2019-2020学年上学期高二数学12月月考试题含解析(916)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乐安县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________
一、选择题
1.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}的元素个数为()A.4 B.5 C.6 D.9
2.不等式x(x﹣1)<2的解集是()
A.{x|﹣2<x<1} B.{x|﹣1<x<2} C.{x|x>1或x<﹣2} D.{x|x>2或x<﹣1}
3.函数f(x)=有且只有一个零点时,a的取值范围是()
A.a≤0 B.0<a<C.<a<1 D.a≤0或a>1
4.已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:
(1)α∥β⇒l⊥m,(2)α⊥β⇒l∥m,
(3)l∥m⇒α⊥β,(4)l⊥m⇒α∥β,
其中正确命题是()
A.(1)与(2) B.(1)与(3) C.(2)与(4) D.(3)与(4)
5.如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是()
A.B.C.+D.++1
6.已知一三棱锥的三视图如图所示,那么它的体积为()
A.1
3
B.
2
3
C.1D.2
7.已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是()
A.0 B.0或C.或D.0或
8. 设n S 是等差数列{}n a 的前项和,若
5359a a =,则95
S S =( ) A .1 B .2 C .3 D .4 9. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( )
A .16
B .﹣16
C .8
D .﹣8
10
.=( ) A .﹣i B .i C .1+i D .1﹣i
11.f
()
=
,则f (2)=( ) A .3 B .1 C .2 D

12.设命题p :函数y=sin (
2x+
)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( )
A .p 为假
B .¬q 为真
C .p ∨q 为真
D .p ∧q 为假
二、填空题
13.已知函数()()31,ln 4
f x x mx
g x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数 ()()(){}()min ,0
h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ . 14.设a 抛掷一枚骰子得到的点数,则方程x 2+ax+a=0有两个不等实数根的概率
为 .
15.已知等差数列{a n }中,a 3
=
,则cos (a 1+a 2+a 6)= .
16.下列命题:
①函数y=sinx 和y=tanx 在第一象限都是增函数;
②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点;
③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.
其中正确命题的序号是 (把所有正确命题的序号都写上).
17.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .
18
.不等式
的解集为R ,则实数m 的范围是 .
三、解答题
19.长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AA 1=AD=4,点E 为AB 中点.
(1)求证:BD 1∥平面A 1DE ;
(2)求证:A 1D ⊥平面ABD 1.
20.求曲线y=x 3的过(1,1)的切线方程.
21.(本小题满分10分)选修4-5:不等式选讲 已知函数()()f x x a a R =-∈.
(1)当1a =时,解不等式()211f x x <--;
(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.
22.已知函数f (x )=ax 3+bx 2﹣3x 在x=±1处取得极值.求函数f (x )的解析式.
23.(本小题满分14分)
设函数2()1cos f x ax bx x =++-,0,2x π⎡
⎤∈⎢⎥⎣⎦
(其中a ,b R ∈). (1)若0a =,12
b =-
,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数. 【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
24.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2x f x x ax a e =++,其中a R ∈,e 是自然对数的底数.
(1)当1a =时,求曲线()y f x =在0x =处的切线方程;
(2)求函数()f x 的单调减区间;
(3)若()4f x ≤在[]
4,0-恒成立,求a 的取值范围.
乐安县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考
答案)
一、选择题
1.【答案】B
【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;
②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;
③x=2时,y=0,1,2,∴x﹣y=2,1,0;
∴B={0,﹣1,﹣2,1,2},共5个元素.
故选:B.
2.【答案】B
【解析】解:∵x(x﹣1)<2,
∴x2﹣x﹣2<0,
即(x﹣2)(x+1)<0,
∴﹣1<x<2,
即不等式的解集为{x|﹣1<x<2}.
故选:B
3.【答案】D
【解析】解:∵f(1)=lg1=0,
∴当x≤0时,函数f(x)没有零点,
故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,
即a>2x,或a<2x在(﹣∞,0]上恒成立,
故a>1或a≤0;
故选D.
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
4.【答案】B
【解析】解:∵直线l⊥平面α,α∥β,∴l⊥平面β,又∵直线m⊂平面β,∴l⊥m,故(1)正确;
∵直线l⊥平面α,α⊥β,∴l∥平面β,或l⊂平面β,又∵直线m⊂平面β,∴l与m可能平行也可能相交,还可以异面,故(2)错误;
∵直线l⊥平面α,l∥m,∴m⊥α,∵直线m⊂平面β,∴α⊥β,故(3)正确;
∵直线l⊥平面α,l⊥m,∴m∥α或m⊂α,又∵直线m⊂平面β,则α与β可能平行也可能相交,故(4)错误;
故选B .
【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键.
5. 【答案】D
【解析】解:由三视图可知:该几何体是如图所示的三棱锥,
其中侧面PAC ⊥面ABC ,△PAC 是边长为2的正三角形,△ABC 是边AC=2, 边AC 上的高OB=1,PO=为底面上的高.
于是此几何体的表面积S=S △PAC +S △ABC +2S △
PAB =××2+×2×1+2×××=+1+.
故选:D
【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
6. 【答案】 B
【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323
⨯⨯⨯⨯=,选B . 7. 【答案】D
【解析】解:∵f (x )是定义在R 上的偶函数,当0≤x ≤1时,f (x )=x 2,
∴当﹣1≤x ≤0时,0≤﹣x ≤1,f (﹣x )=(﹣x )2=x 2=f (x ),
又f (x+2)=f (x ),∴f (x )是周期为2的函数,
又直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,其图象如下:
当a=0时,直线y=x+a变为直线l1,其方程为:y=x,显然,l1与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点;
当a≠0时,直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,由图可知,直线y=x+a与函数y=f(x)相切,切点的横坐标x0∈[0,1].
由得:x2﹣x﹣a=0,由△=1+4a=0得a=
﹣,此时,x0
=x=∈[0,1].
综上所述,a=
﹣或0 故选D.
8.【答案】A
【解析】1111]
试题分析:
19
95
15
53
9()
9
21
5()5
2
a a
S a
a a
S a
+
===
+
.故选A.111]
考点:等差数列的前项和.
9.【答案】B
【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,
∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.
即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.
故选:B.
【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.
10.【答案】B
【解析】
解:
=
==i.
故选:B.
【点评】本题考查复数的代数形式混合运算,复数的除法的运算法则的应用,考查计算能力.
11.【答案】A
【解析】解:∵f ()=

