题】计算题;规律型;简易逻辑.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题”∀x>0,x3﹣1>0”的否定是:∃x>0,x3﹣1≤0.故答案为:∃x>0,x3﹣1≤0.【点评】本题考查命题的否定全称命题与特称命题的否定关系,是基础题.3.命题:“若a>0,则a2>0”的否命题是若a≤0,则a2≤0.【考点】四种命题.【专题】阅读型.【分析】写出命题的条件与结论,再根据否命题的定义求解.【解答】解:命题的条件是:a>0,结论是:a2>0.∴否命题是:若a≤0,则a2≤0.故答案是若a≤0,则a2≤0.【点评】本题考查否命题的定义.4.函数y=的定义域为[2,+∞).【考点】函数的定义域及其求法.【专题】计算题;函数的性质及应用.【分析】由根式内部的代数式大于等于0,然后求解指数不等式.【解答】解:由2x﹣4≥0,得2x≥4,则x≥2.∴函数y=的定义域为[2,+∞).故答案为:[2,+∞).【点评】本题考查了函数的定义域及其求法,考查了指数不等式的解法,是基础题.5.函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.【解答】解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)【点评】本题考查的知识点是对数函数的单调性与特殊点,其中本题易忽略定义域,造成答案为R的错解.6.函数y=(x≥e)的值域是(0,1].【考点】函数的值域.【专题】函数的性质及应用.【分析】根据函数y=lnx的单调性,判定y=在x≥e时的单调性,从而求出函数y的值域.【解答】解:∵对数函数y=lnx在定义域上是增函数,∴y=在(1,+∞)上是减函数,且x≥e时,l nx≥1,∴0<≤1;∴函数y的值域是(0,1].故答案为:(0,1].【点评】本题考查了求函数的值域问题,解题时应根据基本初等函数的单调性,判定所求函数的单调性,从而求出值域来,是基础题.7.设f(x)=4x3+mx2+(m﹣3)x+n(m,n∈R)是R上的单调增函数,则m的值为 6 .【考点】利用导数研究函数的单调性.【专题】函数的性质及应用.【分析】由函数为单调增函数可得f′(x)≥0,故只需△≤0即可.【解答】解:根据题意,得f′(x)=12x2+2mx+m﹣3,∵f(x)是R上的单调增函数,∴f′(x)≥0,∴△=(2m)2﹣4×12×(m﹣3)≤0即4(m﹣6)2≤0,所以m=6,故答案为:6.【点评】本题考查函数的单调性,利用二次函数根的判别式小于等于0是解决本题的关键,属中档题.8.若命题“∃x∈R,使得x2+(a﹣1)x+1≤0”为假命题,则实数a的X围(﹣1,3).【考点】特称命题.【专题】计算题;转化思想.【分析】不等式对应的是二次函数,其开口向上,若“∃x∈R,使得x2+(a﹣1)x+1≤0”,则相应二次方程有实根.求出a的X围,然后求解命题“∃x∈R,使得x2+(a﹣1)x+1≤0”为假命题,实数a的X围.【解答】解:∵“∃x∈R,使得x2+(a﹣1)x+1≤0∴x2+(a﹣1)x+1=0有两个实根∴△=(a﹣1)2﹣4≥0∴a≤﹣1,a≥3,所以命题“∃x∈R,使得x2+(a﹣1)x+1≤0”为假命题,则实数a的X围(﹣1,3).故答案为:(﹣1,3).【点评】本题主要考查一元二次不等式,二次函数,二次方程间的相互转化及相互应用,这是在函数中考查频率较高的题目,灵活多变,难度可大可小,是研究函数的重要方面.9.若曲线C1:y=ax3﹣6x2+12x与曲线C2:y=e x在x=1处的两条切线互相垂直,则实数a的值为﹣.【考点】利用导数研究曲线上某点切线方程.【专题】导数的概念及应用;直线与圆.【分析】分别求出两个函数的导函数,求得两函数在x=1处的导数值,由题意知两导数值的乘积等于﹣1,由此求得a的值.【解答】解:由y=ax3﹣6x2+12x,得y′=3ax2﹣12x+12,∴y′|x=1=3a,由y=e x,得y′=e x,∴y′|x=1=e.