离心式压缩机喘振现象

合集下载

浅析什么是喘振-离心式压缩机为什么会发生喘振

浅析什么是喘振-离心式压缩机为什么会发生喘振

浅析什么是喘振/离心式压缩机为什么会发生喘振
什么是喘振
喘振是流体机械及其管道中介质的周期性振荡,是周期性吸入和排出激发下介质的机械振动。

在离心式空气压缩机中,喘振是压缩机运行中常见的故障之一,也是旋转失速的进一步发展。

当离心式压缩机的负荷降低到一定程度时,压缩气体将在叶轮的非工作面上形成分离质量,导致冲击损失急剧增加,不仅增加了流量损失,而且降低了效率,但也导致空气从管道网络流回压缩机,引起机身强烈振荡,并引起“哮喘”或“哮喘”。

“咆哮”声,这种现象被称为离心式压缩机的“浪涌”。

浪涌引起的机械振动频率和振幅与管网的体积密切相关。

管网的体积越大,浪涌频率越低,振幅越大。

离心式压缩机发生喘振时,典型现象有:
1、压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;
2、压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;
3、拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;
4、机器产生强烈的振动,同时发出异常的气流噪声。

目前来说解决喘振常用的方法有三种:
1、在压气机上增加放气活门,使多余的气体能够排出。

2、使用双转子或三转子压气机。

3、使用可调节式叶片。

理论上的偶就说了,喘振的发生区间可以在工况曲线上找到。

主要产生原因:
1、蒸发压力过低,或者蒸发温度过低
引起这个的可能是回水温度低了,导致导叶开度迅速降低以致于压缩机的出口压力和冷凝压力接近,或者节流装置堵塞导致蒸发器里的液态冷媒不足以支持压缩机持续的像冷凝器输出高压气态冷媒。

2、冷凝压力过高,或者冷凝温度过高。

离心机出现喘振的原因以及解决办法

离心机出现喘振的原因以及解决办法

离心机出现喘振的原因以及解决办法离心机喘振是离心机的杀手,高速冷冻离心机和超高速冷冻离心机出现喘振的几率比较大,严重时会损坏离心机转子等配件。

离心机喘振原因1.冷凝器积垢:冷凝器换热管内表水质积垢(开式循环的冷却水系统最容易积垢),而导致传热热阻增大,换热效果降低,使冷凝温度升高或蒸发温度降低,另外,由于水质未经处理和维护不善,同样造成换热管内表面沉积沙土、杂质、藻类等物,造成冷凝压力升高而导致离心机喘振发生。

2.制冷系统有空气:当离心机组运行时,由于蒸发器和低压管路都处于真空状态,所以连接处极容易渗入空气,另外空气属不凝性气体,绝热指数很高,为1.4,当空气凝积在冷凝器上部时,造成冷凝压力和冷凝温度升高,而导致离心机喘振发生。

3.冷却塔冷却水循环量不足,进水温度过高等。

由于冷却塔冷却效果不佳而造成冷凝压力过高,而导致喘振发生。

4.蒸发器蒸发温度过低:由于系统制冷剂不足、制冷量负荷减小,球阀开启度过小,造成蒸发压力过低而喘振。

5.关机时未关小导叶角度和降低离心机排气口压力。

当离心机停机时,由于增压突然消失,蜗壳及冷凝器中的高压制冷剂蒸气倒灌,容易喘振。

6.叶轮摩擦外壳,轴承不平衡。

离心机喘振排除:1.冷凝器结垢:清除传热面的污垢和清洗冷却塔。

2.系统中空气排除:离心机采用K11(氨)制冷剂时,一般液体温度超过28℃时,表明系统中有空气存在。

排除方法:启动抽气回收装置,将不凝性气体排出,一般将制冷剂R11的压力抽到稍低于制冷荆液体温度相对应的饱和压力,即28℃以下的对应压力:117.68KMP以下即可。

