离心式压缩机的喘振原因及预防14

合集下载

离心式压缩机喘振产生的原因分析及解决方案

离心式压缩机喘振产生的原因分析及解决方案

离心式压缩机喘振产生的原因及解决方案一一离心式压缩机是工业生产中的重要设备,其具有排气量大、结构简单紧凑等优点,但也存在一些缺点如稳定工况区间较窄、容易发生喘振。

喘振给压缩机带来危害极大,为了保障压缩机稳定运行,必须应用有效的防喘振控制。

本文主要介绍了离心式压缩机喘振产生的原因,详细叙述了压缩机防喘振的意义与方法,以离心式空气压缩机为例,基于霍尼韦尔DCS系统如何实现防喘振控制。

离心式压缩机的工作原理随着我国工业的迅速发展,工业气体的需求日益增长,离心式压缩机因其优秀的性能及较大的排气量而被广泛应用于工业生产中。

在离心式压缩机中,汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体会被甩到工作轮后面的扩压器中去。

而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进气部分进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。

气体因离心作用增加了压力,以很高的速度离开工作轮,经扩压器后速度逐渐降低,动能转变为静压能,压力增加,同时气体温度相应升高,在单级压缩不能达到压力要求的情况下,需要经过多级压缩,压缩前需要经过气体冷却器冷却,经过这种多级冷却多级压缩后,最终达到气体压缩的目的。

喘振产生的原因喘振是目前离心式压缩机容易发生的通病。

离心式压缩机的操作工况偏离设计工况导致入口流量减小,使得压缩机内部叶轮、扩压器等部件气流方向发生变化,在叶片非工作面上出现气流的旋转脱离,造成叶轮通道中气流无法通过。

该工况下,压缩机出口压力及与压缩机联合工作的管网压力会出现不稳定波动,进而使得压缩机出口气体反复倒流即“喘振”现象。

另外,压缩机的吸入气体温度发生变化时,其特性曲线也将改变,如图1、图2所示,这是压缩机在某一恒定转速情况下,因吸入气体温度变化时的一组特性曲线。

曲线表明随着温度的升高,压缩机易进入喘振区。

图1离心压缩机的性能曲线图2温度对性能曲线的影响喘振现象的发生,由于气体反复倒流,会打破压缩机原有的运动平衡,导致转子的振动增大,在旋转中与定子接触摩擦,通常监控上的表现为压缩机出口的压力反复波动,轴承温度逐渐升高。

离心式空气压缩机的喘振分析及防范措施

离心式空气压缩机的喘振分析及防范措施

离心式空气压缩机的喘振分析及防范措施摘要:离心式空气压缩机喘振故障对压缩机的影响是较大的,剧烈的喘振很可能引起烧瓦,甚至损坏压缩机。

因此认真分析发生喘振的原因,针对不同情况采取不同措施很有必要。

关键词:离心式空气压缩机喘振的原因防范措施离心式空气压缩机广泛应用于工业生产中。

但长时间高负荷工作,很容易出现故障,其中喘振故障对压缩机的影响是较大的,剧烈的喘振很可能引起烧瓦,甚至损坏压缩机。

因此认真分析发生喘振的原因,针对不同情况采取不同措施非常重要。

一、离心式空气压缩机发生喘振的原因1.离心式空气压缩机机内气体流量减少离心式空气压缩机机内气体流量受空压机运行环境的影响是会实时的发生变化的,当气体流量减少时,空压机出口压力就会增大,当最大出口压力超过了额定压力值时,就会出现喘振现象。

2.离心式空气压缩机机内气体分子量不恒定有两种情况:第一种情况是空压机在气体压力一定的状态下运行,这时,气体分子质量发生喘振的概率是反比。

第二种情况是空压机在气体流量一定的状态下运行,这时气体分子质量与发生喘振的概率成正比。

3.离心式空气压缩机入口温度不稳定有两种情况:第一种情况是空压机在恒压状态下运行,气体入口温度与发生喘振的概率成正比。

第二种情况是空压机在恒流量状态下运行,气温与发生喘振的概率成反比。

4.离心式空气压缩机叶轮的转速不稳定离心式空气压缩机叶轮的转速不稳定可能会发生喘振现象,叶轮是空压机的主要构成部件,在实际运行过程中可能是会出现转速不稳定的情况出现,叶轮的转速越高,空压机越容易发生喘振。

