空气压缩机喘振原因分析及升级改造方案研究

合集下载

离心式空气压缩机喘振故障分析与处理

离心式空气压缩机喘振故障分析与处理

离心式空气压缩机喘振故障分析与处理1.摘要:针对NK32/45/0—MCO1004型蒸汽透平空压机出现的喘振现象进行分析,得出主要原因是空气冷却器故障。

通过对空气冷却器清洗及利用深井水降低气体温度等防范措施,保证了空压机正常运转。

2.关建词:离心式压缩机冷却器喘振3.(1)引言 NK32/45/0—MCO1004型蒸汽透平空压机为沈阳鼓风机厂制造。

空气经吸入塔吸入,经空气过滤器除尘和杂质,流入空压机第一离心级压缩冷却后再压缩,最后第四级离心级压缩得到压力为0.63MPa,温度为80℃,流量为95000m3/h空气送入空气装置空冷塔。

在空气出口管线上设有防喘振装置,一旦发生喘振,气体由喘振阀经消音器排入大气。

(2)发生喘振过程:2011年12月16日6:36当时空气压缩机出口压力0.53 MPa,加工空气流量为98000m3/h,空分装置运转正常。

突然空压机防喘振阀打开,空压机发生喘振。

6:37蒸汽空压机未经任何调整,自动恢复正常。

6:41空压机又一次发生喘振,6:42蒸汽空压机又一次自动恢复正常。

由于这二次喘振发生的时间短,未对空分装置造成太大的波动。

经询问操作人员未发现异常情况。

当时未得到太重视,只是认为可能是由于早晨外界温度降低,空气密度升高,造成进入空气压缩机气量过多造成冷却器换热不够,气体温度升高所致,决定将空压机吸入叶片关小,将空压机的出口气量控制在97000m3/h左右。

经过白天观察空压机运转正常。

2011年12月17日5:35当时空压机出口压力0.53 MPa,空气流量为97000m3/h,再次发生喘振且持续了3分钟,防喘振阀一会开,一会关,气量忽高忽低。

5:38恢复正常。

这次喘振由于时间长点,造成氮气纯度波动,合成系统切气。

(3)问题提出及分析喘振是离心式空压机运行在某一工况下产生的特有现象。

当进入空压机的空气流量不能使空压机产生足够的压力,以至于外部系统(外部管路)的压力大于空压机内部的压力,导致逆止阀关闭。

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策1、引言在多年对电力、冶金、石油化工、煤化工、油田、航空等行业轴流式压缩机和离心压缩机的状态监测及故障诊断工作中,发现不论是新投产的机组、还是运行多年的机组,都由于各种不同原因引起喘振或旋转分离,经常看到因为喘振问题造成机组振动过大,联锁停机、推力瓦磨损、径向瓦磨损、叶轮开裂、叶片断裂、部件磨损、管线开裂等等问题,引起问题的原因很多,本文列举了13种,并给出7种典型喘振原因案例,包括相应对策和效果,案例和方法基本都是笔者独创和首次提出应用的,没有资料可以参考和借鉴,而应用效果验证了解决问题方法的正确性。

同时本文提出一点设想。

2、旋转分离与喘振常见的与不常见的原因对于离心与轴流式压缩机,由于入口流量低于性能曲线对应的转速下的流量,因为叶片入口安装角的微小误差,会在某只或某几只叶片的非工作面发生边界层分离,并且沿着旋转方向依次发生,故称为:旋转分离,当流量进一步降低,旋转分离在所有流道和整级、整机发生,并和出口罐及管系联合作用,就会发展成喘振;造成喘振的物理机理很简单,而对于一起起发生在具体机组上的喘振故障,所引起喘振的具体原因,却是形形色色、各种不同的存在。

比如发生在西南地区某石化乙烯气透平压缩机进口管线、或出口管线、及机内通流截面局部堵塞引起的,发生在中油辽宁某石化的乙烯气离心压缩机组的喘振是防喘系统控制逻辑问题造成,每天损失产值过亿圆,中石化武汉中韩石化开工过程中乙烯气透平压缩机组喘振是由于入口罐引液不足问题造成,损坏了干气密封;中油东北某石化空分装置透平压缩机的喘振是因为环境湿度过大造成;山东某石化丙烯气透平压缩机喘振是入口气体温度过低造成的;华能公司某电厂的多轴式离心压缩机引起的喘振是环境粉尘造成的,造成机组无法运行;神华某煤化工企业甲醇气透平压缩机喘振是工艺系统反应收率低引起的,每年损失1.8亿圆;西南某石化丙烯气循环压缩机喘振是机后换热器管束粘结物料问题引起的;东北某石化甲烷气透平压缩机喘振是降速过程转速与流量不匹配问题引起的,中海油某石化透平压缩机喘振是现场没有进行实际气体防喘标定造成的,东北某石化焦化装置透平压缩机喘振是选型过大引起,中油、中石化多台新比隆二氧化碳透平压缩机喘振是设计问题造成的,西北某煤化工企业透平压缩机喘振是改造问题引起的,等等。