3.启动后发生喘振:进行反喘振调节。

当能量调节大幅度减少时,造成吸气量不足,即蒸气不能均匀流入叶轮,导致排气压力陡然下降,压缩机处于不稳定工作区,而发生喘振。

为了防止喘振,可将一部分被压缩后的蒸气,由排气管旁通到蒸发器,不但可防喘振.而且对离心机启动时也有益:减少蒸气密度和启动时的压力,可减小启动功率。

离心式压缩机喘振的原因分析及处理

离心式压缩机喘振的原因分析及处理

离心式压缩机喘振的原因分析及处理摘要:离心式压缩机喘振现象的发生主要取决于管网的特性曲线和离心式压缩机的特性曲线。

本文对离心式压缩机特点、喘振现象、产生的危害、判断方法、发生原因进行了总结,并提出了相应的预防措施。

关键词:压缩机;喘振;预防措施喘振是离心压缩机特有的一种现象,它是危害压缩机结构的主要原因之一,在工艺流程中应尽力避免压缩机喘振现象的出现。

根据石化企业压缩机机组现场应用反馈,机组发生喘振现象比较普遍,有些机组甚至频繁发生喘振,给企业安稳生产及经济效益造成了一定的影响。

1.喘振原因喘振作为离心式压缩机运行中的一-种特殊现象,易造成气流往复强烈冲击,严重影响压缩机运行部件,是造成运行事故的主要因素。

喘振是离心式压缩机本身固有的特性,导致喘振产生的因素有两方面:内在因素是由于离心式压缩机中的气流在一定的条件下出现了“旋转脱离”这种状况:而外在因素是由于离心式压缩机管网系统的特性。

2.离心机的特点离心式压缩机是具有处理气量大、体积小、结构简单、运转平稳、维修方便等特点,应用范围广。

但由于离心机本身结构所限,仍然存在短板,在压力高、流量小的场合会发生喘振,且不能从设计上予以消除。

3.离心式压缩机喘振的危害、现象及判断3.1喘振的危害喘振是当离心式压缩机的进口流量减少至一定程度时所发生的一种非正常工况下的振动,气体流量、进出口压力出现波动,从而引起压缩机转速及工艺气在系统中产生周期性振荡现象。

喘振的危害:(1)由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅波动,破坏了工艺系统的稳定性;(2)使压缩机叶片发生强烈振动,叶轮应力大幅增加,噪声加剧;(3)引起动静部件的摩擦与碰撞,使压缩机的轴发生弯曲变形,严重时会产生轴向窜动,使轴向推力增大,发生烧毁止推轴瓦甚至扫膛事故;(4)加剧轴承、轴瓦的磨损,破坏润滑油膜的稳定性,使轴瓦合金产生疲劳裂纹,甚至发生烧瓦抱轴等事故;(5)损坏压缩机的机械密封及轴封,使压缩机效率降低,同时由于密封的损坏会造成工艺气泄漏,极易引发火灾、爆炸等事故;(6)影响驱动机的正常运转,干扰操作人员的正常操作,使一些仪表、仪器的测量准确性降低甚至损坏。

离心式压缩机喘振现象与调节方法

离心式压缩机喘振现象与调节方法

离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。

判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。

压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。

当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。

二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。

如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。

图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。

(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。

(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。

喘振的原因及解决方法

喘振的原因及解决方法

喘振的原因及解决方法1、负荷过低喘振是离心式压缩机的固有特性。

当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。

但是系统管网的压力没有瞬间相应的降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向管网流动。

如此反复,使机组与管网发生周期性的.轴向低频大振幅的气流振荡现象。

离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。

压缩机排量减小,叶轮到达压头的能力也减小。

而冷凝温度由于冷却水温未改变而维持不变,那么此时就可能发生旋转失速或喘振。

2、冷凝压力过高当机组负荷过高时,冷却水温度不能及时降低,就会造成冷凝温度增高,冷凝压力也就随之增高,当增加至接近于排气压力时,冷凝器内局部制冷剂气体会倒流,此时也会发生喘振。

对于任何一台离心式压缩机,当排量小到某一极度限点或冷凝压力高于某一极度限点时就会发生喘振现象。

冷水机组是否在喘振点区域运行,主要取决于机组的运行工况。

喘振运行时离心式制冷机的一种不稳定运行状态,会导致压缩机的性能显著恶化,能效降低;大大加剧整个机组的振动,喘振使压缩机的转子和定子原件经受交变力的动应力;压力失调引起强烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等;叶轮动应力加大。

1、改变压缩机转速对压缩机加装变频驱动装置,将恒速转动改为变速转动。

在低负荷状态运行时,通过同时调节倒流叶片开度和电机转速,调节机组运行状态,可控制离心机组迅速避开喘振点,防止喘振对机组的伤害,确保机组运行平安。

同时,变频离心机运行在局部负荷工况时,低转速运行,降低了电机噪音,并能缓解与建筑物产生共振现象。

2、降低冷凝温度发生喘振时,一般会认为是吸入口压力过低造成的,但机组在80%以上负荷运转时也会产生喘振,那么是由于冷凝压力过高引起的,这时就要想法降低冷却水温度来降低冷凝压力。

离心式压缩机喘振原因及其预防措施分析_1

离心式压缩机喘振原因及其预防措施分析_1

离心式压缩机喘振原因及其预防措施分析发布时间:2022-11-27T00:49:56.220Z 来源:《中国科技信息》2022年8月15期作者:李志杰[导读] 随着科技的进步,促进工程建设事业也在不断发展。