∴f (2)=f ()==3.
故选:A .
12.【答案】C
【解析】解:函数y=sin (2x+)的图象向左平移个单位长度得到y=sin (2x+)的图象,
当x=0时,y=sin =,不是最值,故函数图象不关于y 轴对称,
故命题p 为假命题;
函数y=|2x ﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数. 故命题q 为假命题;
则¬q 为真命题;
p ∨q 为假命题;
p ∧q 为假命题,
故只有C 判断错误,
故选:C
二、填空题
13.【答案】()
53,44
-- 【解析】 试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有
三个零点,须满足()10,0,0f f m ><<,解得51534244
m m >->⇒-<<- 考点:函数零点 【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.
14.【答案】.
【解析】解:∵a是甲抛掷一枚骰子得到的点数,
∴试验发生包含的事件数6,
∵方程x2+ax+a=0 有两个不等实根,
∴a2﹣4a>0,
解得a>4,
∵a是正整数,
∴a=5,6,
即满足条件的事件有2种结果,
∴所求的概率是=,
故答案为:
【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.
15.【答案】.
【解析】解:∵数列{a n}为等差数列,且a3=,
∴a1+a2+a6=3a1+6d=3(a1+2d)=3a3=3×=,
∴cos(a1+a2+a6)=cos=.
故答案是:.
16.【答案】②③④⑤
【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,
但是,,因此不是单调递增函数;
②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;
③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴
=5(a6+a5)>0,=11a6<0,
∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;
④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;
⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.
其中正确命题的序号是②③④⑤.
【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.
17.【答案】.
【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形
式是:.
故答案为:.
18.【答案】.
【解析】解:不等式,
x2﹣8x+20>0恒成立
可得知:mx2+2(m+1)x+9x+4<0在x∈R上恒成立.
显然m<0时只需△=4(m+1)2﹣4m(9m+4)<0,
解得:m<﹣或m>
所以m<﹣
故答案为:
三、解答题
19.【答案】
【解析】证明:(1)连结A1D,AD1,A1D∩AD1=O,连结OE,
∵长方体ABCD﹣A1B1C1D1中,ADD1A1是矩形,
∴O是AD1的中点,∴OE∥BD1,
∵OE∥BD1,OE⊂平面ABD1,BD1⊄平面ABD1,
∴BD1∥平面A1DE.
(2)∵长方体ABCD﹣A1B1C1D1中,AB=2,AA1=AD=4,点E为AB中点,
∴ADD1A1是正方形,∴A1D⊥AD1,
∵长方体ABCD﹣A1B1C1D1中,AB⊥平面ADD1A1,
∴A 1D ⊥AB ,
又AB ∩AD 1=A ,∴A 1D ⊥平面ABD 1.
20.【答案】
【解析】解:y=x 3的导数y ′=3x 2, ①若(1,1)为切点,k=3•12=3, ∴切线l :y ﹣1=3(x ﹣1)即3x ﹣y ﹣2=0; ②若(1,1)不是切点,
设切点P (m ,m 3),k=3m 2=