5.离心式空气压缩机入口与出口气压差太大离心式空气压缩机入口与出口气压差太大可能会引起空压机发生喘振,入口与出口气压差越大,空压机越容易发生喘振。

6.离心式空气压缩机构件磨损严重或者部件过脏离心式空气压缩机的主要构件,如叶轮、扩压器及内置式冷却器在长期的运行过程中,可能会出现磨损、被腐蚀或者组成部件,如冷却器和水汽分离器、进气口箱式过滤器等变脏,都会导致喘振的发生。

离心式空气压缩机喘振故障分析与控制预防

离心式空气压缩机喘振故障分析与控制预防

离心式空气压缩机喘振故障分析与控制预防摘要:在电解铝冶炼生产整个过程中,压缩的空气将是企业除了提供电能来源之外的最大程度的一种动力能源和消耗,氧化铝气体输送、电解槽内打氧壳及下料、烟气二次净化、阳极生产等各关键制造工序,都要离不开这些压缩空气。

关键词:离心式空压机;机喘振原因;喘振预防在离心式空气压缩机组的日常运行、维护和使用过程中,通常会出现以下各种小故障,其中空气压缩机组突然出现这样一个低频、高振动的压力脉冲,声音类似于大的喘振。

这种高压脉冲现象也可以称为“喘振”。

1离心式空压机发生喘振现象概述离心式空气压缩机组由于其自身的工艺特点,具有一系列显著的优点,如压缩和排气效果优于增压效果、排气量稳定性极高、结构相对简单、组装相对容易达到成熟度、检查、维护和维修更方便灵活等。

它可以同时实现系统的正常、安全和高效运行,而不会受到高压气体的侵入和严重的油污染对身体的损害。

它确保了设备在各种特殊工作条件下的最佳运行,高度安全和稳定,以及系统的安全和可靠使用,它具有压缩空气无明显脉动特性等诸多优点,目前这种压缩空气设备的技术也已广泛应用于中国的社会工程中,并已在石油化工、冶金电力系统等工程建设中的大量行业投入生产和使用。

此外,空气分离厂的设备也是中国许多地区主要工厂生产和运营控制部门为各类企业生产和运营所需的两个重要基础设备场地,因此,我们在空分设备的生产和运行过程中需要选择的离心式空压机设备需要能够有效地确保整个机器和设备在任何时候都能安全、稳定和稳定地运行,并取得稳定和可持续的结果,实现确保了设备其能够长时间的安全、稳定、可靠高效率的正常运作并且对有效确保我们整个生产与工厂整体的高可靠生产和效率及发挥均是可以起地到其非常十分重要的作用。

1.1离心式空气压缩机的工作原理离心式空气压缩机通常是一种离心速度较高的压缩机。

其他空气压缩机的工作原理基本上是驱动整个螺杆式压缩机轴和各级旋转叶轮电机,以多级超长距离高速离心高速旋转开始。

离心式压缩机喘振原因及其预防措施分析

离心式压缩机喘振原因及其预防措施分析

离心式压缩机喘振原因及其预防措施分析发布时间:2022-11-08T05:39:57.849Z 来源:《工程管理前沿》2022年第14期作者:赵钧[导读] 喘振是离心式压缩机运行期间常见危害性现象,设计不当、赵钧开封空气液化有限公司河南省开封市顺河回族区 475000摘要:喘振是离心式压缩机运行期间常见危害性现象,设计不当、调试不佳、运行失误等均可引发喘振,阻碍正常生产工作,因此必须重视离心式压缩机的喘振预防工作。

在离心式压缩机设计阶段,应搭建完整的防喘振控制系统,合理设计结合尺寸与逆止阀,并按规定做好试运行与设备调试工作,最后于离心式压缩机运行期间时作为维护保养,以此全方位避免喘振现象的产生。