在工业建设中,离心压缩机的使用具有不可替代性,李志杰新疆中泰化学阜康能源有限公司新疆阜康 831500摘要:随着科技的进步,促进工程建设事业也在不断发展。

在工业建设中,离心压缩机的使用具有不可替代性,属于重要设备。

喘振现象能够损坏离心式压缩机结构,是设备不平稳的运行状态,不仅会降低离心式压缩机综合性能,还会阻碍机组正常工作,缩短离心式压缩机的使用寿命。

为保障工作效率及综合效益,应注意总结产生喘振的原因及预防措施,尽可能降低喘振频率,避免喘振现象。

本文就离心式压缩机喘振原因及其预防措施展开探讨。

关键词:离心式压缩机;喘振;预防引言通常来说离心压缩机主要执行多级压缩,其运行原理是借助自带的叶轮对气体做功,气体输送进叶轮与扩压器流道中,在离心升压、降速扩压作用下,实现机械能向气体内能的转化。

要想有效发挥离心压缩机运作性能,就应重视起设备的高质量制造,为设备良好、稳定运行创设有利的先决条件。

1离心式压缩机工作原理离心式压缩机的做功方式是气体被吸入室吸入,并通过转子对气体进行做功,以增加气体压力、速度和温度,气体进入扩散器以降低速度并进一步增加压力,最后一级的高压气体通过离心室和出口管排出,其中的弯曲回流装置主要作用是引导气体流向下一级继续压缩。

由于压缩过程中气体温度升高,气体在高温下压缩时能耗会急剧增加。

为降低压缩能耗,高压离心压缩机在压缩过程中采用中冷器降温。

也就是说,来自中间级出口的压缩气体不直接进入下一级,而是被引入蜗轮室和出口管外进行冷却,冷却后的低温气体通过吸入室进入下一个压缩级。

离心式压缩机由许多零件组成,根据其功能组成不同,分为转子和机架部分,其中压缩机的旋转部件为转子,非旋转部件和组件为机架。

离心式压缩机的喘振原因及预防14

离心式压缩机的喘振原因及预防14

离心式压缩机的喘振原因及预防]离心式压缩机的喘振原因及预防田立华(中石油前郭石化分公司)摘要离心式压缩机发生喘振时,转子及定子元件经受交变的动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。

因此,离心式压缩机严禁在喘振区域内运行。

本文针对喘振的原因和预防措施做了详细论述。

关键词离心式压缩机喘振喘振点性能曲线旋转脱离一、喘振机理喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。

当外界条件适合内在因素时,便发生喘振。

2.喘振与管网的关系离心压缩机的喘振是其本身的固有特性。

压缩机是否在喘振工况点附近运行,这主要取决于管网的特性曲线P=Pa+AQ2。

图2为离心压缩机和管网联合工作性能曲线。

交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管网特性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。

相反闸阀开大时,管道中的阻力系数A减小,管网特性曲线1右移,压缩机流量达到Qmax时,出现滞止工况。

最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。

3.喘振的产生从图2可以看出:由于管网阻力的增加,管网特性曲线左移,致使压缩机工况点向小流量偏移。

压缩机的流量Qj 减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈的脉动。

发生旋转脱离时在叶轮的凹面形成涡流区,当流量减小到Qmin时,上述的正冲角i 增加得更大,涡流区扩大到整个叶片流道,气流受到阻塞,压缩机出口压力突然下降,而管网中气体压力并不同时下降,这时,管网中压力P1大于压缩机出口压力P2,因而管网中气体倒流向压缩机,直至管网中压力下降到低于压缩机出口压力时才停止倒流。

这时压缩机又开始向管网压送气体,使管网中的气体压力再次升高至P1时,压缩机的流量Qj减少到Qmin,出口压力突然降到P2,P1>P2后,管网中气体又倒流向压缩机。

离心式压缩机喘振发生的机理、原因及预防措施!

离心式压缩机喘振发生的机理、原因及预防措施!

离⼼式压缩机喘振发⽣的机理、原因及预防措施!⼀、喘振发⽣的机理当离⼼式压缩机的操作⼯况发⽣变动并偏离设计⼯况时,如果⽓体流量减少则进⼊叶轮或扩压器流道的⽓流⽅向就会发⽣变化。

当流量减少到⼀定程度,由于叶轮的连续旋转和⽓流的连续性,使这种边界层分离现象扩⼤到整个流道,⽽且由于⽓流分离沿着叶轮旋转的反⽅向扩展,从⽽使叶道中形成⽓流漩涡,再从叶轮外圆折回到叶轮内圆,此现象称为⽓流旋离,⼜称旋转失速。