17喘振发生的原因及解决方案

17喘振发生的原因及解决方案
制逻辑提供信号,使其减少导流叶片的开度。
c随着冷负荷的继续下降,来自压缩机的转速信号继继关闭导流叶片,并提高电动机的转速。工作原理如
下图所示。
喘振会带来的后果:
1) 使压缩机的性能显著恶化,气体参数(压力、排量)产生大幅度脉动
2) 噪声加大。
3) 大大加剧整个机组的振动,喘振使用压缩机的转子和定子的元件经受交变的动应力,压力失调引起强
烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等,叶轮动应力加大;
4) 电流发生脉动;
凝器中的压力下降到等于压缩出口压力为止。这时压缩机又开始向冷凝器送气,压缩机恢复正常工作。但
当冷凝器中的压力也恢复到原来的压力时,压缩机的流量又减小,压缩机出口压力又下降,气体又产生倒
流,如此周而复始,产生周期性的气流振荡现象。
喘振是压缩机一种不稳定的运行状态,压缩机周期性的发生间断的吼响声,整个机组出现强烈的热气排到蒸发器,降低压比,同时提高排气量,从而避免喘振的发生。
2)变频防喘振措施
VSD是Varialbe Speed Drives的简称,译为变频驱动装置,通过调节电动机的转速和优化压缩机导流叶片
的位置,使机组在各种工况下,尤其是部分负荷情况下,始终保持最佳效率。
喘振发生的原因及解决方案
1、喘振的原因
离心机组运行在部分负荷时,压缩机导叶开度减小,制冷剂的流量变得很小,压缩机流道中出现严重的
气体脱流,压缩抽的出口压力突然下降。由于压缩机和冷凝器联通工作,而冷凝器中气体的压力并不同时
降低,于是冷凝器中的气体压力反大于压缩机出口外的压力,造成冷凝器中的气体倒流回压缩机,直至冷
VSD控制的基本参数是是冷水出水温度实际值与设定值的温差。

压缩机喘振与调节方法

压缩机喘振与调节方法

压缩机喘振与调节方法压缩机的喘振是指压缩机在运行过程中出现的振动和噪音现象,通常产生的原因有两个方面:机械方面和气动方面。

喘振会严重影响压缩机的正常运行,甚至导致设备故障和损坏。

因此,对于压缩机的喘振问题,需要采取一些调节方法来减少和消除。

一、机械方面1.检查压缩机的支撑结构和基础,确保其稳定性。

如果支撑结构不牢固或基础不稳定,容易引发振动和噪音,导致喘振问题。

2.检查压缩机的叶轮、轴承和其他转动部件的装配情况和磨损程度。

如果叶轮装配不当或者轴承磨损严重,都会导致不平衡振动和喘振现象。

需要及时更换磨损严重的部件,并确保装配的正确性。

3.清洗和维护压缩机的冷却系统,确保冷却效果良好。

如果冷却系统存在堵塞或冷却水流量不足,会导致压缩机过热,引发振动和喘振。

4.对于柱塞式压缩机,要定期检查气缸套的磨损情况,及时更换磨损严重的气缸套,并确保柱塞的正确配合度。

柱塞不良配合度会引发气缸内部的振动和噪音。

二、气动方面1.检查压缩机的进气阀和排气阀的工作情况。

如果阀门存在卡滞或密封不良,会导致气体回流和压力不稳定,引发喘振现象。

需要及时清洗和维护阀门,确保其正常工作。

2.对于容积式压缩机,要调节气缸的容积比。

容积比过大或过小都会引发振动和噪音,需要根据实际情况进行调整。

3.检查压缩机的冷却器的工作情况,确保冷却器散热良好。

如果散热不良,会导致压缩机过热,引发振动和喘振。

4.检查压缩机的管道系统,确保管道的密封性和稳定性。

如果管道存在泄漏或支撑不稳定,会导致气体流动不畅,引发喘振。

在调节压缩机喘振时,应先排除机械方面的问题,检查和维护压缩机的各个部件。

如果机械方面的问题已经解决,但喘振问题仍然存在,则需要进一步检查和调节气动方面的问题。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施压缩机是工业生产中常见的设备,用于将气体或蒸气压缩成高压气体的装置。