关键词:离心式压缩机;喘振原因;预防措施1离心式压缩机构造研究离心压缩机结构可细分两部分即静子和转子,其中,静子结构有隔板、机壳、级间密封等;转子包括大量旋转零件,如平衡盘、叶轮、主轴等。

机械具体构造如下:(1)水平轴向部分型。

静子有密封、焊接机壳;转子包含联轴器、推力盘、隔套、轴套、叶轮。

(2)垂直径向部分型。

静子为隔板、内机壳、端盖、机壳;转子与水平轴向构造相同。

(3)整体齿轮增速。

静子有型环、扩压器、蜗壳、齿轮箱体;转子包括叶轮、联轴器、低速齿轮轴、低速齿轮、高速齿轮。

2离心式压缩机喘振现象分析2.1喘振现象分析喘振现象应从以下3个角度入手,全方位了解离心式压缩机喘振现象:①观察离心式压缩机进出口压力数值及入口流量,运用CCS软件得出数值波动幅度轨迹趋势图,分析CCS趋势图特征,若此时存在较大波动或周期性波动,则离心式压缩机可能出现喘振现象;②采用“听”的方式判断喘振,若离心式压缩机进出气管出现“呼哧呼哧”的气流噪声,则证明离心式压缩机运行不稳定,机组存在喘振问题;③根据离心式压缩机实际情况分析其轴系振动图,若发现离心式压缩机内出现轴系急剧振动的情况,且振动相对明显,则说明离心式压缩机存在喘振现象。

离心式压缩机喘振故障分析与防喘振控制措施

离心式压缩机喘振故障分析与防喘振控制措施

离心式压缩机喘振故障分析与防喘振控制措施摘要:喘振是离心式压缩机非常典型的故障类型之一。

离心压缩机在日常运行过程中,如果发生喘振故障,那么就会影响其运行的稳定性,导致其性能缺失,最终致使生产无法正常进行。

文章探讨了离心压缩机喘振控制的重要性,总结了喘振故障的判定方法,分析了压缩机发生喘振的原因,并提出了防喘振控制措施。

关键词:离心式压缩机;喘振;流量;叶轮离心式压缩机在现代工业生产中发挥着重要作用,防喘振控制及逆流保护历贯穿其管理的全过程。

为了防止压缩机出现喘振故障,除了自控角度选择相应的控制策略、控制系统及现场仪表外,还可以从工艺管道设计选型、设备参数选择及运行过程中的操作和维护这几个方面综合考虑,最终才能确保压缩机能安全、平稳运行。

1离心式压缩机喘振故障控制的重要性化石能源输送、化工生产、钢铁冶炼、化肥生产等国家重点项目中都离不开基于离心式压缩机对气体的压缩与输送,可以说离心式压缩机是工业设计、生产、工程改造的重点对象。

离心式压缩机是一种基于回转运动原理的设备,其具有空间占地小、设备密度低、结构单元紧凑、运行稳定、输送压缩气体流量大等特点。

但是离心式压缩机运行时也会面对如喘振、稳定工作区域窄等技术问题,一方面会影响压缩机工作性能造成装置运行波动,另一方面也会造成压缩机故障或者寿命缩减。

例如喘振会导致离心式压缩机轴承润滑液体被破坏,导致轴瓦过电压损坏;离心式压缩机密封设备损坏,造成气体泄漏。

因此,准确的掌握离心式压缩机工作原理,掌握离心式压缩机出现喘振故障的诱导因素,制定采取一系列防止喘振的措施,保障离心式压缩机脱离喘振工作范围,是保证工业生产的关键手段。

2 离心式压缩机喘振故障的判断方法离心式压缩机发生喘振现象时会伴随着明显的机组和管道异常特征:(1)离心式压缩机和管道会发生周期性、高频率振动,这种震动会产生振动噪音,严重时整个离心式压缩机机组会发生激烈的“吼叫”噪音。