发⽣旋转脱离时叶道中的⽓流通不过去,级的压⼒也突然下降,排⽓管内较⾼压⼒的⽓体便倒流回级⾥来。

瞬间,倒流回级中的⽓体就补充了级流量的不⾜,使叶轮⼜恢复了正常⼯作,从⽽从新把倒流回来的⽓体压出去。

这样⼜使级中流量减少,于是压⼒⼜突然下降,级后的压⼒⽓体⼜倒流回级中来,如此周⽽复始,在系统中产⽣了周期性的⽓体振荡现象,这种现象称为“喘振”。

⼆、喘振发⽣的原因1、流量图1 不同转速下出⼝压⼒与流量的关系每台离⼼式压缩机在不同转速n下都对应着⼀条出⼝压⼒P与流量Q之间的曲线,如图1所⽰。

随着流量的减少,压缩机的出⼝压⼒逐渐增⼤,当达到该转速下最⼤出⼝压⼒时,机组进⼊喘振区,压缩机出⼝压⼒开始减⼩,流量也随之减⼩,压缩机发⽣喘振。

从曲线上看,流量减⼩是发⽣喘振的根本原因,在实际⽣产中尽量避免压缩机在⼩流量的⼯况下运⾏。

2、⽓体相对分⼦质量图2 不同相对分⼦质量时的性能离⼼压缩机在相同转速、不同相对分⼦质量下恒压进⾏的曲线,从曲线中可以看出,在恒压运⾏条件下,当相对分⼦质量M=20的⽓体发⽣喘振时,相对分⼦质量为M=25和M=28的⽓体运⾏点还远离喘振区。

因此,在恒压运⾏⼯况下,相对分⼦质量越⼩,越容易发⽣喘振。

3、⼊⼝压⼒图3 不同⼊⼝压⼒时的性能压缩机的⼊⼝压⼒P1>P2>P3,在压缩机恒压的运⾏⼯况下,⼊⼝压⼒越低,压缩机越容易发⽣喘振,这也是⼊⼝过滤器压差增⼤时,要及时更换滤⽹的原因。

4、⼊⼝温度图4 不同⼊⼝温度时的性能恒压恒转速下进⾏的离⼼式压缩机在不同⼊⼝⽓体温度时的进⾏曲线,从曲线上可以看出在恒压运⾏⼯况下,⽓体⼊⼝温度越⾼,越容易发⽣喘振。

离心式压缩机喘振原理

离心式压缩机喘振原理

离心式压缩机喘振原理喘振的原因通常可以归结为以下几种情况:1.气体流量与压缩比不匹配:当压缩机的工作点离开了设计范围,即气体流量和压缩比的匹配不合理时,就会发生喘振。