在压缩机运行过程中,可能会出现喘振现象,给生产带来一系列的问题,防止压缩机出现喘振现象是非常重要的。

本文将就压缩机防喘振系统出现的问题及防范措施进行探讨。

1. 噪音过大当压缩机出现喘振现象时,会导致机器工作不稳定,产生较大的噪音。

噪音过大不仅会影响生产场地的环境,也会对工人的身心健康造成影响。

2. 设备损坏喘振现象会导致压缩机产生振动,长期下去会导致机器损坏,减少设备的使用寿命,增加维护成本。

3. 产能下降当压缩机出现喘振现象时,会导致机器输出功率下降,从而使得生产产能受到严重影响。

4. 安全隐患喘振现象会给设备运行带来了不稳定因素,可能会引发设备故障,造成安全隐患。

二、压缩机防喘振系统的防范措施1. 定期维护检查要定期对压缩机进行维护检查,包括检查连接螺栓是否松动,轴承是否磨损,润滑油是否足够等,确保设备运行的稳定性。

2. 安装减振装置在压缩机设备上安装减振装置,如减振脚,减振垫等,能有效地减少设备的震动。

3. 保持压缩机平稳运行在使用压缩机时,要保持设备的平稳运行,避免频繁启停和负载变化,减少机器运行过程中的工况变化,降低喘振的发生几率。

4. 定期清洗要定期对压缩机进行清洗,清理设备内部的灰尘和杂物,保持设备的通风性能,防止因灰尘积聚导致设备运行不畅。

5. 合理设置控制系统通过合理设置控制系统,如安装变频器、压力传感器等,对压缩机的运行状态进行监控和调节,提高设备的运行效率,减少喘振现象的发生。

6. 增强员工培训对操作压缩机的员工进行专业的培训,使其能够正确地使用和保养压缩机设备,及时发现并解决设备运行中的异常情况。

7. 定期更换易损件对压缩机设备的易损件进行定期更换,避免因零部件磨损或老化导致设备产生异常振动。

三、总结在工业生产中,压缩机是一个非常重要的设备,防止压缩机出现喘振现象对生产的稳定性和效率有着重要的影响。

空气压缩机频繁喘振的原因分析

空气压缩机频繁喘振的原因分析

图1 显示 , 波动 前 , 低 压缸 的工 作 盘旋 点 离 防 喘线 距 离 约 4 %, 离 喘振 线 距 离 1 4 %, 高 压 缸 的 工 作 点 离 防 喘线 距 离 约 1 3 %, 波动时 , 高、 低 压 缸 工 作 点 快速 向防 喘线 靠 近 , 并 突破 防喘 线及 喘振 线 , 发 生 喘振n ] 。 ( 2 ) 控 制 曲线 中低 压 缸 设 定 的 压缩 比最 大 为 6 . 0 , 但 波 动期 间 , 实 际压缩 比为 6 . 0 左右 , 工 作点 已
在空 压 机 人 口调 节 阀 开度 分 别 为 1 1 %、 1 5 %、 1 9 %时 , 将 防 喘振 放 空 阀控 制 方式 置 于手 动 , 逐 渐 关 喘振 阀 , 进行 3 次 防 喘振 测试 , 当 实 际流 量接 近 喘振 量 , 观察 出 口压 力 表 大幅度 波 动 , 或者 现 场通 过运 行 噪音 判 断 压 缩 机 刚开 始 发 生 喘 振 时 , 立 即
发生 喘振 问题 。
关键词 : 压缩机 ; 喘振; 喘振曲线 ; 叶轮切割
中 图分 类 号 : T H 4 5 文献 标 识 码 : B 文章 编 号 : 1 6 7 1 — 4 9 6 2 ( 2 0 1 3 ) 0 4 — 0 0 3 3 — 0 2
某 化 肥 厂 的空 气 压 缩机 2 0 0 6 年投 用 , 运 行 时
在机组 出 、 入 口处 各安 装 1 块 精 密 压力 表 , 在 现场 给 防喘振 放 空 阀装 1 个开 关按 钮 , 需 要 时按下
能 迅 速 打 开 防 喘振 放 空 阀 ( 开关 位 置 在 出 口压 力
用 现场 开 关 将 防 喘 振 放 空 阀打 开 , 同 时记 录数 据

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施压缩机是工业生产中常用的设备之一,但在使用中常常会出现喘振或振动等问题,这不仅会影响生产效率,还可能导致设备的损坏和人员的安全问题。

因此,必须采取有效的防范措施来避免这些问题的出现。

一、喘振和振动的原因1、系统管道设计不合理,直径过小或过长;2、系统管道漏气,或管道连接处泄漏;3、压缩机自身结构松动或损坏;4、压缩机受力不平衡,导致机身振动;5、系统管道内气体流速过大或变化不稳定。

二、防范措施1、管道设计合理根据气体流量、压力差等参数合理选择管道直径,并保证管道通畅,减少管道连接点,避免漏气点的出现。

2、管道漏气检查定期检查系统管道的连接点是否漏气,可以利用泄漏检测仪等设备进行检测,在压缩机运行时进行检测可以更好地发现问题。

3、压缩机结构检查定期检查压缩机的结构是否松动,比如固定螺栓是否正常、机内管道是否连接紧等,若发现问题及时处理。

4、维护压缩机平衡在运行中,尽量避免出现过载或空载状态,这将导致压缩机产生不平衡的受力,增加喘振和振动的风险。

此外,也要注意机体的平衡,如润滑系统油量、过滤器清洗等。

5、气体流速控制压缩机出气管道内,冷却风机叶轮和散热排成型件都可能成为引发振动的元凶。

其工作原理类似于翼型。

对于翼型式风机或散热器,为减小旋翼的阻力,其内壁通常都采用低密度网格或微小的平衡凸起,如果此类内壁材料堆积有灰尘和油污,将严重干扰了其工作,打破平衡状态,从而产生振动,因此要进行定期清洗。

以上就是压缩机防喘振的问题及防范措施,对于企业来说,应重视这些问题的发生,加强日常维护,确保设备的正常稳定运行,提高生产效率和安全性。

浅谈压缩机喘振原因及解决措施

浅谈压缩机喘振原因及解决措施

浅谈压缩机喘振原因及解决措施一、设备喘振流体机械及其管道中介质的周期性振荡,是介质受到周期性吸入和排出的激励作用而发生的机械振动。

例如,泵或压缩机出现流量减小到最小值时,出口压力会突然下降,管道内压力反而高于出口压力,于是被输送介质倒流回机内,直到出口压力升高重新向管道输送介质为止;当管道中的压力恢复到原来的压力时,流量再次减少,管道中介质又产生倒流,如此周而复始。

人们把以上现象称为喘振。

喘振现象在压缩机使用过程较为常见,设备和管道系统出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏。

喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。

一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。

为防止喘振,必须使流体机械在喘振区之外运转。

在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。

当多台机器串联或并联工作时,应有各自的防喘振调节装置。

二、风机喘振的现象当风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也发生很大的波动。

风机的电动机电流波动很大,最大波动值有50A左右。

风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动。

风机发出“呼噜、呼噜”的声音,使噪声剧增。

风量、风压、电流、振动、噪声均发生周期性的明显变化,持续一个周期时间在8s左右。

三、喘振原因根据对轴流式通风机做的大量性能试验来看,轴流式通风机的p-Q性能曲线是一组带有驼峰形状的曲线(这是风机的固有特性,只是轴流式通风机相对比较敏感),如左图所示。

当工况点处于B点(临界点)左侧B、C之间工作时,将会发生喘振,将这个区域划为非稳定区域。

发生喘振,说明其工况已落到B、C之间。

离心压缩机发生喘振,根本原因就是进气量减少并达到压缩机允许的最小值。

理论和实践证明:能够使离心压缩机工况点落入喘振区的各种因素,都是发生喘振的原因。

压缩机喘振现象及处理方法

压缩机喘振现象及处理方法

压缩机喘振现象及处理方法压缩机喘振现象及处理方法1. 喘振现象的定义喘振是指在压缩机工作过程中发生的一种流动性现象,表现为压缩机机体及管道内的气流产生剧烈的振荡。