(2)机组外壳、轴承、机组配件等发生剧烈振动,振动频率、幅度随机变化,并伴随着剧烈、周期性的气流声。

离心式压缩机喘振分析及消除措施

离心式压缩机喘振分析及消除措施

离心式压缩机喘振分析及消除措施喘振是倒流和供气的循环交替形成,如果发生喘振,将会对机组造成破坏,影响正常运行,有着危害性,要弄清喘振发生的原因,并研究消险喘振现象的措施,以提高离心式压缩机的工作性能,降低喘振带来的危害,是一项重要任务。

标签:离心式压缩机;喘振现象;危害;消除措施前言:离心式压缩机具有很多特点,诸如效率高,排气量大以及气体不受油污污染以及运转平稳等,成为目前应用广泛的速度式压缩机种类之一。

在工业生产上,离心压缩机的安全性能起重要作用。

但离心压缩机容易发生喘振,作为一种有着较大危害的固有现象,喘振对压缩机的使用寿命有很大的损害,应该受到重视。

一、离心式压缩机的喘振现象根據流体力学理论,当离心式压缩机的操作工况与设计工况偏离时,气体的流量就会减少,进而进入叶轮的气流的方向就会发生变化。

当气体的流量减少到低于最小流量值时,天然气流在叶片进口处与叶片发生冲击效应较大,在气流的连续性和叶轮的连续旋转下,这种边界层分离的现象就会扩大,直至整个流道,在叶道中形成气流漩涡,从而形成“旋转脱离”或“旋转失速”。

当发生旋转脱离时,气流在叶道中不能顺利的通过去,造成机体的出口压力大于进口压力,排气管内较高压力的气体便倒流回来。

瞬时,使叶轮又达到了正常压力值,从而又恢复了正常工作,因此就会把倒流回来的气体压出去。

这样的重复现象,使机体发出“哮喘”声,这种现象叫做压缩机的“喘振”。

二、喘振的危害由于在发生喘振现象时气流有强烈的脉动以及其脉动的周期性,会产生有周期性的震荡,这样会使压缩机内部压力、流量等参数极其不稳定,有大幅度的波动,破坏了压缩机工作的稳定性。

在喘振时,叶片会发生强烈的振动,叶轮的应力大大增加,会产生很大的噪声,不利于工人工作的同时,也会产生一定的安全隐患。

喘振现象发生时会引起压缩机内部各种部件的摩擦与碰撞,如果喘振现象发生时间过长,就会使压缩机的轴弯曲变形,更加严重的时候就会发生轴振动过大,把叶轮碰坏的现象。

离心式压缩机喘振的原因分析及处理

离心式压缩机喘振的原因分析及处理

离心式压缩机喘振的原因分析及处理摘要:离心式压缩机喘振现象的发生主要取决于管网的特性曲线和离心式压缩机的特性曲线。

本文对离心式压缩机特点、喘振现象、产生的危害、判断方法、发生原因进行了总结,并提出了相应的预防措施。

关键词:压缩机;喘振;预防措施喘振是离心压缩机特有的一种现象,它是危害压缩机结构的主要原因之一,在工艺流程中应尽力避免压缩机喘振现象的出现。

根据石化企业压缩机机组现场应用反馈,机组发生喘振现象比较普遍,有些机组甚至频繁发生喘振,给企业安稳生产及经济效益造成了一定的影响。

1.喘振原因喘振作为离心式压缩机运行中的一-种特殊现象,易造成气流往复强烈冲击,严重影响压缩机运行部件,是造成运行事故的主要因素。

喘振是离心式压缩机本身固有的特性,导致喘振产生的因素有两方面:内在因素是由于离心式压缩机中的气流在一定的条件下出现了“旋转脱离”这种状况:而外在因素是由于离心式压缩机管网系统的特性。

2.离心机的特点离心式压缩机是具有处理气量大、体积小、结构简单、运转平稳、维修方便等特点,应用范围广。

但由于离心机本身结构所限,仍然存在短板,在压力高、流量小的场合会发生喘振,且不能从设计上予以消除。

3.离心式压缩机喘振的危害、现象及判断3.1喘振的危害喘振是当离心式压缩机的进口流量减少至一定程度时所发生的一种非正常工况下的振动,气体流量、进出口压力出现波动,从而引起压缩机转速及工艺气在系统中产生周期性振荡现象。