一般来说,离心式压缩机的设计工况是在特定的气体流量和压缩比范围内进行的。

如果超过了这个范围,就容易发生喘振。

2.气体不稳定性:一些气体在不同的压缩比下会发生热力学不稳定性,即存在压力和温度的波动现象。

这些波动将通过反馈回路进一步放大,导致压缩机发生振动。

3.系统堵塞或阻塞:如果系统中存在堵塞或阻塞,气体流动将受到限制,从而使得压缩机无法正常工作。

此时,压缩机可能会试图通过提高流量来克服这个问题,导致喘振的发生。

为了解决喘振问题,可以采取以下措施:1.优化设计:在离心式压缩机的设计过程中,应该充分考虑气体流动和压缩比的匹配。

通过合理的设计,可以最大程度地减少喘振的风险。

2.增加稳定性:通过改变压缩机的结构和控制策略,可以提高其工作的稳定性。

例如,在压缩机的出口增加脉动消除器,可以降低气体流动的不稳定性。

3.检测和控制:监测离心式压缩机的运行状态,及时发现异常振动和声音。

通过自动控制系统对压缩机进行调节,可以避免喘振的出现。

4.维护和保养:定期检查和维护压缩机,确保其正常运行。

及时清理系统中的污垢和堵塞物,以保证气体流动的畅通。

综上所述,离心式压缩机的喘振是由多种原因引起的,包括气体流量与压缩比不匹配、气体不稳定性以及系统堵塞或阻塞等。

为了解决喘振问题,可以通过优化设计、增加稳定性、检测和控制、维护和保养等方式进行。

这些措施可以提高压缩机的工作效率和稳定性,延长设备的使用寿命。

离心式压缩机的喘振

离心式压缩机的喘振

如万一出现“旋转失速”和“喘振”,首先应立即全部打开防喘振阀,增加压缩机流量,然后根据情况进行处理。若是因进气压力低、进气温度高和气体分子量减小等原因造成的,要采取相应措施使进气气体参数符合设计要求;如是管网堵塞等原因,就要疏通管网,使管网特性优化;如是操作不当引起的,就要严格规范操作。
离心式压缩机为什么设置轴位移保护措施?
油温过低,会使油的黏度增加,从而使油膜润滑摩擦力增大,轴承耗功率增加。此外,还会使油膜变厚,产生因油膜振动引起的机器振动。因此,润滑油进油温度不应低于25℃,出油温度不高于60℃。
油温的变化可以通过加热器及冷却器的冷却水流量的大小来调节。油温过低时,可启动油加热器,关闭或调小冷却水流量;油温过高时,可以开大冷却水量。如果仍然不见效,应检查油压是否下降,冷却器是否脏污或堵塞,再者检查轴承是否损坏。
净化的方法很多,最简单的方法是静置沉淀,即将润滑油在沉淀槽内加热至90℃左右,进行3~4h沉淀。但这种方法只能除去部分水分;其次是蒸馏法,将润滑油进行蒸馏也可去除其中的水分。不过,通常采用分油器(系列化代号为FYQ)进行油水分离。分油器以较高的速度旋转,转速一般在4000~7000r/min。利用离心力把相对密度不同的油和水进行分离,以达到净化目的。
一、叶轮对排。单级叶轮产生的轴向力,其方向是指向叶轮入口的,如将多级叶轮采取对排,则入口方向相反的叶轮,会产生相反的轴向力,可相互得到平衡,因此,它是多级离心式压缩机最常用的轴向力平衡方法。
二、设置平衡盘。平衡盘也是离心式压缩机常用的平衡轴向力装置,有的设置在压缩机的高压端,有的设置在压缩机的两段之间,平衡盘的高压侧与压缩机末级叶轮相通,低压侧与压缩机入口相联接或较低压力的叶轮出口相通,其外缘与气缸间设有迷宫密封,从而使平衡盘的两侧保持一定的压差,该压差会产生一个轴向力,其方向与叶轮产生的轴向力相反,从而平衡掉一部分轴向力,其大小由下列方程式计算:

离心式压缩机喘振及控制

离心式压缩机喘振及控制

离心式压缩机喘振及控制一、什么是喘振?离心式压缩机产生喘振的原因?当离心机压缩机的负荷降低,排气量小于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,产生强烈的震荡,并发出如哮喘病人的喘气的噪声,此时可看到气体出口压力表、流量表的指示发生大幅度的波动,随之,机身也会发生剧烈的震动,并带动出口管道,厂房振动,压缩机将会发生周期性、间断的吼响声。

如不及时采取措施,压缩机将会产生严重的破坏,这种现象就叫做压缩机的喘振,也称飞动。

喘振是因为离心式压缩机的特性曲线程驼峰状引起的,离心式压缩机是其压缩比(出口绝压P2与入口绝压P1之比)与进口气体的体积流量之间的关系曲线,具体图如下(其中n 为压缩机的转速):从上图可以看出每种转速下都有一个P2/P1的最高点,这个点称之为驼峰,将各个驼峰点连接起来就可以得到一条喘振边界线,如图中虚线所示,边界线左侧的阴影部分为不稳定的喘振区,边界线右侧部分则为安全运行区,在安全运行区压缩比P2/P1随流量Q的增大而减小,而在喘振区P2/P1随流量的增大而增大举例说明:假设压缩机在n2转速下工作在A点,对应的流量为QA,如果此时有某个干扰使流量减,小,但仍在安全区内,这时压缩比会增大,即P2增大,这时就会使压缩机的排出压力增大并恢复到稳定时的流量QA。

但如果流量继续下降到小于n2转速下的驼峰值QB,这时压缩比不但不会增大,反而会下降,即出口压力P2会下降,这时就会出现恶性循环,压缩机的排出量会继续小,P2会继续下降,当P2下降到低于管网压力时瞬间将会出现气体的倒流,随着倒流的产生,管网压力下降,当管网压力降到与压缩机出口压力相等时倒流停止,然而压缩机仍处于运转状态,于是压缩机又将倒流回来的气体又重新压缩出去,此时又会引起P2/P1下降,被压出的气体又重新倒流回来,这种现象将反复的出现,气体反复进出,产生强烈的整理,这就是所谓的喘振。