喘振会导致压缩机性能下降、噪音增大,并且对设备寿命和安全造成影响。

2. 喘振的原因喘振的产生原因较为复杂,主要有以下几个方面:•气流回流现象:当气流经过突然的节流或阻碍,会产生压力波,并引起喘振。

•气体返流:由于管路系统设计不当或安装错误,会导致气体返流,进而引起压缩机喘振。

•系统过载:当压缩机运行在过载工况下,过多的气体被压缩,产生的压力波会引起喘振。

•系统堵塞:管道内的污染物或异物堵塞,导致气流不畅,也会引起喘振。

3. 处理喘振的方法为了解决压缩机喘振问题,可以采取以下方法:安装减振装置•在压缩机的进气口和排气口安装减振器,可以有效降低振动的传导和扩散,减少喘振的发生。

•在压缩机和管道连接处安装减振垫,起到缓冲作用,减少振动对管道的影响。

调整压缩机的工况•根据压缩机的额定工况,合理设置压缩机的运行参数,避免过载运行,减少喘振的可能性。

•对于多台压缩机并联运行的系统,需要合理分配压缩机的负荷,避免负载不均衡引起的喘振。

清洁管道和过滤器•定期清洗管道和过滤器,防止污染物和异物堵塞管道,保持气流通畅,减少喘振的概率。

优化系统设计•在设计压缩机系统时,合理选用管道材料和直径,减小阻力,降低压缩机运行时的压力波。

•合理设计气流通道,避免急转弯、突变节流等情况,减少压力波的产生。

总结压缩机喘振是一个常见且严重的问题,但通过合适的处理方法,可以有效地降低喘振的发生。

在实际操作过程中,需要根据具体情况综合考虑上述方法,并结合实际经验进行处理,以确保压缩机正常工作,延长设备寿命,保障工作安全。

4. 使用软启动装置•软启动装置可以帮助降低压缩机的启动冲击,减少振动和喘振的发生。

•软启动可以逐渐增加电流和转速,避免突然的负载变化,降低喘振的风险。

5. 定期维护和检查•定期维护和检查压缩机,包括清洁和更换滤芯、润滑油等。

空压机在运行中造成喘振的原因

空压机在运行中造成喘振的原因

空压机在运行中造成喘振的原因防止与消除空压机喘振的根本措施是设法增加空气压缩机的入口气体流量。

对一般无毒 ,不危险气体如空气 ,CO2 等可采用放空;对合成气 ,天然气 ,氨等气体可采取回循环。

采用上述方法后可使流经压缩机的气体流量增加 ,消除喘振;但压力会随之降低。

1 、空压机系统压力超高。

压缩机出现紧急停机,气体放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动。

2 、吸入流量不足。

由于外界原因使吸入量减少到喘振流量以下,而转速使压缩机进入喘振区引起喘振。

这种情况的原因有:压缩机入口滤器阻塞,阻力太大,而压缩机转速未能调节造成喘振;滤芯太脏,或冬天结冰都可能发生这种情况;入口气源减少或切断,如压缩机供气不足,压缩机没有补充气源等等。

所有这些情况如不及时发现及时调节。

3 、机械部件损坏脱落。

机械密封,平衡盘密封,O 型环等部件安装不全,安装位置不准或者脱落,会形成各级之间,各段之间串气,可能引起喘振;过滤器阻力太大,逆止阀失效或破损也都可以引起喘振。

4 、空压机在操作中,升速升压过快,降速之前未能首先降压升速、升压要缓慢均匀,降速之前应先采取卸压措施:如放空、回流等,以免转速降低后气流倒灌。

5、工况改变。

空压机运行点落入喘振区工况变化,如改变转速、流量、压力之前未查看特性曲线,使运行点落入喘区。

6 、空压机正常运行时,防喘振系统未投自动当外界因素变化时,如蒸汽压力下降或气量波动,汽轮机转速下降而防喘振系统来不及手动调节或来气中断等,由于未用自动防喘振装置可能造成喘振。

7 、介质状态变化造成喘振喘振发生的可能与气体介质状态有很大关系。

因为气体的状态影响流量,从而也影响喘振流量,当然影响喘振。

如进气温度、进气压力、气体成分即分子量等对喘振都有影响。

当转速不变,出口压力不变时,气体入口稳度增加容易发生喘振;当转速一定,进气压力越高则喘振流量值也越大;当进气压力一定,转速不变,气体分子量减少很多时,容易发生喘振。

压缩机喘振原因分析及处理措施

压缩机喘振原因分析及处理措施

《装备维修技术》2021年第12期—391—压缩机喘振原因分析及处理措施黄立富(河南省濮阳市中国石化中原石油化工有限责任公司,河南濮阳457000)摘要:离心空压机的主要故障是喘振,喘振对于离心压缩机有着很严重的危害。

喘振分为真喘振和假喘振。

是叶片式压缩机在流量减少到一定程度时所发生的一种非正常工况下的振动。

喘振时空压机会发生一种如同喘息病患者呼吸时的“呼哧、呼哧”的噪音。

并使整个机组振动增大,喘振使压缩机的转子等元件受交变动应力,级间压力失调引起强烈振动,碳环密封和轴承损坏,导致级间温度过高,等恶性事故。

需要深入的研究一下喘振现象,以便于采取措施,消除喘振现象,确保装置安全生产平稳运行。

关键词:压缩机喘振原因分析处理措施一、喘振的表现形式离心式压缩机发生喘振时,现象如下:1:压缩机出口压力不断升高,随后急剧下降2:空压机流量急剧下降,大幅度波动,有可能发生空气到流3:机器产生强烈振动,同时发出呼哧噪声。

二、离心空压机喘振原理研究结果表明,喘振是离心压缩机运行某一工况下产生的特有现象,离心式压缩机是一种利用叶轮的高速旋转来提高气体压力的转动设备,气体的升压过程主要在叶轮和扩压器内完成,当压缩机气体流量降低至某一值时,压缩机叶轮的叶道就会出现气流旋转脱离现象,旋转脱离的气流在叶道中形成气流旋涡,占据大部分叶道,这时气体就会受到严重阻塞,致使压缩机出口压力明显下降。

