最新人教版七年级数学上册《有理数的乘除法》(第1教时)教学设计(精品教案)
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计
人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。
本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。
通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。
但是,对于除法运算,学生可能还存在一些困惑和误解。
因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。
三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。
2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。
2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。
2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。
3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。
六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。
2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。
七年级数学上册(人教版)1.4.1有理数的乘法(第1课时有理数的乘法法则)教学设计
-运用问题驱动法,设置一系列具有启发性的问题,引导学生主动探究乘法法则及其应用。
-实施分层教学法,针对不同学生的学习水平,设计难易程度不同的练习题,使每个学生都能在课堂上得到有效的训练。
-采用小组合作法,鼓励学生互相交流、讨论,共同解决问题,提高学生的合作能力和沟通技巧。
2.教学目的:
-检验学生对乘法法则的掌握程度,及时发现问题,进行针对性的辅导。
-提高学生的运算速度和准确性,培养学生的数学思维能力。
(五)总结归纳
1.教学活动设计:
-组织学生进行课堂小结,让学生回顾本节课所学的有理数乘法法则、乘法分配律等知识。
-教师进行点评,强调重点内容,解答学生的疑问。
2.教学目的:
七年级数学上册(人教版)1.4.1有理数的乘法(第1课时有理数的乘法法则)教学设计
一、教学目标
(一)知识与技能
1.理解有理数的乘法法则,掌握乘法运算的步骤和技巧,并能熟练运用乘法法则进行有理数的乘法运算。
2.能够正确判断两个有理数相乘的结果是正数还是负数,理解同号得正、异号得负的规律,并能运用这一规律简化计算过程。
-学生可以尝试编写一道关于有理数乘法的数学小故事,以激发学习兴趣,提高数学素养。
4.合作作业:
-以小组为单位,共同完成一道综合性的乘法运算题目,要求小组成员共同讨论、分析、解决问题,培养学生的合作精神。
-小组之间可以进行互评,相互借鉴,共同提高。
5.课后反思:
-学生在完成作业后,进行自我反思,总结自己在乘法运算中的优点和不足,为今后的学习制定合理的学习计划。
3.教学评价:
-采用形成性评价,关注学生在学习过程中的表现,如课堂参与、练习完成情况等,全面评估学生的学习效果。
有理数的乘法教案(精选多篇)
有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学〔上〕第一章第四节《有理数的乘除法》,见课本p28.二、学情分析^p在此之前,本班学生已有探究有理数加法法那么的经历,多数学生能在老师指导下探究问题。
由于学生已理解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。
三、教学目的1、知识与技能目的掌握有理数乘法法那么,能利用乘法法那么正确进展有理数乘法运算。
2、才能与过程目的经历探究、归纳有理数乘法法那么的过程,开展学生观察、归纳、猜测、验证等才能。
3、情感与态度目的通过学生自己探究出法那么,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法那么正确进展计算。
难点:有理数乘法法那么的探究过程,符号法那么及对法那么的理解。
五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探究---发现”的教学形式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。
在整个学习过程中,以“自主参与,勇于探究,合作交流”的探究式学法为主,从而到达进步学习才能的目的。
七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题〔出示蜗牛爬的动画幻灯片〕老师:这涉及有理数乘法运算法那么,正是我们今天需要讨论的问题.2、学生探究、归纳法那么学生分为四个小组活动,进展乘法法那么的探究。
〔1〕老师出示蜗牛在数轴上运动的问题,让学生理解。
蜗牛如今的位置在点o,规定向右的方向为正,向左的方向为负;如今时间后为正,如今时间前为负.a.+ 2 ×〔+3〕+2看作向右运动的速度,×〔+3〕看作运动3分钟后。
结果:3分钟后的位置+2 ×〔+3〕=b. -2 ×〔+3〕-2看作向左运动的速度,×(+3)看作运动3分钟后。
七年级数学上册(人教版)1.4.2有理数的除法(第一课时)教学设计
2.学生在运算过程中对符号的处理能力,包括正负号的判断和运算顺序的掌握。
3.学生的合作能力和交流能力,如何在小组讨论中发挥各自的优势,共同解决问题。
针对学生的个体差异,教师应采取以下策略:
1.对于基础较好、理解能力较强的学生,可以适当提高要求,引导他们进行更深入的思考和实践。
(二)讲授新知
在导入新课的基础上,我会向学生讲解有理数除法的定义和法则。首先,通过具体例题,让学生理解除以一个不等于0的数等于乘这个数的倒数。接着,讲解有理数除法的运算步骤,特别是符号的处理方法。在此过程中,注重引导学生从具体实例中发现规律,逐步提炼出有理数除法的运算规则。
(三)学生小组讨论
讲授新知后,我会组织学生进行小组讨论。将学生分成若干小组,每组4-6人,让她们针对以下问题进行讨论:
1.引导学生通过观察、分析、归纳等方法,发现并理解有理数除法的运算规律。
2.培养学生运用数学语言进行表达、交流,提高学生的合作能力。
3.引导学生从不同角度思考问题,培养学生的逻辑思维和发散思维能力。
(三)情感态度与价值观
1.使学生感受到数学学习的乐趣,激发学生学习数学的热情。
2.培养学生勇于探索、积极思考的学习态度,提高学生的自主学习能力。