二、防喘振控制的方案(两种)固定极限流量防喘振控制:把压缩机最大转速下的喘振点的流量作为极限值,是压缩运行时流量始终大于该极限值。

离心压缩机防喘振控制

离心压缩机防喘振控制

离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。

此时可看到气体出口压力表、流量表的指示大幅波动。

随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。

如不及时 采取措施,将使压缩机遭到严重破坏。

例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。

下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。

离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。

当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。

如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。

因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。

由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。

2.喘振线方程喘振是离心压缩机的固有特性。

离心压缩机的喘振点与被压缩机介质的特性、转速等有关。

将不同转速下的喘振点连接,组成该压缩机的喘振线。

实际应用时,需要考虑安全余量。

喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。

防喘振控制原理及方法

防喘振控制原理及方法

4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。

此时可看到气体出口压力表、流量表的指示大幅波动。

随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。

如不及时 采取措施,将使压缩机遭到严重破坏。

例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。

下面以图 4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。

离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。

当转速n 一定时,曲线上点c 有最大压缩比,对应流量设为P Q ,该点称为喘振点。

如果工作点为B 点,要求压缩机流量继续下降,则压缩机吸入流量P Q Q < ,工作点从C 点突跳到D 点,压缩机出口压力C P 从突然下降到D P ,而出口管网压力仍为C P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线 也下降到D P ,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到A Q 。

因流量A Q 大于B 点的流量,因此压力憋高到B P ,而流量的继续下降,又使压缩机重复上述过程,出现工作点从B A D C B →→→→的反复循环,由于这种循环过程极迅速,因此也称为“飞动”。

由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。

2.喘振线方程喘振是离心压缩机的固有特性。

离心压缩机的喘振点与被压缩机介质的特性、转速等有关。

将不同转速下的喘振点连接,组成该压缩机的喘振线。

实际应用时,需要考虑安全余量。

喘振线方程可近似用抛物线方程描述为:θ2121Q b a p p += (4.2-1)式中,下标1表示入口参数;p 、Q 、θ分别表示压力、流量和温度;b a 、是压缩机系数,由压缩机厂商提供。

离心式压缩机的喘振及控制

离心式压缩机的喘振及控制

离心式压缩机的喘振及控制近年来,社会经济在快速发展的同时,城市化进程的步伐逐渐加快,人们的生活水平不断提高的同时,对于各项能源的需求不断增加,其中石油能源与天然气能源作为主要的能源之一,与人们的生活密切相关。

在天然气运输以及石油化工工业生产过程中,离心式压缩机具有重要的作用,离心式压缩机是否能够正常稳定的运行是保障石油化工安全生产的基础,在压缩机实际运行过程中,喘振现象是比较常见的一种现象。

文章通过对离心式压缩机喘振的原因及影响因素进行了分析,并进一步探讨了离心式压缩机喘振现象的具体控制策略,希望可以为相关从业人员提供些许借鉴。

标签:离心式压缩机;喘振;控制方法;预防前言:离心式压缩机具备体积较小、结构相对简单,且实际排放量大、效率高等优点,被广泛应用于天然气、石油化工行业当中,压缩机的安全可靠性是保障生产效率及平稳运行的前提。

但是在实际运行过程中,离心式压缩机对外界温度、气压以及气体流量等相对比较敏感,因此,工作过程中经常会出现喘振问题,对压缩机自身的稳定性产生了极大的影响,也是导致离心式压缩机损坏的重要因素。

所以,针对离心式压缩机存在的问题进行有效预防与控制,才能够保障工业生产能够正常有序运行,从而减少维护费用,为企业创造更大的经济效益与社会效益。

1.离心式压缩机原理离心式压缩机在实际运行过程中,气体会跟随压缩机中的叶轮不断的旋转,在离心力的作用和影响下,会被甩出,不断的进入到压缩机当中,叶轮处会逐渐形成真空地带,其次,没有经过处理的空气也会进入到叶轮当中,在持续旋转下,对气体持续不断的吸入和甩出,使得气体能够连续不断的流动起来[1]。

2.离心式压缩机喘振的具体原因与影响因素2.1、原因首先,离心式压缩机系统在实际运行过程中,一旦受到过大的压力情况下,便会出现喘振的情况,主要的原因有以下方面:离心式压缩机在正常运行时,如果突然间停止工作,压缩机当中气体没有及时进行清空。