喘振的危害:(1)由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅波动,破坏了工艺系统的稳定性;(2)使压缩机叶片发生强烈振动,叶轮应力大幅增加,噪声加剧;(3)引起动静部件的摩擦与碰撞,使压缩机的轴发生弯曲变形,严重时会产生轴向窜动,使轴向推力增大,发生烧毁止推轴瓦甚至扫膛事故;(4)加剧轴承、轴瓦的磨损,破坏润滑油膜的稳定性,使轴瓦合金产生疲劳裂纹,甚至发生烧瓦抱轴等事故;(5)损坏压缩机的机械密封及轴封,使压缩机效率降低,同时由于密封的损坏会造成工艺气泄漏,极易引发火灾、爆炸等事故;(6)影响驱动机的正常运转,干扰操作人员的正常操作,使一些仪表、仪器的测量准确性降低甚至损坏。

离心式压缩机喘振故障原因分析及预防措施

离心式压缩机喘振故障原因分析及预防措施

离心式压缩机喘振故障原因分析及预防措施离心式压缩机喘振故障原因分析及预防措施【摘要】本文介绍了离心式压缩机的喘振原理和喘振的形成表现形式,并结合喘振现象对压缩机的喘振故障原因进行了分析,提出了压缩机喘振故障的控制和预防措施。

【关键词】离心式;压缩机;喘振;故障前言喘振是离心式压缩机固有的特性,它是在一定的操作条件下,由被压缩气体的气流扰动引起的一种非正常现象。

在化工生产中为了保证压缩机的稳定运行,我们对离心式压缩机喘振原因进行了分析,并采取了相应的防范措施,最终解决了压缩机组的喘振问题,确保了机组的长周期稳定运行。

一、离心式压缩机的喘振原理喘振是离心式压缩机运行在某一工况下产生的特有现象。

离心式压缩机是一种利用叶轮的高速旋转来提高气体压力的转动设备,气体的升压过程主要在叶轮和扩压器内完成。

当压缩机内气体流量降低至某一值时,压缩机叶轮的叶道就会出现气流旋转脱离现象,旋转脱离的气流在叶道中形成气流漩涡,占据了大部分叶道,这时气流就会受到严重阻塞,致使压缩机出口压力明显下降。

管网具有一定的容积,由于管网中的气体压力不可能很快下降,于是就会出现管网中的气体压力反而大于压缩机出口压力的现象,使管网中的气体倒流,直到管网中的气体压力下降至与压缩机出口压力相同时,气体倒流才停止。

随后在旋转叶轮的作用下气体的压力升高,当气体压力大于管网压力时,气体正向流动并向管网供气。

管网中的气体压力迅速回升,气体流量又下降,系统中的气流再次出现倒流,气体在压缩机组和管网系统中反复出现正流、倒流,使整个系统发生了周期性的低频、大振幅的气流振荡现象,这种现象就称为压缩机的喘振。

喘振造成的后果非常严重,不仅降低压缩机的工作效率,使设备出现异常噪声和强烈振动,而且会损坏压缩机的轴承和密封,甚至发生转子和固定部件的碰撞,导致设备严重受损。

二、离心式压缩机喘振故障原因分析压缩机喘振本质上是因为进入压缩机的流量不足以使压缩机产生足够的压力,以至于外部系统的压力大于压缩机内部的压力,因此,产生喘振故障主要可以通过以下几个方面来分析。