2.对于基础较弱、理解能力稍差的学生,教师要耐心指导,通过具体例题和实际操作,帮助他们理解和掌握有理数除法的运算规律。
3.创设轻松愉快的学习氛围,鼓励学生积极参与课堂讨论,提高他们的自信心。
四、教学内容与过程
(一)导入新课
在课程开始时,我将通过一个与学生生活密切相关的实际问题导入新课。例如,提出以下问题:“如果你有一块巧克力,要平均分给4个好朋友,每个人能得到多少巧克力?”通过这个问题,引导学生回顾之前学过的整数除法,并自然过渡到本节课的有理数除法。接着,我会追问:“如果这块巧克力不是完整的,而是3/4块,你们还能平均分给4个好朋友吗?该如何计算?”从而引出有理数除法的概念。
《有理数的乘除法》教案
《有理数的乘除法》教案一、教学目标:1. 让学生掌握有理数的乘法法则,包括同号相乘、异号相乘和零乘以任何数的结果。
2. 让学生理解有理数的除法实质,即乘以倒数,并掌握除法法则。
3. 培养学生运用有理数乘除法解决实际问题的能力。
二、教学内容:1. 有理数的乘法法则:同号相乘得正,异号相乘得负,零乘以任何数得零。
2. 有理数的除法实质:乘以倒数。
3. 除法法则:同号相除得正,异号相除得负。
三、教学重点与难点:1. 教学重点:有理数的乘法法则和除法法则。
2. 教学难点:理解有理数除法实质,掌握除法法则。
四、教学方法:1. 采用讲解法,讲解有理数的乘法法则和除法法则。
2. 采用例题法,通过例题讲解和练习,使学生掌握乘除法运算。
3. 采用提问法,引导学生思考和探讨有理数乘除法的实质。
五、教学过程:1. 导入新课:复习有理数的基本概念,引导学生进入有理数的乘除法学习。
2. 讲解有理数的乘法法则,通过PPT展示公式和例题,让学生理解和掌握乘法法则。
3. 讲解有理数的除法实质,让学生明白除以一个数等于乘以它的倒数。
4. 讲解除法法则,通过PPT展示公式和例题,让学生理解和掌握除法法则。
5. 课堂练习:布置一些乘除法的练习题,让学生运用所学知识解决问题,巩固所学内容。
6. 总结与反思:对本节课的内容进行总结,引导学生思考乘除法在实际生活中的应用。
六、教学评估:1. 课堂练习:通过课堂练习题,评估学生对有理数乘除法法则的掌握情况。
2. 课后作业:布置相关的课后作业,进一步巩固学生的乘除法运算能力。
3. 小组讨论:组织学生进行小组讨论,评估学生对有理数乘除法在实际问题中应用的理解程度。
七、教学反馈与调整:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,鼓励学生的正确做法,指出并纠正错误。
2. 针对学生的薄弱环节,进行有针对性的辅导,帮助学生克服困难。
3. 调整教学方法和节奏,确保学生能够扎实掌握有理数乘除法知识。
新人教版七上1.4《有理数的乘除法》教案
1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。
人教版七年级上册第一章《有理数》1.4有理数的乘除法(教案)
一、教学内容
人教版七年级上册第一章《有理数》1.4有理数的乘除法。本节课将围绕以下内容展开:
1.有理数的乘法法则:同号得正,异号得负,并将绝对值相乘。
2.有理数的除法法则:同号得正,异号得负,并将绝对值相除。
3.乘除混合运算的顺序:先乘除后加减,同级从左到右。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘除法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或分享物品的情况?”(如:分水果、计算购物折扣等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘除法的奥秘。
五、教学反思
在今天的课堂中,我们探讨了有理数的乘除法。我发现学生们在理解乘除法则和应用它们解决实际问题时,普遍存在一些挑战。首先,乘除法则的规律对于一些学生来说还不够清晰,尤其是负数乘以负数得正数的概念。我尝试通过举例和图示来解释这一点,但感觉还需要更多的练习来巩固这个概念。
我注意到,当涉及到混合运算时,学生往往会忽略运算的优先级,导致计算错误。这提醒我,在未来的课程中,需要更多地强调和练习运算顺序,确保学生们能够熟练掌握。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘除法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘除法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最新人教版七年级数学上册第一章《有理数的乘除法》教学设计3
第一章有理数课题:1.4.1有理数的乘法(1)【学习目标】:1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;【重点难点】:有理数乘法法则【导学指导】一、温故知新1.有理数加法法则内容是什么?2.计算(1)2+2+2= (2)(-2)+(-2)+(-2)=3.你能将上面两个算式写成乘法算式吗?二、自主探究1、自学课本28-29页回答下列问题(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置? 可以表示为 .(2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?可以表示为(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置? 可以表示为(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置? 可以表示为由上可知:(1)2×3 = ;(2)(-2)×3 = ;(3)(+2)×(-3)= ;(4)(-2)×(-3)= ;(5)两个数相乘,一个数是0时,结果为0观察上面的式子,你有什么发现?能说出有理数乘法法则吗?归纳有理数乘法法则两数相乘,同号,异号,并把相乘。
任何数与0相乘,都得。
2、直接说出下列两数相乘所得积的符号1)5×(—3);2)(—4)×6 ;3)(—7)×(—9);4)0.9×8 ;3、请同学们自己完成例1 计算:(1)(-3)×9;(2)(-)×(-2);归纳:的两个数互为倒数。
例2【课堂练习】课本30页练习1.2.3(直接做在课本上)【要点归纳】:有理数乘法法则:【拓展训练】1.如果ab>0,a+b>0,确定a、b的正负。
2.对于有理数a、b定义一种运算:a*b=2a-b,计算(-2)*3+1【总结反思】:第一章有理数课题:1.4.1有理数的乘法(2)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号的确定;【学习难点】:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)×(-4)×(-5),(-2) ×(-3) ×(-4) ×(-5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。