管网具有一定的容积,由于管网中的气体压力不可能很快下降,于是就会出现管网中的气体压力大于压缩机出口压力的现象,使管网中气体倒流,直到管网中的气体压力下降与压缩机出口压力相同时,气体倒流才停止,随后在旋转叶轮作用下气体压力升高,当气体压力大于管网压力时,气体正向流动并向管网供气。

管网气体压力迅速上升。

气体流量再次下降,系统中的气体再次出现倒流,气体在压缩机组和管网系统中反复出现逆流现象,使整个系统发生了周期性低频、大振幅的气流振动现象,这种现象称之为喘振。

离心式空气压缩机喘振问题研究及解决方案

离心式空气压缩机喘振问题研究及解决方案
关键词 : 离心式空压机 叶轮 冷却器 机组效率 喘振

1 问题 的提 出及分 析
通 常情 况 下 , 对 于 机 组来 说 , 多种 原 因都 可 能 引发 喘
振:

1 . 1 机 组 流道 小 , 效 率 降低 。 对于 离 心式 空 气压 缩机 象 的发 生。 通过 对 中 间冷却 器芯 体进 行 检查 发现 , 在 芯体 组来 说 , 在运 行过 程 中出现 喘振 现 象。 为 了确 保 机组 运行 内部 存在 严 重 的堵塞 现 象 ,经过 统计 前 后压 力表 的数 值 , 的安 全 性 , 通 过 对 离 心 式 空气 压 缩机 进 行 停 机 , 进 而 在 一 发 现前 后相 差 0 . 0 4 MP a。 由于 二级 的吸入压 力 比较低 , 进 定 程 度 上 进 行检 查 , 在检 查 过 程 中发 现 : 许 多污 垢 附着 在 而在 一定 程度 上导 致发 生 喘振。 叶轮 以及 流 道 内 , 在 一定 程 度上 增加 了清洗蜗 壳及 叶轮 的 4 改造 后结 论 难度 , 开机 试 车运行 后 , 发现 喘振 现 象依 然存在 。 ① 送 气 过程 中 , 温度 要符 合相 关要求 , 方案更 新后 , 温 1 . 2 机 组 出气 口被堵 塞 。通 过检查 机 组 的雾滴 捕集器 度 由原来 的 4 5 ℃ 直 接下 降到 目前 的 2 8 ℃。 ② 改造 方案后 , 内 的丝 网 , 在检 查 过程 中没 有发 现任 何异 常现 象。 机组 始 终 处于 良好 的运 行状 态 , 并且 在一 定 程度上 没 有发 1 . 3 受机 组 内部 通道 发生堵 塞 的影响和 制约 ,通常 情 生 过 喘振 现 象 , 并 且 对 吸 风 系统 进行 了改 造 , 进 而在 一定 况下 需要拆 出空气冷 却器 ,进 而在一定 程度 上 对其进行相 程度上确保了系统运行的稳定性。③提高了机组效率 , 单 应 的检 查 , 检查 结 果显示铝 翅 片被灰 尘覆 盖着 , 空 气冷却 器 电消 耗 由 更 新 前 的 5 9 k W・ h / k m。降低 到 现 在 的 5 7 k W・ 在 一定 程度上 受到严 重 的堵塞 。 对于 此类翅片来 说 , 受强 度 h / k ms 。④ 由于冷却器垢阻减小传热系数增加使冷却效果 较 弱的影 Ⅱ 向 和制约, 进而 对翅 片进行 清洗 的过程 中 , 容 易造 提 高 ,冬 季原 两 台 冷却 器 的 用水 由并联 使用 改 为 串 联 使 成翅片 倒伏 ,换热效 果及 清洗效 果在 一定 程度上 受到影 响 用, 减少用水量。⑤ 国产冷却器芯体每台在 1 7 万元左右 , 和制 约 , 因此在 这种 情况下 , 需要更换 冷却器 芯体。

工艺空气压缩机的喘振及预防(三篇)

工艺空气压缩机的喘振及预防(三篇)

