离心压缩机优缺点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

喘振的概念
1)喘振的概念 喘振是离心式压缩机本身固有的特性,而造成喘振的唯一直接原因是进气量减小到一定值。 从前面我们已经知道,当气量减小到一定程度时,会出现旋转脱离,如这时进一步减小流量,在叶片背面将形成很大的涡流区域,气流分离层扩及整个通道,以至充满整个叶道,而把流道阻塞,气流不能顺利的流过,这时流动严重恶化,压缩机的出口压力会突然大大下降,由于压缩机总是和管网系统联合工作,这时管网中的压力不会马上减低,于是管网中的气体压力就会大于压缩机的出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降到低于压缩机的出口压力为止,这时倒流停止,压缩机又开始向管网供气,经过压缩机的流量又增大,压缩机又恢复到正常工作。但当管网中的压力恢复到原来压力时,压缩机的流量又减少,系统中的气流又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象就称作“喘振”。 喘振现象不但和压缩机中严重的旋转脱离有关,还和管网系统有关。管网的容量越大,则喘振的振幅越大,频率越低。喘振的频率大致和管网容量的平方跟成反比。
2)喘振的现象及判断 机组喘振时,压缩机和其后的管道系统之间产生了一种低频高振幅的压力波动,整个机组发生强力的振动,发出严重的噪音,调节系统也大幅度的波动。一般根据下列方法判断是否进入喘振工况。 (1)监测压缩机出口管道气流噪音。正常工况时出口的声音是连续且较低的。而接近喘振时,整个系统的气流产生周期性的振荡,因而在出口管道处声音是周期性的变化,喘振时,噪音加剧,甚至有爆音出现。 (2)观测压缩机流量及出口压力的变化。离心式压缩机稳定运行时其出口压力和进口流量变化是不大的,是脉动的,当接近或进入喘振工况时,二者的变化很大,发生周期性大幅度的脉动。 (3)观测机体和轴振动情况。当接近或进入喘振工况时,机体和轴振动都发生强烈的振动变化,其振幅要比平常运行时大大增加。
3)喘振的危害 喘振是离心式压缩机性能反常的一种不稳定运行状态。发生喘振时,表现为整个机组管网系统气流周期性的振荡。不但会使压缩机的性能显著恶化、气流参数(压力、流量)产生大幅度脉动、大大加剧了整个压缩机的振动,还会使压缩机的转子及定子元件经受交变动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子及定子元件相碰、压送气体外泄、引起爆炸等恶性事件,因此在操作中必须避免在喘振

工况下运行。
4)喘振的基本原因 实际运行中引起压缩机喘振的原因很多,但基本原因上不外乎下述两种: 第一种:实际运行流量小于喘振流量,诸如生产减量过多、吸入气源不足、入口过滤器堵塞、管道阻力大、叶轮通道或气流通道堵塞等。 第二种:压缩机的出口压力低于管网压力。诸如管网阻力增大、进气压力过低、压缩机转速变化等。压缩机的出口压力低于管网压力,就会导致压缩机的运行工作点向小流量区域移动,从而进入喘振工况。这与前面提高的“造成喘振的唯一直接原因是进气减小到一定值”并不矛盾。
5)喘振曲线和防喘振曲线 由于对每一转速,压缩机都有对应的喘振流量,小于喘振流量,压缩机即发生喘振,我们将各转速下所发生的喘振的点连接起来(特性曲线上的喘振点连接起来),即可以得到一曲线,即为压缩机的喘振曲线,如图16所示。 因此,千万不要让压缩机在图示的喘振区内运行。这将通过防喘振控制系统来实现。 喘振曲线通常呈抛物线形,而考虑了防喘振裕度后,就可以在其右边画出一条与喘振曲线相近的一条线,这就是保护曲线。保护曲线没有必要与此喘振曲线完全相似,或由喘振曲线平移来获得,而只要能保证压缩机在正常运转范围内有合适的裕度即可。这就使得防喘振控制系统仪表的配置和选用变得极为简单,并更具合理性。 在某一转速下,压缩机的实际流量与该转速下的喘振流量之比叫喘振裕度。裕度太大,则功率耗量增加,经济性差,太小则离喘振点太近,安全性差。一般防喘振裕度在110%~125%左右,在决定裕度大小时,还应把调节仪表的误差因素考虑进去

离心式压缩机具有以下四个优点:

1.在相同冷量的情况下,特别是在大容量时,与往复式压缩机组相比,省去了庞大的油分装置,机组的重量及尺寸较小,占地面积小;

2.离心式压缩机结构简单紧凑,运动件少,工作可靠,经久耐用,运行费用低;

3.容易实现多级压缩和多种蒸发温度,容易实现中间冷却,耗功较低;

4.离心机组中混入的润滑油极少,对换热器的传热效果影响较小,机组具有较高的效率.

离心式压缩机同时也具有以下四个缺点:

1.转子转速较高, 为了保证叶轮一定的宽度, 离心式压缩机必须用于大中流量场合, 不适合于小流量场合;

2.单级压比低,为了得到较高压比须采用多级叶轮,一般还要用增速齿轮;

3.喘振是离心式压缩机固有缺点,机组须添加防喘振系统;

4.离心式压缩机同一台机组工况不能有大的变动,适用的范围比较窄.


1、可以利用工厂的各个热

回收装置,合理的进行热能的综合利用,提高生产过程的总热效率,从而节约动力投资,降低产品成本。
2、结构简单,易损件少,便于检修运转可靠,不用备机。
3、转速高,供气均匀,占地面积小,投资少。
4、消除了气体带油的缺点。
5、适用范围:大中流量、中低压力的场合。

缺点:

1、离心压缩机的效率必活塞式压缩机效率低5-10%。
2、离心压缩机只能在设计工况下工作时才能获得最高效率,容易喘振。
3、离心式压缩机不能在高压比的同时得到小流量。单级很少超过3。

4、操作适应性差,气体流速大,摩擦阻力大,效率低;有喘振现象。

5、中、大型设计精良的活塞式压缩机的效率在75%以上,而离心式压缩机则通常低于70%;
6、排气压力随流量改变而改变。
7、不耐杂志和液滴。
8、因技术和加工设备因素,造价较高,交货期长。
9、压缩出口温度比较高,换热面积大。
10、单级压比低

离心压缩机的优点:
(1)占地面积小,结构简单,质量小,输气量大,不用备机,设备投资成本少;
(2)离心压缩机用蒸汽驱动,有利于副产蒸汽的综合合理应用,降低能耗;
(3)离心压缩机的易损部件少,运行稳定,操作费用低;
(4)离心压缩机的输气均匀,调节方便,可以实现自动化控制;
(5)气缸内不需要注入润滑油;
离心压缩机的缺点:
(1)由于高速气流的流动损失,离心压缩的效率比往复式的低;
(2)它使用与大气量的场合;
(3)对压缩介质的要求高;
(4)容易受到压缩介质温度,压力,组成的变化的影响;




离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。
更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。
显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有

如下关系:

式中 D2--叶轮外缘直径,m;
n--叶轮转速,r/min。
因此,离心式压缩机之所以要有很高的转速,是因为:
1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大;
2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小;
3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1MPa提高到0.6~0.7MPa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。
另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h空分设备配套的DA350-61型离心式压缩机,转速为8600r/min;而为国产10000m3/h空分设备配套的1TY-1040/5.3型空气压缩机,转速为6000r/min。

相关文档
最新文档