七年级数学上册 1.4 有理数的乘除法教学设计 (新版)新人教版
1.4 有理数的乘除法第1课时有理数的乘法(一)教学目标1.经历探索有理数乘法法则的过程,掌握有理数的乘法法则.2.能够运用有理数乘法法则计算两个数的乘法.3.能说出有理数乘法的符号法则,能用例子说明法则的合理性.教学重点两个有理数相乘的符号法则.教学难点从不同角度概括算式的规律.教学设计(设计者:)教学过程设计一、创设情景明确目标1.计算(1)2+2+2+2=(2)(-2)+(-2)+(-2)+(-2)+(-2)=2.你能将上面两个算式写成乘法算式吗?二、自主学习指向目标自学教材第28至30页,完成下列问题:1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0.2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.三、合作探究达成目标探究点一有理数的乘法法则活动一:阅读教材第28至29页,思考: 1.说一说三个“思考”中各有什么规律?2.从符号和绝对值两个角度观察教材中的算式,可以得出什么结论? 3.有理数乘法法则分几种情况进行归纳的? 例1 计算:(1)(-3)×9; (2)8×(-1); (3)(-12)×(-2); (4)(-5)×(-7).【展示点评】要得到一个数的相反数,只要将它乘以-1即可.题(3)中两个因数互为倒数.【小组讨论】计算两个有理数相乘的一般步骤有哪些?法则是怎样的? 【反思小结】两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.【针对训练】见“学生用书”. 探究点二 有理数乘法的运用 活动二:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每攀登1 km 气温的变化量为-6℃,攀登3 km 时气温有什么变化?【展示点评】根据实际问题列出乘法算式(-6)×3,计算解答. 【小组讨论】例2是如何体现正数、负数的实际意义的? 反思小结:“-18℃”即下降18℃的意思. 【针对训练】见“学生用书”.探究点三 多个有理数相乘的符号法则活动三:计算:(1)(-3)×56×(-95)×(-14);(2)(-5)×6×(-45)×14.【展示点评】先确定积的符号,再按小学所学的正数间的乘法计算. 【小组讨论】多个不是0的数相乘,先做哪一步,再做哪一步?【反思小结】多个不是0的有理数相乘应注意:首先要确定积的符号,然后再按法则运算.几个有理数相乘,如果其中有因数为0,那么积为0.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:有理数乘法. 2.步骤:有理数乘法.有理数的乘法⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫法则―→倒数运算步骤―→实际运用 五、达标检测 反思目标1.两个有理数的积是负数,和为0,那么这两个有理数一定是( D ) A .一个为0,另一个数是负数 B .两个都是负数C .一个为正数,另一个为负数D .均不为0,且互为相反数2.下列运算结果错误的是( D )A .(-2)×(-3)=6B .(+3)×(+4)=12C .(-5)×0=0D .(-12)×(-6)=-33.6×(-9)=__-54__; (-114)×(-45)=__1__;3×(-32)=__-92__;(-54)×32=__-158__. 4.写出下列各数的倒数: 1,-1,13,-123,-34,0.45.解:1,-1,3,-35,-43,2095.计算:(1)13×(-6);(2)(-312)×27; (3)(-35)×(-152);(4)(-123)×(-127).解:(1)-2 (2)-1 (3)92 (4)157六、布置作业 巩固目标 课后作业 见“学生用书”. 第2课时 有理数的乘法(二)错误!错误! (设计者: )教学过程设计一、创设情景 明确目标1.说一说有理数的乘法法则; 2.多个有理数相乘又该如何计算. 二、自主学习 指向目标自学教材第31至33页,完成下列问题: 1.计算:(1)5×(-6)=__-30__;(-6)×5=__-30__;(2)⎝ ⎛⎭⎪⎫-35×⎝ ⎛⎭⎪⎫-109=__23__;⎝ ⎛⎭⎪⎫-109×⎝ ⎛⎭⎪⎫-35=__23__; (3)[3×(-4)]×(-5)=__60__;3×[(-4)×(-5)]=__60__;(4)2×[3+(-5)]=__-4__;2×3+2×(-5)=__-4__.2.观察上面每组中的两个式子及结果,看看它们存在什么联系与区别?你能发现有理数乘法有哪些运算律吗?解:乘法的交换律、结合律和分配律 3.(1)乘法交换律__ab =ba __; (2)乘法结合律__(ab )c =a (bc )__; (3)乘法分配律__a (b +c )=ab +ac __. 三、合作探究 达成目标探究点一 乘法的交换律和结合律的运用活动一:计算:(1)(-25)×39×(-4); (2)125×25×(-4)×(-8).【展示点评】第(1)题可以将(-25)与(-4)结合在一起;第(2)题可以将125与(-8),25与(-4)各自结合在一起.【小组讨论】在什么情况下使用乘法的交换律和结合律?三个或三个以上的数相乘,任意交换因数的位置,或者任意先把其中几个数相乘,积会怎样?【反思小结】乘法交换律和乘法结合律要注意灵活、综合地运用,不能分开.运用乘法交换律和结合律的目的是把容易计算(积为整百、整千、可以约分等等)的几个因数先进行计算,它只改变运算顺序,而不改变结果.【针对训练】见“学生用书”. 探究点二 乘法的分配律活动二:用两种方法计算(14+16-12)×12.【展示点评】可以先计算括号里面的加减法,再进行乘法运算,也可以运用乘法的分配律展开计算.【小组讨论】比较上面两种解法,它们在运算顺序上有什么区别?计算中用了什么运算律使计算更简便?【反思小结】乘法运算律是用来简化有理数乘法运算的依据,根据算式的特点应用乘法分配律可以打破“先算括号”的计算习惯,大大简化乘法与加法的运算;也可以应用转化数学思想,把一个数拆为几个数的和或差,然后运用乘法分配律进行巧妙计算.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:多个有理数相乘. 2.步骤:多个有理数相乘.多个有理数相乘⎩⎪⎨⎪⎧符号规律运算步骤五、达标检测 反思目标1.五个数相乘,积为负,那么其中负因数的个数是( D ) A .1 B .3 C .5 D .1或3或5 2.