∵曲线C1:y=ax3﹣6x2+12x与曲线C2:y=e x在x=1处的切线互相垂直,∴3a•e=﹣1,解得:a=﹣.故答案为:﹣.【点评】本题考查利用导数研究曲线上某点处的切线方程,函数在某点处的导数,就是曲线在该点处的切线的斜率,同时考查两直线垂直的条件,属于中档题.10.已知函数f(x)=x|x﹣2|,则不等式的解集为[﹣1,+∞).【考点】函数的图象.【专题】函数的性质及应用.【分析】化简函数f(x),根据函数f(x)的单调性,解不等式即可.【解答】解:当x≤2时,f(x)=x|x﹣2|=﹣x(x﹣2)=﹣x2+2x=﹣(x﹣1)2+1≤1,当x>2时,f(x)=x|x﹣2|=x(x﹣2)=x2﹣2x=(x﹣1)2﹣1,此时函数单调递增.由f(x)=(x﹣1)2﹣1=1,解得x=1+.由图象可以要使不等式成立,则,即x≥﹣1,∴不等式的解集为[﹣1,+∞).故答案为:[﹣1,+∞).【点评】本题主要考查不等式的解法,利用二次函数的图象和性质是解决本题的关键,使用数形结合是解决本题的基本思想.11.下列四个命题:(1)“∃x∈R,x2﹣x+1≤0”的否定;(2)“若x2+x﹣6≥0,则x>2”的否命题;(3)在△ABC中,“A>30°”是“sinA>”的充分不必要条件;(4)“k=2”是“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”的充要条件.其中真命题的序号是(1),(2)(真命题的序号都填上)【考点】命题的真假判断与应用.【专题】转化思想;数学模型法;简易逻辑.【分析】(1)原命题的否定为“∀x∈R,x2﹣x+1>0”,由于△=﹣3<0,即可判断出正误;(2)由于原命题的逆命题为:“若x>2,则x2+x﹣6≥0”,是真命题,进而判断出原命题的否命题具有相同的真假性;(3)在△ABC中,“sinA>”⇒“150°>A>30°”,即可判断出正误;(4)“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”则f(﹣x)+f(x)=0,化为(k2﹣4)(22x+1)=0,此式对于任意实数x成立,可得k=±2,即可判断出真假.【解答】解:(1)“∃x∈R,x2﹣x+1≤0”的否定为“∀x∈R,x2﹣x+1>0”,由于△=﹣3<0,因此正确;(2)“若x2+x﹣6≥0,则x>2”的逆命题为:“若x>2,则x2+x﹣6≥0”,是真命题,因此原命题的否命题也是真命题,正确;(3)在△A BC中,“sinA>”⇒“150°>A>30°”,因此“A>30°”是“sinA>”的既不充分也不必要条件,不正确;(4)“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”则f(﹣x)+f(x)=2﹣x﹣(k2﹣3)•2x+2x ﹣(k2﹣3)•2﹣x=0,化为(k2﹣4)(22x+1)=0,此式对于任意实数x成立,∴k=±2,因此“k=2”是“函数f(x)=2x﹣(k2﹣3)•2﹣x为奇函数”的充分不必要条件,不正确.其中真命题的序号是(1),(2)故答案为:(1),(2).【点评】本题考查了简易逻辑的判定方法、函数的奇偶性、三角函数的单调性、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.12.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<﹣e的解集为(﹣∞,﹣e).【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由奇函数的性质f(﹣x)=﹣f(x),求出函数f(x)的解析式,对x>0时的解析式求出f′(x),并判断出函数的单调性和极值,再由奇函数的图象特征画出函数f(x)的图象,根据图象和特殊的函数值求出不等式的解集.