离心式空气压缩机喘振原因与预防措施

离心式空气压缩机喘振原因与预防措施
机械 与设备
离心式空气压缩机喘振原 因与预防措施
杜 敏
( 唐钢检修公司 )
【 摘 要】 喘振是 目 前离心式空气压缩机容易发生的通病。本
( 压 力、流量等) 大幅度地波动 ,破坏 了工艺系统的稳定性。 ( 2 )加剧轴承、轴颈 的磨损,破坏润滑油膜的稳定性,使轴承 合金产生疲劳裂纹 ,甚至烧毁 。 ( 3 )会使 叶片强烈振动 ,叶轮应 力大大增加 ,噪声加居 。 ( 4 ) 损 坏压缩机 的级问密封及轴封 , 使压缩机效率降低 , 甚至 造成爆炸 、火灾等事故 。 ( 5 ) 引起动静部件 的摩擦与碰撞 , 使压 缩机 的轴产生弯 曲变形 , 严重 时会产 生轴 向窜动 ,碰坏 叶轮 。 ( 6 ) 影 响与压缩机相连 的其他设备 的正常运转,干扰操作人员 的正常工作,使一些测 量仪表 仪器 准确 性降低 ,甚至失灵 。 5喘振 的预 防措施及 改进 5 . 1压缩机 自带 的喘振保护装置 动力厂供风车间冷板空压机站 3 # 空压机是 上海艾律德机械有限 公司的 5 5 0 D A 3型 3级压缩离心式空压机 。 该空压 机具有 自动双重流 量限制控制 :当系统压力 到达 空压机 的设定压力 时,进 口导叶会慢 慢关小 ,此时空气仍然持续 以需求 的速率和相对 的压力输 出。如果 系统需求量继续下 降,低于 空压机 稳定操作 的范 围,进 口导叶将关 至最小开度 ,同时 ,在空压机 的排汽管路上 ,空气会经过止 回阀前 端 的放空 阀排至大气 。通过之前 的介绍 ,我们知 道空压机 喘振 的直 接原 因是人 口流量减少 , 而人 口流量减少直接导致空压机 负荷减少 , 空压机负荷减少最直观 的反应就是 电机 电流减小 。大 部分 空压机都
带有防 喘振装置 ,它们 的工作 原理 基本 相同,即在空压机运 行接近

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析摘要:喘振是气流沿压气机轴线方向发生的低频率、高振幅的振荡现象,并且,故障的引发原因较多,很容易影响整体的生产效率,在我国目前的生产发展当中离心式压缩机起到了至关重要的作用,可以在一定程度上提高整体的生产效率,而由于喘振现象的出现导致离心式压缩机不能够正确的发挥作用,甚至是引发爆炸或者是火灾等灾害,不仅严重影响了整体的生产效率,还会对工作人员造成严重的人身伤害,甚至是不可挽回的恶劣后果,所以需要相关工作人员对离心式压缩机喘振现象加以重视,深度挖掘喘振现象的产生原因,并结合喘振现象的发生原因制定相应的解决对策,同时,利用信息技术实现故障诊断系统的有效应用,通过远程监测功能与智能故障预警等功能实现离心式压缩机喘振现象的智能化控制,做到科学预防、合理治理离心式压缩机喘振故障。

关键词:离心式压缩机;喘振原因;预防措施引言离心式压缩机又叫透平式压缩机,整个压缩机没有中间罐等装置,也没有巨大且笨重的基础元件,整体结构十分紧凑,总体尺寸小,分量轻。

机器内部耗油量很少,只有轴承部分需要润滑,减少了压缩空气被污染的可能性。

压缩机运行过程中振动小,出口排气连续,易于调节,维修简单。

因此广泛应用在石油化工行业的多种装置上。

1离心式压缩机喘振的故障原因1.1叶轮磨损或有附着物叶轮磨损或表面存在附着物,也是造成离心式压缩机存在喘振故障的主要原因,在离心式压缩机的运行过程当中,叶轮通过自身结构形成高速旋转为气体提供速度及其压力,从而保证离心式压缩机能够正常运行,如果叶轮出现磨损或表面存在附着物等现象就会在一定程度上改变叶轮的自身结构,降低叶轮的旋转速度,导致不能够为气体具体提供正确的速度以及压力,从而导致离心式压缩机出现喘振故障,而且叶轮在日常的运行过程当中势必会造成一定的磨损,这是无法避免的必然现象,只能通过工作人员人为检修更换来避免这一现象发生。

1.2内因离心式压缩机喘振的内因就是由叶轮以及介质所导致的,当进口的流量低于标准值时,压缩机的气流方向就会和叶片进口的安装角产生偏差,如果偏差较大,还会导致脱离,此时气体就会滞留在叶轮的流道中,进而造成压缩机的压力减小,不过由于工程管路有一定的背压,出口压力并不会变小,这样就会使气体发生回流,补充流量,使其恢复正常。