下列运算结果错误的是( B ) A .(-2)×(-3)×(-1)=-6 B .(-12)×(-6)×0.25=-34C .(-5)×(-2)×(-1)=-10D .(-3)×(-8)×(+4)=96 3.填空:6×(-9)×(-23)=__36__;(-114)×(-45)×(-78)×47=__-12__;(-9)×3×(-32)=__812__;(-1)×(-54)×815×0×32=__0__.4.计算:(1)(-35)×(-56)×(-2);(2)(-312)×27×(-65)×(+173);(3)13×(-6)×(-123)×(-35); (4)(-23)×623×(-12)×(-115).解:(1)-1 (2)345 (3)-2 (4)-83六、布置作业 巩固目标 课后作业 见“学生用书”.第3课时 有理数的除法(一)教学目标1.经历有理数除法法则的推导过程,了解有理数除法的意义. 2.掌握有理数除法法则,会进行有理数的除法运算.3.能够运用有理数的除法法则化简分数,能进行有理数的乘除混合运算,体会转化的数学思想.教学重点运用有理数的乘除混合运算. 教学难点有理数除法法则的推导过程. 教学设计 (设计者: )教学过程设计一、创设情景 明确目标(1)小红从家里到学校,每分钟走50 m ,共走了20 min ,问小红家离学校有________ m ,列出的算式为______________.(2)放学时,小红仍然以每分钟50 m 的速度回家,应该走________min ,列出的算式为______________.从上面这个例子你可以发现,有理数除法与乘法之间的关系是____________.(3)你能计算(-10)÷2吗?请根据有理数乘法法则解释你的结果的合理性. 二、自主学习 指向目标自学教材第34至35页,完成下列问题:1.(1)除以一个不等于0的数,等于乘以这个数的__倒数__,即a ÷b =__a×1b__(b 不等于0);(2)两数相除,同号得__正__,异号得__负__,并把绝对值相__除__.2.a (a≠0)的倒数是__1a__.3.若a >0,b <0,则ab__<__0,ab __<__0;若a <0,b <0,则ab__>__0,ab __>__0.三、合作探究 达成目标 探究点一 有理数的除法法则活动一:阅读教材第34页,相互交流下面的问题: 1.可以得出什么结论?2.换其他的数进行类似讨论,是否仍有除以a (a≠0)可以转化为乘1a ?3.用字母如何表示有理数除法法则?4.你能类比有理数的乘法法则,说出有理数的除法法则的另一种表述方法吗? 例1 填空:(1)8÷(-4)=8×______=______;(2)(-15)÷3=(-15)×______=______; (3)(-14)÷(-12)=(-14)×______=______;(4)0÷(-1212)=______;0÷2012=______.【展示点评】观察、分析、并与小学里学习的乘除法进行类比与对比,得出有理数的除法法则:除以一个不等于0的数,等于乘以这个数的倒数,用字母表示为a ÷b =a·1b(b≠0).另外,有两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.【小组讨论】①法则(1)中为什么要强调除以一个不等于“0”的数?运用法则(1)要注意什么?②从法则(2)中,可以看出有理数的除法运算的步骤有哪些?【反思小结】根据以上问题的解决,可体会到在进行有理数除法运算时可以转化为有理数的乘法运算,再一次体会转化思想,另外通过对比有理数的乘法法则,感受类比的数学思想.【针对训练】见“学生用书”. 探究点二 有理数的除法运算活动二:例2 计算:(1)(-36)÷9; (2)(-1225)÷(-35).【展示点评】(1)(-36)÷9=-(36÷9)=-4;(2)(-1225)÷(-35)=1225÷35=1225×53=45.【小组讨论】有理数除法的一般步骤是什么?用到了什么数学思想方法?【反思小结】进行有理数的除法运算时,先确定结果的符号,并把除法运算转化成乘法运算,再计算出结果.用到了数学的转化思想.活动三:例3 化简下列分数:(1)-123;(2)-45-12.【展示点评】将它们转化成除法运算即可. 【小组讨论】:分数与除法之间有什么关系?如何转化?【反思小结】化简分数时,可以把分数线理解为除法运算,然后再根据除法法则进行除法运算.【针对训练】见“学生用书”. 探究点三 有理数的乘除法运算活动四:例4 计算: (1)-12557÷(-5);(2)(-2.5)÷58×(-14).【展示点评】(1)中带分数要转化成假分数;(2)中小数需转化成分数.【小组讨论】在有理数乘、除法同级运算中,运算的顺序是怎样的?【反思小结】乘除是同级运算,应该从左到右进行运算,先确定结果的符号,再将它们的绝对值相乘除,若化为乘法运算可以利用乘法交换律进行简便计算.【针对训练】见“学生用书”. 四、总结梳理 内化目标 1.法则:有理数的除法.2.关系:有理数的除法与乘法之间. 3.数学思想:转化. 有理数的除法―→有理数的乘法 五、达标检测 反思目标1.下列等式中,成立的是( D ) A .100÷13×(-3)=100×3×3B .100÷13×(-3)=100÷(13×3)C .100÷13×(-3)=100×13×(-3)D .100÷13×(-3)=100×3×(-3)2.化简:(1)54-8; (2)-18-72; (3)-63-7. 解:(1)-274 (2)14(3)93.在学习了有理数的除法之后,王老师想考查同学们综合运用有理数乘除法法则进行计算的能力,出了一道计算题:-2.5÷58×(-4)小明的解题过程是:-2.5÷58×(-4)=-52÷(-52)=1小华的解题过程是:-2.5÷58×(-4)=-52×85×4=-16小军的解题过程是:-2.5÷58×(-4)=52×85×4=16这三位同学的解题过程对吗?如果不对,请说明他们各错在哪里?解:小明和小华的解题过程错误,小军的解题过程正确,小明错在运算顺序没有按照从左到右的顺序进行,小华错在积的符号确定错误.4.计算:(1)-56÷78÷(-113);(2)(-214)÷(-45)×(-23);(3)1÷(-227)×513;(4)312÷(-1415)×(-323).解:(1)48 (2)-158 (3)-73 (4)554六、布置作业 巩固目标 课后作业 见“学生用书”.第4课时 有理数的除法(二)教学目标1.熟练掌握有理数的混合运算,并会用运算律简化运算. 2.能运用有理数的混合运算解决实际问题. 教学重点有理数的加减乘除的混合运算. 教学难点有理数的乘除的混合运算顺序. 教学设计 (设计者: )教学过程设计一、创设情境 明确目标1.说一说以前学习的四则混合运算的运算顺序.2.