压缩机管道口的逆止阀出现失灵的情况,阻碍正常使用。

离心压缩机异常振动、异常噪音、喘振原因与处理方法

离心压缩机异常振动、异常噪音、喘振原因与处理方法
离心压缩机异常振动、异常噪音、喘振原因与处理方法
1、压缩机的异常振动和异常噪音:
可能的原因
处理方法
①、机组找正精度被破坏,不对中。
检查机组振动情况,轴向振幅大,振动频率与转速相同,有时为其2倍、3倍……卸下联轴器,使原动机单独转动,如果原动机无异常振动,则可能为不对中,应重新找正。
②、转子不平衡。
检查振动情况,若径向振幅大,振动频率为n,振幅与不平衡量及n2成正比;此时应检查转子,看是否有污垢或破损,必要时转子重新动平衡。
⑦、防喘装置或机构工作失准或失灵。
定期检查防喘装置的工作情况,发现失灵、失准或卡涩,动作不灵,应及时修理调整。
⑧、防喘整定值不准。
严格整定防喘数值,并定期试验,发现数值不准及时校正。
⑨、升速、升压过快。
运行工况变化,升速、升压不可过猛、过快,应当缓慢均匀。
⑩、降速未先降压。
降速之前应先降压,合理操作才能避免发生喘振。
④、压缩机出口气体系统压力超间。
压缩机减速或停机时气体未放空或未回流,出口逆止阀失灵或不严,气体倒灌,应查明原因,采取相应措施。
⑤、工况变化时放空阀或回流阀未及时打开。
进口流量减少或转速下降,或转速急速升高时,应查明特性线,及时打开防喘的放空阀或回流阀。
⑥、防喘装置未投自动。
正常运行时防喘装置应投自动。
⑮、气体管道对机壳有附加应力。
气体管路应很好固定,防止有过大的应力作用在压缩机气缸上;管路应有足够的弹性补偿,以应付热膨胀。
⑯、压缩机附近有机器工作。
将它的基础、基座互相分离,并增加连结管的弹性。
⑰、压缩机负荷急剧变化。
调节节流阀开度。
⑱、部件松动。
紧固零部件,增加防松设施。
2、离心压缩机喘振:

离心式压缩机的喘振原因及控制分析

离心式压缩机的喘振原因及控制分析

离心式压缩机的喘振原因及控制分析韩建彬(河南龙宇煤化工有限公司,河南 永城 476600)摘要:喘振是离心式压缩机典型故障之一,是造成装置运行不稳定,压缩机性能缺失的重要因素。

本文分析了离心式压缩机发生喘振的内、外因素,并提出了避免喘振发生的措施。

关键词:离心式压缩机;喘振;流量;叶轮化石能源输送、化工生产、钢铁冶炼、化肥生产等国家重点项目中都离不开基于离心式压缩机对气体的压缩与输送,可以说离心式压缩机是工业设计、生产、工程改造的重点对象。

离心式压缩机是一种基于回转运动原理的设备,其具有空间占地小、设备密度低、结构单元紧凑、运行稳定、输送压缩气体流量大等特点。

但是离心式压缩机运行时也会面对如喘振、稳定工作区域窄等技术问题,一方面会影响压缩机工作性能造成装置运行波动,另一方面也会造成压缩机故障或者寿命缩减。

例如喘振会导致离心式压缩机轴承润滑液体被破坏,导致轴瓦过电压损坏;离心式压缩机密封设备损坏,造成气体泄漏。

因此,准确的掌握离心式压缩机工作原理,掌握离心式压缩机出现喘振故障的诱导因素,制定采取一系列防止喘振的措施,保障离心式压缩机脱离喘振工作范围,是保证工业生产的关键手段。

1 喘振的判断方法离心式压缩机发生喘振现象时会伴随着明显的机组和管道异常特征:(1)离心式压缩机和管道会发生周期性、高频率振动,这种震动会产生振动噪音,严重时整个离心式压缩机机组会发生激烈的 “吼叫”噪音。

(2)机组外壳、轴承、机组配件等发生剧烈振动,振动频率、幅度随机变化,并伴随着剧烈、周期性的气流声。

(3)压缩机机组的出入口压力、流量不稳定,出现大幅度变化,变化频率呈现一定周期性,同时伴随着管道气体倒流的情况,是造成装置波动的主要因素。

从上述说明可以看出,观察离心式压缩机运行工况时的声音、仪表指数变化情况、进出口压力、进出口流量等是判断压缩机是否发生喘振的重要依据。

2 喘振原因的分析2.1 喘振发生的内因造成离心式压缩机喘振的内部原因是由于压缩机设备叶轮结构组成以及压缩介质气体之间的不匹配性导致的。

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析摘要:离心式压缩机是通过叶轮带动气流,增大气流的速度,把气流中的能量转换成气压,从而提高气体的压强。