【解答】解:设x<0,则﹣x>0,∵当x>0时,f(x)=xlnx,∴f(﹣x)=﹣xln(﹣x),∵函数f(x)是奇函数,∴f(x)=﹣f(﹣x)=xln(﹣x),则,当x>0时,f′(x)=lnx+=lnx+1,令f′(x)=0得,x=,当0<x<时,f′(x)<0;当x>时,f′(x)>0,∴函数f(x)在(0,)上递减,在(,+∞)上递增,当x=时取到极小值,f()=ln=﹣>﹣e,再由函数f(x)是奇函数,画出函数f(x)的图象如图:∵当x>0时,当x=时取到极小值,f()=ln=﹣>﹣e,∴不等式f(x)<﹣e在(0,+∞)上无解,在(﹣∞,0)上有解,∵f(﹣e)=(﹣e)ln[﹣(﹣e)]=﹣e,∴不等式f(x)<﹣e解集是:(﹣∞,﹣e),故答案为:(﹣∞,﹣e).【点评】本题考查函数的奇偶性的综合运用,以及导数与函数的单调性的关系,考查数形结合思想.13.已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值X围是{a|a<0或a>1} .【考点】函数的零点.【专题】计算题;创新题型;函数的性质及应用.【分析】由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b 的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的X围【解答】解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}【点评】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.14.已知函数f(x)=3x+a与函数g(x)=3x+2a在区间(b,c)上都有零点,则的最小值为﹣1 .【考点】函数零点的判定定理;基本不等式.【专题】函数的性质及应用;不等式的解法及应用.【分析】根据函数f(x)=3x+a,与函数g(x)=3x+2a在区间(b,c)上都有零点,可得a+2b<0,a+2c>0恒成立,进而根据==,结合基本不等式可得的最小值.【解答】解:∵函数f(x)=3x+a,与函数g(x)=3x+2a在区间(b,c)上都有零点,且f (x)与g(x)均为增函数∴f(b)=3b+a<0,即b<﹣,g(b)=3b+2a<0,即b<﹣,f(c)=3c+a>0,即c>﹣,g(c)=3c+2a>0,即c>﹣,∵当a>0时,a+2b<0,a+2c>0,当a<0时,a+2b<0,a+2c>0,当a=0时,a+2b<0,a+2c>0,即a+2b<0,a+2c>0恒成立,即﹣a﹣2b>0,a+2c>0恒成立,∴=====≥=﹣1,∴的最小值为﹣1,故答案为:﹣1【点评】本题考查的知识点是函数零点的判定定理,基本不等式,其中对式子==的分解变形是解答的关键.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤15.已知集合A={x||x﹣4|≤2,x∈R},B={x|>0,x∈R},全集U=R.(1)求A∩(∁U B);(2)若集合C={x|x<a,x∈R},A∩C=∅,某某数a的取值X围.【考点】交、并、补集的混合运算;交集及其运算.【专题】集合思想;定义法;集合.【分析】(1)根据集合的基本运算进行求解即可.(2)根据集合的关系建立不等式关系进行求解即可.【解答】解:(1)∵A={x|2≤x≤6,x∈R},B={x|﹣1<x<5,x∈R},∴C U B={x|x≤﹣1或x≥5},…,∴A∩(C U B)={x|5≤x≤6}.…(2)∵A={x|2≤x≤6,x∈R},C={x|x<a,x∈R},A∩C≠∅,∴a的取值X围是a≤2.…【点评】本题主要考查集合的基本运算,比较基础.16.设命题P:“任意x∈R,x2﹣2x>a”,命题Q“存在x∈R,x2+2ax+2﹣a=0”;如果“P 或Q”为真,“P且Q”为假,求a的取值X围.【考点】复合命题的真假.【专题】函数的性质及应用.【分析】由命题 P成立,求得a<﹣1,由命题Q成立,求得a≤﹣2,或a≥1.