已知高度每上升1000 m ,气温大约下降6℃,光明中学地理兴趣小组的同学们想估计某座山的高度,他们测得山顶的温度是1℃,山下地面的温度是13℃,你能帮助他们估算一下这座山的高度吗?二、自主学习 指向目标自学教材第36页,完成下列问题:1.有理数混合运算,应先__乘除__,再__加减__,如果有括号则先__算括号__里面的. 2.同级运算应按__从左到右__的顺序进行计算.3.有理数的混合运算中,有些能用__乘法的运算律__简化运算. 4.计算:(1)-3÷4×14=__-316__;(2)-313÷213÷(-2)=__57__.三、合作探究 达成目标探究点一 有理数的混合运算的顺序及运用运算律和简便运算 活动一:例1 计算:42×(-23)+(-134)÷(-0.25).【展示点评】在这个式子中包含加、乘、除法几种运算.本题的运算顺序是先乘除后加减.式子中的带分数和小数需要先转化成分数.【小组讨论】进行有理数的混合运算需要注意哪些问题?【反思小结】有理数加减乘除混合运算时:1.注意运算顺序;2.先将除法转化为乘法;3.要注意符号的变化;4.若出现带分数可以化为假分数,小数可化为分数计算.活动二:例2 计算:(79+56-1112)×36.【展示点评】可以先计算括号里面的,也可以运用乘法的分配律展开运算. 【小组讨论】例2与例1有什么不同?此题有哪些解法?【反思小结】有理数加减乘除混合运算时:1.有括号,要先算括号里面的;2.能用运算律的尽量运用运算律简化运算.【针对训练】见“学生用书”. 探究点二 有理数混合运算的应用 活动三:例3 某个体商店经营季节性较强的商品,去年由于受到市场的影响,1到3月份平均每月亏损1.5万元,4到6月份平均每月盈利2万元,7到10月份平均每月盈利1.7万元,11到12月份平均每月亏损2.05万元.这个商店去年一年总的盈亏情况如何?【展示点评】从数学的角度思考,亏损用负数表示,盈利用正数表示. 【小组讨论】:说说你对运用有理数混合运算解决实际问题的看法. 【反思小结】在生活中经常用正负数来表示意义相反的两个量,要习惯从数学的角度看生活中的实际问题,建立相应的数学模型去解决问题.【针对训练】见“学生用书”. 四、总结梳理 内化目标1.顺序:有理数加减乘除混合运算. 2.注意的问题.实际问题―→数学问题―→构建模型―→计算求解⎩⎪⎨⎪⎧运算顺序运算法则运算律五、达标检测 反思目标1.下列运算正确的是( B )A.⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-12=4 B .0-2=-2 C.34×⎝ ⎛⎭⎪⎫-43=1 D .(-2)÷(-4)=2 2.计算:(1)18-6÷(-2)×(-13);(2)214×(-76)÷(12-2).解:(1)17 (2)743.运用运算律计算: (1)5÷(-34)+43×8;(2)-25+(58-16+712)×(-2.4). 解:(1)4 (2)-2.94.已知m ,n 互为相反数,x ,y 互为倒数,求(4m +4n -24)÷(8xy-3)-2(m +n). 解:∵m ,n 互为相反数,x ,y 互为倒数,∴m +n =0,xy =1.∴原式=[4(m +n )-24]÷5-2(m +n )=(0-24)÷5-0=-245六、布置作业 巩固目标课后作业 见“学生用书”.。
有理数的乘除法教案
有理数的乘除法教案一、教学目标:1. 理解有理数的乘法法则,能够正确进行有理数的乘法运算。
2. 理解有理数的除法法则,能够正确进行有理数的除法运算。
3. 能够解决实际问题,运用有理数的乘除法进行计算和解答。
二、教学重点:1. 有理数的乘法法则。
2. 有理数的除法法则。
3. 有理数乘除法的实际应用。
三、教学难点:1. 理解并掌握有理数乘法的运算规律。
2. 理解并掌握有理数除法的运算规律。
3. 解决实际问题时,正确运用有理数的乘除法。
四、教学准备:1. 教学课件或黑板。
2. 教学道具或计数器。
3. 练习题库。
五、教学过程:1. 导入:通过复习小学学过的整数乘除法知识,引导学生进入初中阶段有理数的乘除法学习。
2. 新课讲解:a. 有理数的乘法法则:同号得正,异号得负,并把绝对值相乘。
b. 有理数的除法法则:除以一个不等于零的有理数,等于乘这个数的倒数。
c. 举例讲解,让学生跟随老师一起动手操作,加深理解。
3. 课堂练习:让学生独立完成练习题,检验对有理数乘除法的掌握程度。
4. 总结提升:对本节课的内容进行总结,强调重点,解答学生的疑问。
5. 课后作业:布置相关的作业,巩固所学知识。
6. 教学反思:课后对教学效果进行反思,针对学生的掌握情况,调整教学策略。
六、教学活动:1. 小组讨论:让学生分组讨论有理数乘除法的应用,举例说明在日常生活中或数学问题中如何运用有理数乘除法。
2. 课堂展示:每组选代表进行汇报,分享他们的讨论成果。
七、案例分析:1. 教师展示一些实际问题,如购物时计算折扣、计算利息等,让学生运用有理数乘除法进行解答。
2. 学生独立解答问题,教师巡回指导,解答学生的疑问。
八、拓展延伸:1. 教师提出一些拓展问题,如探讨有理数乘除法的规律,让学生进行思考。
2. 学生尝试解答拓展问题,教师给予鼓励和指导。
1. 教师引导学生对本节课的内容进行小结,强调有理数乘除法的法则和应用。
2. 学生分享自己的学习收获,提出存在的问题。
七年级数学上册《有理数的乘法和除法》教案、教学设计
2.使学生认识到数学来源于生活,又服务于生活,体会数学在现实世界中的广泛应用。
3.培养学生勇于探索、积极思考的精神,树立正确的价值观。
4.引导学生学会尊重他人意见,学会合作与分享,培养团队精神。
二、学情分析
七年级学生在学习有理数的乘法和除法之前,已经掌握了有理数的加减法运算,具有一定的数学基础。但在乘除法的学习过程中,学生可能会遇到以下困难:对乘除法运算规则的混淆,难以理解负数的乘除运算,以及在实际问题中运用乘除法则的能力较弱。因此,在教学过程中,教师应关注以下几个方面:
七年级数学上册《有理数的乘法和除法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解有理数的乘法和除法的概念,掌握其运算法则。
2.能够正确进行同号有理数、异号有理数的乘法和除法运算。
3.能够解决实际问题中涉及有理数乘法和除法的问题,提高解决问题的能力。
4.学会对有理数乘法和除法进行简化运算,灵活运用分配律、交换律等运算性质。
2.教学策略:
-针对学生的认知规律,由浅入深,逐步引导,让学生在轻松愉快的氛围中掌握知识。
-对学习困难的学生,采用个别辅导和小组合作的方式,帮助他们克服难点,提高学习效果。
-对优秀创新思维。
3.教学过程:
(1)导入:通过生活实例或数学问题,引出有理数乘除法的运算,激发学生兴趣。
教学过程:
-将学生分成小组,讨论以下问题:
1)有理数乘法运算的性质有哪些?
2)有理数除法运算的性质有哪些?
3)在实际问题中,如何运用有理数乘除法运算?