其优点是单级流量大,压力比高,气体介质密封效果好。

离心式压缩机具有较强的压力、流量相关性,其稳态工作区间较小,且极易产生喘振现象,为了保证离心式压缩机的安全、稳定工作,需要对喘振现象进行有效的控制。

通过对压缩机特性曲线的测试,可以得到满足特定工况的压缩机抗喘振特性曲线,该防喘振系统控制下的机组应是最安全和经济的。

关键词:预防喘振;离心式压缩机;故障分析1.离心式压缩机喘振原理离心式压缩机是一种利用叶轮高速转动来持续提高气压的转动设备。

气体压力主要是通过扩散阀和推进器来提高的。

当压缩机内的气体速度下降到一定程度时,将引起压缩机内叶轮的转动、分离,并在叶轮内产生大量的气体漩涡。

在这种情况下,由于阻塞严重,会使压缩机出口的压力大大下降。

因为管网的容积很大,所以出现在管网上的气体压力快速降低的可能性很小。

一般情况下,管网内的气压比压缩机出口气压高的多,造成管网内气压回流。

直到压缩机出口的气压和管道内的气压相同,这种回流现象才会发生。

此后,在人工转动叶轮的作用下,气压逐渐上升。

在管网内气压快速升高后,气压又会逐步下降,使系统内再一次发生回流,导致系统内出现大幅的气体喘振及周期的低频现象。

这就是压缩机的喘振现象。

2.离心式压缩机喘振的影响因素2.1内部因素离心式压缩机产生喘振的内在原因有两个:一个是叶轮,另一个是介质。

如果进气体速小于规定的数值,则会使压缩机的风向发生偏移。

如果有非常大的偏离,也可能造成分离。

这时,气体将滞留于叶轮流道内,使压缩机内压下降。

但是,在工程管道中,由于背压的存在,出口的压力不会下降,从而引起气体的回流,从而补充气体的流动,最终达到正常水平。

若持续降低且补给不充分,仍然存在回流现象。

长此以往,设备内的空气将产生喘振,这就是造成离心式压缩机喘振的内部因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心式压缩机喘振现象
1、引言
空气压缩机主要分为三类:往复式、螺杆式、离心式,不管何种类型压缩机都普遍存在喘振现象。

离心式压缩机的喘振现象尤为明显。

现就离心式空气压缩机的喘振现象作一简要介绍。

离心式压缩机运行中一个特殊现象就是喘振。

防止喘振是离心式压缩机运行中极其重要的问题。

许多事实证明,离心式压缩机大量事故都与喘振现象有关。

2、喘振发生的条件
根据喘振原理可知,喘振现象在下述条件下发生:
2.1在流量小时,流量降到该转速下的喘振流量时发生
离心式压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量--喘振流量。

当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。

上述流量,出口压力,转速和喘振流量综合关系构成离心式压缩机的特性曲线,也叫性能曲线。

在一定转速下使流量大于喘振流量就不会发生喘振现象。

2.2管网系统内气体的压力,大于一定转速下对应的最高压力时发生喘振现象
如果离心式压缩机与管网系统联合运行,当系统压力超出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机出现喘振现象。

3、在运行中造成喘振的原因
在运行中可能造成喘振现象的各种原因有:
3.1系统压力超高
造成这种情况的原因有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀门距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节;防喘系统未投自动等等。

3.2吸入流量不足
由于外界原因使吸入量减少到喘振流量以下,而转速未及时调节,使压缩机进入喘振区引起喘振。

如下图1。

造成这种情况的原因有:压缩机入口滤器阻塞,阻力太大,而压缩机转速未能调节造成喘振;滤芯太脏,或冬天结冰都可能发生这种情况;入口气源减少或切断,如压缩机供气不足,压缩机没有补充气源等等。

所有这些情况如不及时发现及时调节,压缩机都可能发生喘振现象。

4、防止与消除喘振现象的方法
4.1防止与消除喘振现象的根本措施是设法增加压缩机的入口气体流量
对一般无毒,不危险气体如空气,CO2等可采用放空;对合成气,天然气,氨等气体可采取回流循环。

采用上述方法后,可使流经压缩机的气体流量增加,消除喘振;但压力随之降低,浪费功率,经济性下降。

如果系统需要维持等压的话,放空或回流之后应提升转速,使排出压力达到原有水平。

在升压前和降速、停机之前,应当将放空阀门或回流阀门预先打开,以降低背压,增加流量,防止喘振。

4.2根据压缩机性能曲线,控制防喘裕度
防喘系统在正常运行时应投入自动。

升速、升压之前一定要事先查好性能曲线,选好下一步的运行工况点,根据防喘振安全裕度来控制升压、升速。

防喘振安全裕度就是在一定工作转速下,正常工作流量与该转速下喘振流量之比值,一般正常工作流量应比喘振流量大1.05~1,3倍,即:
裕度太大,虽不易引发喘振,但压力下降很多,浪费很大,经济性下降。

在实际运行中,最好将防喘阀门的整定值,根据防喘裕度来整定。

过大不经济,过小又不安全。

防喘系统根据安全裕度整定好以后,在正常运行时防喘阀门应当关闭,并投入自动,这样既安全又经济。

有的单位防喘装置不投自动,而用手动,恐怕发生喘振而不敢关严防喘阀门,正常运行时有大量气体回流或放空,这既不经济又不安全:因为发生喘振时用手动操作是来不及的,结果不能防止喘振现象。

相关文档
最新文档