工艺空气压缩机的喘振及预防工艺空气压缩机是工业生产中常见的设备之一,其主要作用是将环境空气压缩成高压气体供给生产过程中所需的能源。

然而,在使用过程中,有时会出现喘振现象,严重影响设备的正常运行。

本文将详细介绍工艺空气压缩机喘振的原因及预防措施。

一、喘振的原因1.系统失稳:系统失稳是造成工艺空气压缩机喘振的主要原因之一。

工艺空气压缩机的压缩比一般比较高,当压缩比过高时,系统失去稳定性,容易引起振动。

2.过流现象:过流现象是指空气压缩机运行过程中,过度增加系统的流量。

当系统的气流量明显超过设计工况时,气流的动能将会增大,导致系统不稳定。

3.系统泄漏:系统泄漏是喘振的常见原因之一。

当系统中存在泄漏现象时,将会引起气流的变化,导致系统压力和温度的不稳定,从而诱发喘振。

4.系统阻力不平衡:系统阻力不平衡也是喘振的一个重要因素。

当系统不同部分的阻力不平衡时,将会导致气流的分布不均匀,从而引起系统的不稳定。

5.气源压力波动:气源压力波动是导致工艺空气压缩机喘振的一个主要原因。

当进气口的气体压力波动较大时,将会引起系统的紊乱和不稳定。

二、喘振的预防措施1.选择合适的压缩机:在购买工艺空气压缩机时,应根据实际需求选择合适的型号和规格。

压缩机的功率和排气量应与生产工艺的需求相匹配,避免过大或过小的情况发生。

2.增加系统的稳定性:通过增加系统的稳定性来预防喘振。

可采取的方法包括增加系统的负反馈,提高反馈控制系统的带宽,优化系统的控制算法等。

3.控制系统的总能量:在运行过程中,应更加注重控制系统的总能量,避免气体的过度压缩或过流现象的发生。

通常可以通过调整进气口的开度和调整压缩机的运行参数来实现。

4.加强系统的泄漏检测和修复:定期对系统进行泄漏检测,及时发现和修复泄漏现象。

可以通过检查气体管道、阀门和接口等部位进行泄漏检测,并采取相应的修复措施。

5.优化系统的通风和降温:保持压缩机周围的通风良好,有效降低设备及系统的温度。

空压机喘振故障分析及处理

空压机喘振故障分析及处理

冶金信息导刊生产实践Production Practice空压机喘振故障分析及处理赵永飞(张家口紫光气体有限责任公司 宣化 075100)摘 要:介绍了紫光气体公司前期发生的一起空压机喘振故障的分析与处理。

起初故障原因比较模糊,对问题的判断有所偏差,逐步排查过程中显现出设备喘振的迹象更加明显。

从几方面分析喘振因素,结合实际进行排除解决。

针对这次故障的分析和处理过程进行小结,与同行共享。

关键词:喘振;泄漏;波动ANALYSIS AND TREATMENT OF SURGE FAULT OFAIR COMPRESSORZhao Yongfei(Zhangjiakou Ziguang Gas Co., Ltd. Xuanhua 075100,China)Abstract: This paper introduces the analysis and treatment of an air compressor surge fault in the early stage ofZiguang gas company. At first, the cause of the fault was relatively vague, and the judgment of the problem was biased,and the signs of equipment surge were more obvious in the process of gradual investigation. This paper analyzes thesurge factors from several aspects, and combines with the actual situation to solve the problem. This paper summarizesthe analysis and treatment process of this fault, and shares it with peers. If not, please correct it.Key words: surge; leak; wave作者:赵永飞,男,39岁,助理工程师收稿日期:2020-12-03机处低负荷运行状态,排气压力为0.482 MPa,排气量为197 000 m3/h,外围供水、供电系统均正常。

压缩机喘振 压差

压缩机喘振 压差

压缩机喘振:原因、影响与解决方法一、引言压缩机在工业领域中的应用十分广泛,特别是在石油、化工、制冷和空调等行业。

然而,压缩机在运行过程中可能会遇到喘振问题,这不仅会影响压缩机的性能,严重时甚至可能导致压缩机损坏。

本文将对压缩机的喘振现象进行详细介绍,包括其产生原因、影响及解决方法。

二、压缩机喘振的产生原因喘振是压缩机的一种特有现象,主要发生在低流量、高压力比的情况下。

当压缩机的流量减少时,叶轮叶片的背面会产生涡流,导致气流周期性地倒流,从而引起压缩机的振动和噪声。

此外,压缩机的喘振还与其设计、安装、运行工况等因素有关。

三、压缩机喘振的影响压缩机喘振会产生一系列负面影响。

首先,喘振会导致压缩机的振动和噪声,严重时甚至可能损坏压缩机。

其次,喘振会影响压缩机的效率,使其性能下降。

此外,喘振还可能引起流体机械的疲劳裂纹,缩短压缩机的使用寿命。

四、解决压缩机喘振的方法针对压缩机喘振问题,有多种解决方法。

首先,可以通过改变压缩机的工作点来避免喘振。

例如,通过降低压缩机的入口压力或提高出口压力,可以将压缩机的工作点移至喘振区之外。

此外,还可以通过优化压缩机的设计来降低喘振的可能性。

例如,优化叶轮和扩压器的设计,降低流体在叶轮中的旋转速度,从而减小离心力和减小流体在进入扩压器前的速度。

同时,增加一级或多级中间冷却器可以有效降低温度和减小温差,从而减小气体的密度差和减小压差。

五、结论通过对压缩机喘振的深入研究,可以发现其产生原因主要与流体的物理性质、压缩机的设计、运行工况等因素有关。

喘振会导致压缩机的振动和噪声,影响其性能和寿命。

因此,采取有效的解决方法来避免或减小喘振是十分必要的。

这需要我们在实践中不断探索和创新,以实现压缩机的安全、高效和长寿命运行。

同时,加强对于流体机械内部流场的监测和控制也是未来研究的重要方向。

六、展望随着科技的不断发展,未来对于压缩机喘振的研究有望在多个方面取得突破。

首先,数值模拟和实验研究将更加深入,为解决喘振问题提供更精确的理论依据和实践指导。

压缩机喘振的原因1

压缩机喘振的原因1

压缩机喘振的原因:
(1)压缩机出口压力升高,系统压力大于出口压力,使气体流量降到喘振流量。

系统压力高,造成压缩机出口憋压,气体在机组出口发生喘流或倒流回压缩机,造成压缩机出口气体低流量,发生喘振。

(2)入口流量、压力低于规定值。

在一定转数和一定气体密度下,能维持一定压力,入口流量低时,最容易引起压缩机入口流量低。

从而造成出口流量低,使机组运行曲线落入喘振区。

(3)气体密度变化。

压缩的介质突然发生大幅变化,在一定转数下,离心力下降,引起出口压力及排量下降,气体倒流入压缩机,造成机内气体低流量造成喘振。

压缩机喘振的预防:
(1)固定极限流量法。

一般在开车时,就把机组的转速控制在比较高的范围,使机组出口流量始终保持一个比较高的流量,负荷一般靠放空调节。

从而避免机组进入喘振区,但浪费较大。

(2)可变极限流量法。

机组的负荷调节靠转速和防喘振阀控制,防喘振阀的开度和机组流量配合调节,防喘振阀的控制要沿安全控制线精心控制,防止机组运行曲线落入喘振区。

喘振的原因及解决方法

喘振的原因及解决方法

喘振的原因及解决方法喘振的原因及解决方法1、负荷过低喘振是离心式压缩机的固有特性。

当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。

但是系统管网的压力没有瞬间相应的降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向管网流动。

如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象。

离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。

压缩机排量减小,叶轮达到压头的能力也减小。

而冷凝温度由于冷却水温未改变而维持不变,则此时就可能发生旋转失速或喘振。

2、冷凝压力过高当机组负荷过高时,冷却水温度不能及时降低,就会造成冷凝温度增高,冷凝压力也就随之增高,当增加至接近于排气压力时,冷凝器内部分制冷剂气体会倒流,此时也会发生喘振。