-每个小组汇报讨论成果,教师点评并总结。
2.教学目的:培养学生的合作能力,提高他们对有理数乘除法运算性质的理解。
七年级上册数学教案《有理数的乘除法》
教学设计:《有理数的乘除法》一、教学目标1.知识与技能:学生能够理解有理数乘除法的概念,掌握有理数乘除法的运算法则,包括同号相乘、异号相乘、除以一个数等于乘以这个数的倒数等,并能准确进行有理数的乘除运算。
2.过程与方法:通过实例分析和小组讨论,引导学生探究有理数乘除法的规律,培养学生的观察、归纳和推理能力;通过动手操作和合作学习,提升学生的数学实践能力和团队协作能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生勇于探索、敢于质疑的科学精神;在解题过程中,培养学生的耐心和细致,以及对待数学问题的严谨态度。
二、教学重点和难点●重点:有理数乘除法的运算法则及其应用。
●难点:异号数相乘时符号的确定,以及有理数除法转化为乘法运算的理解。
三、教学过程1. 导入新课(约5分钟)●情境导入:通过生活实例(如购物找零、温度升降倍数等)引入有理数乘除法的应用背景,激发学生兴趣。
●复习旧知:回顾有理数的概念、数轴表示及有理数的加减法,为有理数乘除法的学习做铺垫。
●明确目标:向学生明确本节课的学习目标,即掌握有理数乘除法的运算法则并能准确运算。
2. 讲授新知(约15分钟)●概念讲解:阐述有理数乘除法的定义,特别是乘法中的同号相乘、异号相乘规则和除法转化为乘法的原则。
●示例演示:通过具体例题展示有理数乘除法的计算过程,特别强调符号的处理和运算顺序。
●归纳总结:引导学生归纳有理数乘除法的运算法则,形成系统性的知识网络。
3. 合作探究(约15分钟)●分组探究:将学生分为若干小组,每组分配不同的有理数乘除法题目进行探究。
●小组讨论:鼓励学生相互交流解题思路,讨论解题过程中遇到的困难和解决方法。
●汇报分享:各组选派代表分享探究成果,全班共同讨论和纠正可能的错误。
4. 巩固练习(约10分钟)●课堂练习:设计一系列有层次的练习题,包括基础题、提高题和拓展题,要求学生独立完成。
●即时反馈:教师巡视指导,及时纠正学生的错误,并解答疑惑。
《有理数的乘法》第1课时精品教案【人教数学七上】
《有理数的乘法》教学设计
第1课时
一、教学目标
1.学会利用有理数的乘法法则进行简单的运算;
2.经历观察、推理、总结、归纳等过程,学会两个有理数的乘法运算;
3.通过对有理数乘法运算的考查,培养学生数学运算的能力;
4.通过有理数乘法运算的学习,为后面学习有理数的除法运算做铺垫.
二、教学重难点
重点:有理数的乘法运算;
难点:有理数的乘法运算.
三、教学用具
多媒体等.
四、教学过程设计
1
×(-2)=
2
的两个数互为倒数.
1
×(-2)=
2
答案:-27,-8,
有理数乘法的求解步骤
9
(-)=
4
11
-=
)
34
3 2,1
12
-
,每件降5
销售额有什么变化
以思维导图的形式呈现本节课所讲解的内容.
有理数乘法有理数加法
同号得正取相同的符号把绝对值相乘
(-2)×(-3)=6
把绝对值相加
(-2)+(-3)=-5
异号得负取绝对值大的加数的符号
把绝对值相乘
(-2)×3=-6
用较大的绝对值减较小的绝对值
(-2)+3=1
任何数与0得0得任何数巩固例题练习。
新人教版七年级数学上册第一章《有理数的乘除法(第1课时)》教案
新人教版七年级数学上册第一章《有理数的乘除法(第1课时)》教案一、内容和内容解析1.内容有理数的乘法法则.2.内容解析有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数的乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数的学习是至关重要的.与有理数加法法则类似,有理数的乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.基于以上分析,可以确定本课的教学重点:两个有理数相乘的符号法则.二、教材解析教科书先类比有理数加法,提出如何进行有理数乘法运算的问题,然后以“引入有理数乘法法则,使得原有的运算律保持不变”为指导思想,设置了三个“思考”,引导学生通过合情推理来认识“如果原有的运算规律仍然成立,那么正数×负数、负数×正数、负数×负数该得到什么结果”.三个“思考”是循序渐进的.第一个“思考”乘法算式的左边都是3×□的形式,先让学生根据已有知识概括规律,然后在“要使这个规律在引入负数后仍然成立”的引导下,给出3乘一个负数应该是什么的结论.第二个“思考”解决之后,教科书安排了一个阶段总结,归纳出正数乘正数、正数乘负数、负数乘正数三种情况的结论.然后,通过第三个“思考”,先运用得到的结论解决(-30)×正数的问题,得出规律后,再解决(-30)×负数的问题,并进一步归纳出负数乘负数的运算结果.至于两个数相乘,一个数是0的情况,参照正数与0相乘的结果,可以规定负数与0相乘也得0.综合上述讨论的各种情况,教科书给出了有理数乘法法则.三、教学目标和目标解析1.教学目标(1)理解有理数的乘法法则,能利用有理数的乘法法则计算两个数的乘法;(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.2.目标解析(1)学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果;(2)学生能通过具体例子说明有理数乘法的符号法则的归纳过程.四、教学问题诊断分析有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题,什么叫“观察下面的乘法算式”,从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.本课的教学难点:如何观察给定的乘法算式;从哪些角度概括算式的规律.五、教学过程设计问题1我们知道,有理数分为正数、0、负数三类.按照这种分类,两个有理数的乘法运算会出现哪几种情况?教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数乘0、正数乘负数、负数乘正数、负数乘负数.【设计意图】有理数分为正数、0、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?如果学生存在困难,教师给予提示:(1)四个算式有什么共同点?——左边都有一个乘数3.(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.【设计意图】构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.总结:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.追问2:根据这个规律,下面的两个积应该是什么?3×(-2)=,3×(-3)=.练习请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.【设计意图】让学生自主构造算式,加深对运算规律的理解.追问3:从符号和绝对值两个角度观察这些算式(师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积.【设计意图】先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.问题3观察下列算式,类比上述过程,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.鼓励学生模仿正数乘负数的过程,自己独立得出规律.【设计意图】为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?(-1)×3=,(-2)×3=,(-3)×3=.练习请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.