由题意可得p真Q假,或者 p假Q真,故有,或.解这两个不等式组,求得a的取值X围.【解答】解:由命题 P:“任意x∈R,x2﹣2x>a”,可得x2﹣2x﹣a>0恒成立,故有△=4+4a <0,a<﹣1.由命题Q:“存在x∈R,x2+2ax+2﹣a=0”,可得△′=4a2﹣4(2﹣a)=4a2+4a﹣8≥0,解得a≤﹣2,或a≥1.再由“P或Q”为真,“P且Q”为假,可得 p真Q假,或者 p假Q真.故有,或.求得﹣2<a<﹣1,或a≥1,即 a>﹣2.故a的取值X围为(﹣2,+∞).【点评】本题主要考查命题真假的判断,二次不函数的性质,函数的恒成立问题,体现了分类讨论的数学思想,属于基础题.17.p:实数x满足x2﹣4ax+3a2<0,其中a>0,q:实数x满足(1)若a=1,且p∧q为真,某某数x的取值X围;(2)¬p是¬q的充分不必要条件,某某数a的取值X围.【考点】必要条件、充分条件与充要条件的判断;复合命题的真假.【专题】简易逻辑.【分析】(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,某某数x的取值X围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,某某数a的取值X 围.【解答】解:(1)由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0.又a>0,所以a<x<3a.当a=1时,1<x<3,即p为真时实数x的取值X围是1<x<3.由得得2<x≤3,即q为真时实数x的取值X围是2<x≤3.若p∧q为真,则p真且q真,所以实数x的取值X围是2<x<3.(2)¬p是¬q的充分不必要条件,即¬p⇒¬q,且¬q推不出¬p.即q是p的充分不必要条件,则,解得1<a≤2,所以实数a的取值X围是1<a≤2.【点评】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件是解决本题的关键,18.如图,有一个长方形地块ABCD,边AB为2km,AD为4km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S (单位:km2).(1)求S关于t的函数解析式,并指出该函数的定义域;(2)是否存在点P,使隔离出的△BEF面积S超过3km2?并说明理由.【考点】导数在最大值、最小值问题中的应用;函数解析式的求解及常用方法.【专题】导数的综合应用.【分析】(1)如图,以A为坐标原点O,AB所在直线为x轴,建立平面直角坐标系,则C 点坐标为(2,4).设边缘线AC所在抛物线的方程为y=ax2,把(2,4)代入,可得抛物线的方程为y=x2.由于y'=2x,可得过P(t,t2)的切线EF方程为y=2tx﹣t2.可得E,F点的坐标,,即可得出定义域.(2),利用导数在定义域内研究其单调性极值与最值即可得出.【解答】解:(1)如图,以A为坐标原点O,AB所在直线为x轴,建立平面直角坐标系,则C点坐标为(2,4).设边缘线AC所在抛物线的方程为y=ax2,把(2,4)代入,得4=a×22,解得a=1,∴抛物线的方程为y=x2.∵y'=2x,∴过P(t,t2)的切线EF方程为y=2tx﹣t2.令y=0,得;令x=2,得F(2,4t﹣t2),∴,∴,定义域为(0,2].(2),由S'(t)>0,得,∴S(t)在上是增函数,在上是减函数,∴S在(0,2]上有最大值.又∵,∴不存在点P,使隔离出的△BEF面积S超过3km2.【点评】本题考查了利用导数研究函数的单调性极值与最值切线的方程、抛物线方程,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于中档题.19.设函数f(x)=lnx+,m∈R(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;(2)讨论函数g(x)=f′(x)﹣零点的个数;(3)(理科)若对任意b>a>0,<1恒成立,求m的取值X围.