对于任何一台离心式压缩机,当排量小到某一极度限点或冷凝压力高于某一极度限点时就会发生喘振现象。

冷水机组是否在喘振点区域运行,主要取决于机组的运行工况。

喘振运行时离心式制冷机的一种不稳定运行状态,会导致压缩机的性能显著恶化,能效降低;大大加剧整个机组的振动,喘振使压缩机的转子和定子原件经受交变力的动应力;压力失调引起强烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等;叶轮动应力加大。

1、改变压缩机转速对压缩机加装变频驱动装置,将恒速转动改为变速转动。

在低负荷状态运行时,通过同时调节倒流叶片开度和电机转速,调节机组运行状态,可控制离心机组迅速避开喘振点,避免喘振对机组的伤害,确保机组运行安全。

同时,变频离心机运行在部分负荷工况时,低转速运行,降低了电机噪音,并能缓解与建筑物产生共振现象。

2、降低冷凝温度发生喘振时,一般会认为是吸入口压力过低造成的,但机组在80%以上负荷运转时也会产生喘振,则是由于冷凝压力过高引起的,这时就要想法降低冷却水温度来降低冷凝压力。

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策1、引言在多年对电力、冶金、石油化工、煤化工、油田、航空等行业轴流式压缩机和离心压缩机的状态监测及故障诊断工作中,发现不论是新投产的机组、还是运行多年的机组,都由于各种不同原因引起喘振或旋转分离,经常看到因为喘振问题造成机组振动过大,联锁停机、推力瓦磨损、径向瓦磨损、叶轮开裂、叶片断裂、部件磨损、管线开裂等等问题,引起问题的原因很多,本文列举了13种,并给出7种典型喘振原因案例,包括相应对策和效果,案例和方法基本都是笔者独创和首次提出应用的,没有资料可以参考和借鉴,而应用效果验证了解决问题方法的正确性。

同时本文提出一点设想。

2、旋转分离与喘振常见的与不常见的原因对于离心与轴流式压缩机,由于入口流量低于性能曲线对应的转速下的流量,因为叶片入口安装角的微小误差,会在某只或某几只叶片的非工作面发生边界层分离,并且沿着旋转方向依次发生,故称为:旋转分离,当流量进一步降低,旋转分离在所有流道和整级、整机发生,并和出口罐及管系联合作用,就会发展成喘振;造成喘振的物理机理很简单,而对于一起起发生在具体机组上的喘振故障,所引起喘振的具体原因,却是形形色色、各种不同的存在。

比如发生在西南地区某石化乙烯气透平压缩机进口管线、或出口管线、及机内通流截面局部堵塞引起的,发生在中油辽宁某石化的乙烯气离心压缩机组的喘振是防喘系统控制逻辑问题造成,每天损失产值过亿圆,中石化武汉中韩石化开工过程中乙烯气透平压缩机组喘振是由于入口罐引液不足问题造成,损坏了干气密封;中油东北某石化空分装置透平压缩机的喘振是因为环境湿度过大造成;山东某石化丙烯气透平压缩机喘振是入口气体温度过低造成的;华能公司某电厂的多轴式离心压缩机引起的喘振是环境粉尘造成的,造成机组无法运行;神华某煤化工企业甲醇气透平压缩机喘振是工艺系统反应收率低引起的,每年损失1.8亿圆;西南某石化丙烯气循环压缩机喘振是机后换热器管束粘结物料问题引起的;东北某石化甲烷气透平压缩机喘振是降速过程转速与流量不匹配问题引起的,中海油某石化透平压缩机喘振是现场没有进行实际气体防喘标定造成的,东北某石化焦化装置透平压缩机喘振是选型过大引起,中油、中石化多台新比隆二氧化碳透平压缩机喘振是设计问题造成的,西北某煤化工企业透平压缩机喘振是改造问题引起的,等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气压缩机喘振原因分析及升级改造方案研究
摘要本文简要介绍了空气压缩机喘振现象及其危害,根据空气压缩机实际工作过程中的喘振现象对其原因进行了分析,并针对其喘振原因提出了有效的防喘振策略对空气压缩机进行升级改造。

关键词空气压缩机;喘振;进口流量;改造
0引言
空气压缩机是气源站供抽气系统的重要组成部分,是满足气供应需求的重要器件。

喘振现象是空气压缩机的固有特性,当发生喘振时,空气压缩机内的喘振气流会对其造成强烈的冲击从而影响压缩机工作,对压缩机产生损坏。

因此,对空气压缩机的喘振现象进行分析并研究克服喘振的方法,可以有效延长空气压缩机的寿命,维持空气压缩机可靠稳定工作,保障气源站的供抽气需求,具有重要的经济意义和科研意义。

1喘振及其危害
喘振是空气压缩机中的流量减少到一定程度时,压缩机中的空气受到周期性的吸入和排出,入口气体流量减小到最小值时,出口压力会突然下降,管网内压力降高于出口的压力,于是管网内的气体会倒流回压缩机内,直到出口压力升高到与管网压力相同时为止,压缩机再次工作送气,当流量再次减小到最小值时,管网中的气体又产生倒流,如此产生周期性振动。