追问2:类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含负数乘正数的算式),你能说说它们的共性吗?先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?先让学生观察、叙述、补充,教师再总结:异号两数相乘,积为负数,积的绝对值等于各乘数绝对值的积.【设计意图】让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳和概括能力.问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?(-3)×3=,(-3)×2=,(-3)×1=,(-3)×0=.追问:按照上述规律填空,并说说其中有什么规律?(-3)×(-1)=,(-3)×(-2)=,(-3)×(-3)=.【设计意图】由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.问题5 总结上面所有的情况,你能试着自己给出有理数的乘法法则吗?学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生阅读教科书.追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?学生独立思考、回答.如果有困难,可先让学生阅读课本第29页例题后的一段文字.【设计意图】让学生尝试归纳乘法法则,明确按法则计算的关键步骤.例题 计算:(1)(-3)×9;(2)8×(-1);(3)⎪⎭⎫ ⎝⎛-21×(-2). 学生独立完成后,全班交流.教师说明:在(3)中,我们得到了⎪⎭⎫ ⎝⎛-21×(-2)=1.与以前学习过的倒数概念一样,我们说21-与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数. 追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?【设计意图】本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).例题 用正数、负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰, 每登高1 km 气温的变化量为-6℃,攀登3 km 后,气温有什么变化?【设计意图】利用有理数的乘法解决实际问题,体现数学的应用价值.小结、布置作业请同学们带着下列问题回顾本节课的内容:(1)你能说出有理数的乘法法则吗?(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?(3)举例说明如何从正数和0的乘法运算出发,归纳出正数乘负数的法则.(4)你能举例说明运算法则“负负得正”的合理性吗?【设计意图】引导学生从知识内容和学习过程两个方面进行小结.作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.六、目标检测设计1.判断下列运算结果的符号:(1)5×(-3); (2)(-3)×3; (3)(-2)×(-7); (4)(+0.5)×(+0.7).【设计意图】检测学生对有理数乘法的符号法则的理解.2.计算:(1)6×(-9);(2)(-6)×0.25; (3)(-0.5)×(-8); (4)32×⎪⎭⎫ ⎝⎛-49; (5)0×(-6); (6)8×641. 【设计意图】检测学生对有理数乘法法则的理解情况.。
人教版七年级数学上册有理数的乘除法教学设计
1.利用实际问题导入:教师展示一个关于物品价格计算的问题,例如,“小明去超市购物,购买了3件衣服和4本书,每件衣服的价格是120元,每本书的价格是25元。请计算小明购买这些物品一共需要支付多少钱?”通过这个例子,引导学生思考如何进行有理数的乘法运算。
2.引导学生回顾小学学过的乘法运算,为新课的学习做好铺垫。
4.通过具体例题,讲解负数除法的运算规则,使学生掌握有理数除法的运算方法。
(三)学生小组讨论
1.教师将学生分成小组,每组讨论以下问题:
a.有理数乘法的运算规律是什么?
b.负数乘以正数和负数的结果是什么?
c.有理数除法的运算规律是什么?
d.负数除以正数和负数的结果是什么?
2.各小组派代表分享讨论成果,教师进行点评和补充。
2.探究阶段:
a.采用小组合作学习,引导学生探讨有理数乘除法的运算规律,从具体实例中抽象出数学规律。
b.通过师生互动,总结有理数乘除法的运算步骤,明确正负数乘除法的运算规则。
c.设计具有挑战性的问题,引导学生深入思考,突破难点。
3.应用阶段:
a.设计不同类型的例题,使学生在实际操作中巩固所学知识,提高运算能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,使其认识到数学在生活中的重要作用。
2.培养学生严谨的学习态度和良好的学习习惯,使其能够认真对待每一次运算。
3.培养学生的合作意识和团队精神,使其在小组讨论和合作探究中学会倾听、尊重他人意见。
4.引导学生树立正确的价值观,认识到数学知识的学习不仅仅是为了应付考试,更是为了解决实际问题,提高自身素质。
二、学情分析
七年级学生在学习了有理数的加法和减法的基础上,开始接触有理数的乘除法。这个阶段的学生在认知发展上正处于从具体形象思维向抽象逻辑思维过渡的关键时期,因此,对乘除法运算的理解和掌握需要借助具体实例和操作活动。学生在小学阶段已经具备了一定的乘除法运算基础,但面对有理数的乘除法,特别是负数的运算,可能会出现概念混淆、运算错误等问题。此外,学生的个体差异较大,学习兴趣和运算能力参差不齐。因此,在教学过程中,要关注学生的个体差异,采用分层教学和差异化指导,使每位学生能够在原有基础上得到提高。同时,注重激发学生的学习兴趣,引导他们通过自主探究、合作交流等方式,深入理解有理数乘除法的运算规律,提高运算技巧和解决问题的能力。
七年级数学上册人教版1.4有理数的乘除法教学设计
(二)讲授新知
1.讲解有理数乘法法则:教师以具体例子讲解有理数乘法的运算规律,强调同号得正、异号得负的原则。通过举例说明,让学生理解并掌握乘法运算的规律。
2.讲解有理数除法法则:教师引导学生理解除以一个数等于乘以这个数的倒数,讲解有理数除法的运算规律。同时,强调除数为零的情况,让学生避免在运算中犯错。
-利用直观教具和实际例题,帮助学生形象地理解有理数乘除法的运算规律。
-设计互动式教学活动,如小组合作、角色扮演等,增强学生的参与感和合作意识。
2.教学步骤:
-引入新课:通过生活实例,让学生感受乘除法在实际生活中的应用,激发学习兴趣。
-基本概念:讲解有理数乘除法的定义和性质,让学生通过例题和练习加深理解。
-解题技巧:教授有理数乘除法的运算技巧,如交叉相乘法、倒数法等,提高学生的运算速度和准确性。
-应用拓展:结合实际问题,让学生运用所学乘除法知识解决具体问题,提升学生的数学应用能力。
-归纳总结:引导学生总结有理数乘除法的学习要点,巩固所学知识。
3.教学策略:
-针对不同学生的学习需求,提供分层次的练习题,使每个学生都能在适合自己的难度上得到锻炼和提高。
七年级的学生在数学学习上已经具备了一定的基础,掌握了有理数的加法和减法运算,但对于乘除法运算还相对陌生。在此基础上,学生对于有理数乘除法的概念和运算规律可能存在理解上的困难。此外,学生在解决实际问题时,可能难以将乘除法运算与实际问题结合起来,缺乏运用乘除法解决问题的能力。因此,在教学过程中,应注重以下几点:
3.教师点评:教师针对学生的总结和分享进行点评,鼓励优秀表现,对不足之处给予指导和鼓励。
人教版七年级上数学《 有理数的乘除法》教案
《有理数的乘除法》教案【教学目标】1.掌握有理数的乘除法运算法则,会进行有理数的乘除运算。
2.能理解乘除法运算的算理,能解决一些实际问题。
【教学重点与难点】重点:掌握有理数的乘除法运算法则,会进行有理数的乘除运算。
难点:正确理解乘除法运算的算理,能解决一些实际问题。
【教具和多媒体资源】教具:黑板、粉笔、计算机、投影仪等。
多媒体资源:PPT课件、实物投影仪等。