【考点】导数在最大值、最小值问题中的应用;根的存在性及根的个数判断;利用导数研究函数的极值.【专题】导数的综合应用.【分析】(1)当m=e时,,x>0,由此利用导数性质能求出f(x)的极小值.(2)由g(x)===0,得m=,令h(x)=x﹣,x>0,m∈R,则h(1)=,h′(x)=1﹣x2=(1+x)(1﹣x),由此利用导数性质能求出函数g(x)=f′(x)﹣零点的个数.(3)(理)当b>a>0时,f′(x)<1在(0,+∞)上恒成立,由此能求出m的取值X 围.【解答】解:(1)当m=e时,,x>0,解f′(x)>0,得x>e,∴f(x)单调递增;同理,当0<x<e时,f′(x)<0,f(x)单调递减,∴f(x)只有极小值f(e),且f(e)=lne+=2,∴f(x)的极小值为2.(2)∵g(x)===0,∴m=,令h(x)=x﹣,x>0,m∈R,则h(1)=,h′(x)=1﹣x2=(1+x)(1﹣x),令h′(x)>0,解得0<x<1,∴h(x)在区间(0,1)上单调递增,值域为(0,);同理,令h′(x)<0,解得x>1,∴g(x)要区是(1,+∞)上单调递减,值域为(﹣∞,).∴当m≤0,或m=时,g(x)只有一个零点;当0<m<时,g(x)有2个零点;当m>时,g(x)没有零点.(3)(理)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值X围是[,+∞).【点评】本题考查函数的极小值的求法,考查函数的零点的个数的讨论,考查实数值的求法,解题时要注意构造法、分类讨论思想和导数性质的合理运用.20.已知函数f(x)=1+lnx﹣,其中k为常数.(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程.(2)若k=5,求证:f(x)有且仅有两个零点;(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【专题】函数的性质及应用;导数的概念及应用;导数的综合应用.【分析】(1)求出f(x)的解析式,求出导数和切线的斜率和切点坐标,由点斜式方程即可得到切线方程;(2)求出k=5时f(x)的解析式和导数,求得单调区间和极小值,再由函数的零点存在定理可得(1,10)之间有一个零点,在(10,e4)之间有一个零点,即可得证;(3)方法一、运用参数分离,运用导数,判断单调性,求出右边函数的最小值即可;方法二、通过对k讨论,运用导数求出单调区间,求出f(x)的最小值,即可得到k的最大值为4.【解答】解:(1)当k=0时,f(x)=1+lnx.因为f′(x)=,从而f′(1)=1.又f (1)=1,所以曲线y=f(x)在点(1,f(1))处的切线方程y﹣1=x﹣1,即x﹣y=0.(2)证明:当k=5时,f(x)=lnx+﹣4.因为f′(x)=,从而当x∈(0,10),f′(x)<0,f(x)单调递减;当x∈(10,+∞)时,f′(x)>0,f(x)单调递增.所以当x=10时,f(x)有极小值.因f(10)=ln10﹣3<0,f(1)=6>0,所以f(x)在(1,10)之间有一个零点.因为f(e4)=4+﹣4>0,所以f(x)在(10,e4)之间有一个零点.从而f(x)有两个不同的零点.(3)方法一:由题意知,1+lnx﹣>0对x∈(2,+∞)恒成立,即k<对x∈(2,+∞)恒成立.令h(x)=,则h′(x)=.设v(x)=x﹣2lnx﹣4,则v′(x)=.当x∈(2,+∞)时,v′(x)>0,所以v(x)在(2,+∞)为增函数.因为v(8)=8﹣2ln8﹣4=4﹣2ln8<0,v(9)=5﹣2ln9>0,所以存在x0∈(8,9),v(x0)=0,即x0﹣2lnx0﹣4=0.当x∈(2,x0)时,h′(x)<0,h(x)单调递减,当x∈(x0,+∞)时,h′(x)>0,h(x)单调递增.所以当x=x0时,h(x)的最小值h(x0)=.