喘振的产生和管网的容量有关,管网的容量越大则发生喘振时的振幅越大,喘振越强烈。

因此,管网的容量和喘振是一对不可调和的矛盾,要想满足气源站的大容量供气需求必须要增大管网容量,但是管网容量的增大势必会造成喘振现象更加强烈,对空气压缩机和供气系统产生负面影响。

喘振是空气压缩机的一种非正常振动,会破坏机器内部空气的流动规律,产生机械噪声,造成空气压缩机工作部件的剧烈振动,从而加速了轴承和密封装置的老化速度,降低了空气压缩机的寿命。

如果喘振使得管网、压缩机产生共振还会造成更严重的后果,如仪表失灵、甚至空气压缩机报废等。

2 喘振现象及原因分析
从喘振现象中可以看出,产生喘振的原因是机组进口流量低于机组特征性能喘振极限流量,产生“旋转脱离”现象,使短期机组出口管网压力大于机组出口压力而产生压缩空气回流。

机组喘振特性曲线如图1所示,由特性曲线可以看出,产生喘振的主要原因是在不同压比工况条件下,机组进口流量达不到机组对应工况的喘振极限流量。

目前我院211厂房K350、K50机组防喘系统均采用放空防喘方式,且所有
防喘阀门均为手动阀门;需要运行人员定时现场巡视,当发现机组发生喘振时在现场通过手动防喘阀进行补气。

由于对气源站供抽气量要求的不断增加以及对空气压缩机机组长时间工作的要求提高,因此有必要提高气源站压缩机自动控制和机组使用性能。

做好机组运行过程中的安全保护工作对于提高机组使用性能有着举足轻重的作用。

如果机组喘振则机组会同它的外围管道一起产生大幅度共振,使压缩机的转子和定子的元件经受交变的动应力,级间压力失调引起强烈的振动还会使密封和轴承损坏,甚至发生转子与定子元件相碰,压送的气体外泄、引起爆炸等恶性事故。

所以防喘振系统是压缩机运行中一套至关重要的安全保护装置,如何提高空气压缩机机组的自动控制能力,在机组将要出现喘振时仿喘系统可以自动调节进行智能仿喘的安全保护是非常必要的。

3升级改造方案
由喘振特性曲线和喘振现象看出,导致喘振发生的主要原因是进口流量达不到工况要求时造成的;目前空气压缩机自动防喘系统应用较广泛的主要有定极限流量法、变极限流量法和定压比回流法。

3.1定极限流量法
定极限流量法主要是通过选取不同转速极限喘振流量的最大值的7%~10%,然后将该值作为一个逻辑判断点,通过逻辑控制方式对机组有可能出现喘振工况进行事先补充进气流量或压缩机出口补气降低机组出口管网压力的方式来防止喘振的发生。

这种方法的控制系统比较简单,缺点是机组低负荷运行时,防喘系统过早投入运行,能耗损失非常大。

3.2变极限流量法
变极限流量法则是结合机组在不同转速工况下的喘振特征进气流量曲线,将防喘系统逻辑判断条件设置为相应工况下喘振极限流量的7%~10%,然后根据逻辑控制方式对机组出现喘振工况前进行提前补偿进气流量或在压缩机出口补气降低机组出口管网压力。

这种方法是一种更优于定极限流量法的防喘方法,但该方法对测控系统测试数据精度较高,且要求逻辑运算器的逻辑运算能力较强。

3.3定压比回流法
该防喘方法将机组满足试验需求的常用工况的最小流量状态(即节流运行或抽真空状态的低负荷运行状态)时机组喘振极限状态的最小压比作为防喘系统逻辑判断点,这一防喘系统设计跳过了以往在设计防喘系统时,直观地由防喘现象产生直接原因是由于进气流量不足,而锁定由流量作为状态参数来设计防喘系统的思路,直接跳过现阶段流量测量装置精度较差的瓶颈;该防喘系统在实际投运过程中能较好地起到防喘的作用,但其缺陷如定极限流量法相似,由于其判断条件选择的局限性,可能会导致防喘系统过早投入运行,造成部分能耗损失。

3.4 升级方案的选择
定极限流量法和变极根流量法均以测量流量为逻辑判断依据,而现阶段流量测量装置均有测量装置前、后直管段要求(一般前直管段要求5~20D,后直管段要求3~5D),且测量精度难以保证。

现有气源厂房压缩空气管网结构紧凑,安装空间限制,几乎不能满足流量测量装置前、后直管段要求,所以流量测量误差相对较大,目前根据气源站运行情况,不能将测量流量设定为防喘系统动作的一个逻辑判断点。

在前两种方法中,均有采用放空防喘和回流防喘的成功案例;根据防喘产生的两个相关联的要素分别是进口流量低,机组出口管网压力高于机组出口压力;所以采用放空防喘和回流防喘都能达到防喘的目的,但回流防喘方式则是将机组出口高压气体引至机组进口,这样在提高机组进口流量的同时降低机组出口管网压力,这种调节方式更快速,调节效率更高,并且回流防喘系统正好与机组可组成一个回路,该系统还可以防止机组进出口管网阀门突然失效而导致进出口阻塞而造成的机组喘振事故。

结合以上两种因素根据我院试验性地对多台机组使用定压比式回流防喘系统的使用效果来看,该方法能较好地满足我院现阶段机组防喘的要求,可以采用定压比式回流防喘进行机组防喘振系统的升级改造。

4 结论
采用定压比回流法对仿喘系统进行升级改造可以解决人工仿喘不及时的问题,能够自动监控并及时发现喘振现象,有效提高仿喘效率,降低了操作人员劳动成本,达到了更好的仿喘效果。

参考文献
[1]高路,张喜杰.空气压缩机喘振原因分析及对策[J].化工机械,2009(5).
[2]吴朝福,郭挺.空气压缩机的喘振原因及预防措施[J].大氮肥,2010(1).
[3]何小平,张江维.工艺空气压缩机喘振的检测与预防[J].河北化工,2009(3).。

相关文档
最新文档