【教学方法】1.通过实例引入有理数的乘除法运算法则,让学生理解其意义和作用。
2.通过讲解、演示、练习等多种方式,让学生掌握有理数的乘除运算方法。
3.通过小组合作和全班交流,让学生深入理解乘除法运算的算理,提高解题能力。
4.通过实例讲解和练习,让学生掌握用有理数的乘除法解决实际问题的思路和方法。
5.通过反馈与纠正,及时发现和纠正学生在学习过程中的错误和不足,提高学习效果。
【教学过程】1.导入新课:通过实例引入有理数的乘除法运算法则,让学生理解其意义和作用。
2.探究新知:通过讲解、演示、练习等多种方式,让学生掌握有理数的乘除运算方法。
3.巩固练习:通过小组合作和全班交流,让学生深入理解乘除法运算的算理,提高解题能力。
4.拓展延伸:通过实例讲解和练习,让学生掌握用有理数的乘除法解决实际问题的思路和方法。
5.课堂小结:通过回顾本节课所学知识,让学生总结有理数乘除法运算的要点和方法。
6.布置作业:通过布置作业,让学生进一步巩固所学知识。
【教学评价】1.对学生的参与程度进行评价。
2.对学生的学习成果进行评价。
3.对学生的学习态度和学习习惯进行评价。
最新人教版《有理数的除法》教学设计教案(第1课时)
第一章有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃. 某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃. 请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则(出示课件4)教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?以8÷(-4)为例.(出示课件5)师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以8÷(-4)=-2 ①另外,我们知道,8×(-14)=-2 ②由①、②得8÷(-4)=8×(-14)③③式表明,一个数除以-4可以转化为乘以-14来进行,即一个数除以-4,℃等于乘以-4的倒数-14.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,45,-8;右边组由上到下答案依次为:-2,-6,45,-8;教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以1a呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨: 从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0), 其中a 、b 表示任意有理数(b≠0)教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9); (2)(–27) ÷3;(3)0 ÷ (–7); (4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) −123 ;(2)−45−12 . 师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2) 师生共同解答如下:解:(1)原式=12557 ÷5=(125+57)×15=125×15+57×15=25+17=2517点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式=52×85×14= 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A .3B .–3C .13 D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a ,b 互为相反数,且a ≠ b ,则a b =________;(2)当a < 0时,|a |a =_______;(3)若 a>b ,a b <0,则a ,b 的符号分别是__________. (4)若–3x=12,则x =_____.4.若|2x +6|+|3−y |=0,则x y =_________.5. (1)计算(- 45)÷(- 2) ;(2)计算-0.5÷78×(- 54);(3)计算(-7)÷(- 32)÷(- 75)参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x +6|+|3−y |=0,解得x=-3,y=3,所以x y =−33=-1.5.解:(1)原式=45×12=25(2)原式=12×87×54=57(3)原式=-7×23×57=-103(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册1.4 有理数的乘除法(第1教时)教
案
★目标预设
一、知识与能力
较熟练地进行有理数的乘法运算,发展观察,归纳,猜想,验证等能力。
二、过程与方法
经历探索有理数乘法法则的过程,灵活运用归纳,猜想,化归等掌握新知识。
三、情感、态度、价值观
注意学生的学习积极性、主动性的调动,增强学生学习数学的自信心。
★教学重难点
一、教学重点:会进行有理数的乘法运算
二、教学难点:有理数法则的推导
★教学准备
1、学生每一人备一只计算机;
2、投影仪、幻灯片
★预习导学预习课本P36~38,并完成填空部分
★教学过程
一、创设情景,谈话导入
我们已经熟悉正数及0的乘法运算,引入负数以后,怎样进
行有理数的乘法运算呢?
二、精讲点拨,质疑问难
1.幻灯演示课本P34、35引例,启发,引导学生回答问题并列出算式,总结两数相乘积的符号:
正数乘正数积为____数,负数乘负数积为____ 数。
正数乘负数积为____数,负数乘正数积为____ 数。
乘积的绝对值等于各乘数绝对值的
2.教师引导学生总结法则内容:
同号两数相乘,得正,并把绝对值相乘
异号两数相乘,得负,并把绝对值相乘
0与任何数相乘,结果是_________
有理数相乘的运算顺序是先确定积的_______ ,再确定积的_________
2.学生分组讨论:P39的观察、思考部分,组内推荐一名同学回答、观察、思考部分的问题,教师点评。
引导学生总结:
⑴几个有理数相乘,如果其中有因数为0,则积等于____
⑵几个不是0的数相乘,负因数的个数是______时,积是
正数,负因数的个数是_______时,积是负数
⑶几个有理数相乘,先确定积的______,后把它们按顺序
依次___________
三、课堂活动,强化训练
例1. 计算:
(1)(—3)×9 ⎪⎭⎫ ⎝⎛-
21×(-2)
引导学生总结:
(1)乘积是1的两个数互为倒数
(2)举几个互为倒数的例子
学生练习书P37
例2:用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座高峰,每登高1K m 气温的变化量为-60C ,攀登3Km 后,气温有什么变化?
例3.计算:
(1)()⎪⎭
⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⨯-4159653 (2)()415465⨯⎪⎭⎫ ⎝⎛-
⨯⨯-
注:学生板练,学生点评,教师总结
学生练习书P38
例4.用计算机计算:(-51)×(-14)
学生练习书P39
注:学生总结用计算器计算乘法的步骤
四、延升拓展,巩固内化
例5.(1)当a >0时,a___2a ,当a <0时,a___2a
(2)如果数ab=1,则数a 与b 的关系是_______
例6,五个数相乘,积为负,则其中正因数的个数为( )
A 0
B 2
C 4
D 0,2或4
例7.计算:
(1)(-6)×(+8)-(-5)×(-9)
(2)12×()⎪⎭
⎫ ⎝⎛⨯--⎪⎭⎫ ⎝⎛-3122311 (3)-1+0×(-1)-(-1)×(-1)-(-1)×0×
(-1)
例8、417
165⨯ 教师讲解后,并引导学生总结法则内容
五.布置作业,当堂反馈
作业 P47,1、2、3。