即2m 2﹣m ﹣1=0,则m=1(舍)或﹣
∴切线l :y ﹣1=(x ﹣1)即3x ﹣4y+1=0. 故切线方程为:3x ﹣y ﹣2=0或3x ﹣4y+1=0.
【点评】本题主要考查导数的几何意义、利用导数研究曲线上某点处的切线方程等基础知识,注意在某点处和过某点的切线,考查运算求解能力.属于中档题和易错题.
21.【答案】(1){}
11x x x ><-或;(2)(,2]-∞-. 【解析】
试题解析:(1)因为()211f x x <--,所以1211x x -<--, 即1211x x ---<-,
当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;

1
12x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当1
2
x <时,1211x x -+-<-,∴1x <-,从而1x <-;
综上,不等式的解集为{}11x x x ><-或.
(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,
所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--
记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.
考点:1.含绝对值的不等式;2.分类讨论. 22.【答案】
【解析】解:(1)f'(x )=3ax 2
+2bx ﹣3,依题意,f'(1)=f'(﹣1)=0,

,解得a=1,b=0.
∴f (x )=x 3
﹣3x .
【点评】本题考查了导数和函数极值的问题,属于基础题.
23.【答案】
【解析】(1)∵0a =,12
b =-, ∴1()1cos 2f x x x =-
+-,1()sin 2f x x '=-+,0,2x π⎡⎤
∈⎢⎥⎣⎦
.
(2分) 令()0f x '=,得6
x π
=.
当06x π<<时,()0f x '<,当62
x ππ
<<时,()0f x '>,
所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤
⎢⎥⎣⎦
. (5分)
若112a -
<<-π,则()102f a π
'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫
⎪⎝⎭
上单调减.
又(0)0f =,2
()124
f a ππ=
+. 故当2142a -<≤-π时,2()1024f a ππ=
+≤,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=
+>,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上只有一个零点.
24.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()
f x 的单调减区间是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)244,4e ⎡⎤-⎣⎦
【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。

(2) 因为()()()()2
'222x
x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦,
当2a =时,()()2
'20x f x x e =+≥,所以()f x 无单调减区间.
当2a ->-即2a <时,列表如下:
所以()f x 的单调减区间是()2,a --.
当2a -<-即2a >时,()()()'2x
f x x x a e =++,列表如下:
所以()f x 的单调减区间是(),2a --.
综上,当2a =时,()f x 无单调减区间;
当2a <时,()f x 的单调减区间是()2,a --; 当2a >时,()f x 的单调减区间是(),2a --.
(3)()()()()2'222x x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦
. 当2a =时,由(2)可得,()f x 为R 上单调增函数,
所以()f x 在区间[]
4,0-上的最大值()024f =≤,符合题意. 当2a <时,由(2)可得,要使()4f x ≤在区间[]
4,0-上恒成立,
只需()04f a =≤,()()2
244f a e --=-≤,解得2442e a -≤<.
当24a <≤时,可得()4a a
f a e
-=
≤,()04f a =≤. 设()a a g a e =,则()1'a a
g a e
-=,列表如下:
所以()()max
114g a g e ⎡⎤==
<⎣⎦
,可得4a a
e
≤恒成立,所以24a <≤. 当4a >时,可得()04f a =≤,无解.
综上,a 的取值范围是244,4e ⎡⎤-⎣⎦.。

相关文档
最新文档