因为lnx0=,所以h(x0)=∈(4,4.5).故所求的整数k的最大值为4.方法二:由题意知,1+lnx﹣>0对x∈(2,+∞)恒成立.f(x)=1+lnx﹣,f′(x)=.①当2k≤2,即k≤1时,f′(x)>0对x∈(2,+∞)恒成立,所以f(x)在(2,+∞)上单调递增.而f(2)=1+ln2>0成立,所以满足要求.②当2k>2,即k>1时,当x∈(2,2k)时,f′(x)<0,f(x)单调递减,当x∈(2k,+∞),f′(x)>0,f(x)单调递增.所以当x=2k时,f(x)有最小值f(2k)=2+ln2k﹣k.从而f(x)>0在x∈(2,+∞)恒成立,等价于2+ln2k﹣k>0.令g(k)=2+ln2k﹣k,则g′(k)=<0,从而g(k)在(1,+∞)为减函数.因为g(4)=ln8﹣2>0,g(5)=ln10﹣3<0,所以使2+ln2k﹣k>0成立的最大正整数k=4.综合①②,知所求的整数k的最大值为4.【点评】本题考查导数的运用:求切线方程和求单调区间及极值、最值,主要考查导数的几何意义和函数的单调性的运用,不等式恒成立问题转化为求函数的最值问题,运用分类讨论的思想方法和函数方程的转化思想是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

□○□=□
4.兔有 15 只,狗有 6 只,猫有 7 只。 ①狗和猫一共有多少只?
□○□=□
②灰兔有 8 只,白兔有多少只?
□○□=□
5.
原有
12 枝
16 本
11 把
卖掉 还剩 (
5枝 )枝 (
8本 ) 本 (
2把 )把
6.

6.在○里填上“﹥” “﹤”或“= ” 。
16-9○8 7+7○13
16-7○11 15-6○8
13-4○10+1 12-8○13-9
7.数一数,再填空。
( )个 ( )个 ( )个 ( 8.□里最大能填几? 7+□﹤14 11-□﹥6 15-□﹥9
)个
8﹥□-5 6﹥□-2
□+6﹤12
9.12 -5( )+4( )-6( )+7( ) 7 +8( )-6( )+4( )-5( ) )根小棒。
12-9=(
2.10-9+4=( 14-9=(
3.★★★★
★★★ ★★
■■■■ ■■■ □-□=□ □-□=□
■■ ■■
★★★★ □ - □= □ □-□=□
4.我会连。
15-8
17-8
14-6
15-9
12-3 5.找朋友。
11-5
Hale Waihona Puke 13-615-715– 7 12 - 5 14 - 5
7 8 9
11 - 4 17 – 8 16 - 8
一年级数学学情调查卷(一)
班级: 姓名: 成绩:
一.填空。 (共 53 分,第 1、
分,其余每题 4 分。 )
2、 5、6、8 题每题 6 分,10 题 1 分,11 题 2
1.9+(
)=12 ) ) )
8+( )=15 15-8=( ) 12-2-3=( 12-5=( )
14-8=( ) 14-6=( ) ) 16-9=6+( ) 13-8=3+( )
( )- ( ) ( )-( )
( )- ( ) ( )-( )
三.看图列式计算。 (4 分)
□○□=□
四.解决问题。 (共 25 分) 1.● ● ● ● ● ● ● ● 12 个 ○ ○ ○ ○
□○□=□
①●有 8 个,○有多少个?
□○□=□
②○有 4 个,●有多少个?
□○□=□ □○□=□
2.树上原来有 17 个桃,小猴吃了 8 个,树上还剩几个桃? 3.游走 5 只鸭后,河边还剩 7 只鸭, ,河边原来有几只鸭?
10.拼成一个长方形最少需要( 11、缺了( )块砖。
二.计算。 (18 分) 1. 12-9= 14-7= 13-6= 5+8= 11-5= 12-7= 17-8= 12-3=
2.12-5+4= 3+9-7= 3. 15 – 8 = 14 -
18-9+7= 11-8+7= 7 11 – 6 =
6+10-8= 13-7+6= 12 7
相关文档
最新文档