离心式压缩机的喘振原因及预防14

离心式压缩机的喘振原因及预防14

离心式压缩机的喘振原因及预防]离心式压缩机的喘振原因及预防田立华(中石油前郭石化分公司)摘要离心式压缩机发生喘振时,转子及定子元件经受交变的动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。

因此,离心式压缩机严禁在喘振区域内运行。

本文针对喘振的原因和预防措施做了详细论述。

关键词离心式压缩机喘振喘振点性能曲线旋转脱离一、喘振机理喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。

当外界条件适合内在因素时,便发生喘振。

2.喘振与管网的关系离心压缩机的喘振是其本身的固有特性。

压缩机是否在喘振工况点附近运行,这主要取决于管网的特性曲线P=Pa+AQ2。

图2为离心压缩机和管网联合工作性能曲线。

交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管网特性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。

相反闸阀开大时,管道中的阻力系数A减小,管网特性曲线1右移,压缩机流量达到Qmax时,出现滞止工况。

最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。

3.喘振的产生从图2可以看出:由于管网阻力的增加,管网特性曲线左移,致使压缩机工况点向小流量偏移。

压缩机的流量Qj 减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈的脉动。

发生旋转脱离时在叶轮的凹面形成涡流区,当流量减小到Qmin时,上述的正冲角i 增加得更大,涡流区扩大到整个叶片流道,气流受到阻塞,压缩机出口压力突然下降,而管网中气体压力并不同时下降,这时,管网中压力P1大于压缩机出口压力P2,因而管网中气体倒流向压缩机,直至管网中压力下降到低于压缩机出口压力时才停止倒流。

这时压缩机又开始向管网压送气体,使管网中的气体压力再次升高至P1时,压缩机的流量Qj减少到Qmin,出口压力突然降到P2,P1>P2后,管网中气体又倒流向压缩机。

离心式压缩机喘振发生的机理、原因及预防措施!

离心式压缩机喘振发生的机理、原因及预防措施!

离⼼式压缩机喘振发⽣的机理、原因及预防措施!⼀、喘振发⽣的机理当离⼼式压缩机的操作⼯况发⽣变动并偏离设计⼯况时,如果⽓体流量减少则进⼊叶轮或扩压器流道的⽓流⽅向就会发⽣变化。

当流量减少到⼀定程度,由于叶轮的连续旋转和⽓流的连续性,使这种边界层分离现象扩⼤到整个流道,⽽且由于⽓流分离沿着叶轮旋转的反⽅向扩展,从⽽使叶道中形成⽓流漩涡,再从叶轮外圆折回到叶轮内圆,此现象称为⽓流旋离,⼜称旋转失速。

发⽣旋转脱离时叶道中的⽓流通不过去,级的压⼒也突然下降,排⽓管内较⾼压⼒的⽓体便倒流回级⾥来。

瞬间,倒流回级中的⽓体就补充了级流量的不⾜,使叶轮⼜恢复了正常⼯作,从⽽从新把倒流回来的⽓体压出去。

这样⼜使级中流量减少,于是压⼒⼜突然下降,级后的压⼒⽓体⼜倒流回级中来,如此周⽽复始,在系统中产⽣了周期性的⽓体振荡现象,这种现象称为“喘振”。

⼆、喘振发⽣的原因1、流量图1 不同转速下出⼝压⼒与流量的关系每台离⼼式压缩机在不同转速n下都对应着⼀条出⼝压⼒P与流量Q之间的曲线,如图1所⽰。

随着流量的减少,压缩机的出⼝压⼒逐渐增⼤,当达到该转速下最⼤出⼝压⼒时,机组进⼊喘振区,压缩机出⼝压⼒开始减⼩,流量也随之减⼩,压缩机发⽣喘振。

从曲线上看,流量减⼩是发⽣喘振的根本原因,在实际⽣产中尽量避免压缩机在⼩流量的⼯况下运⾏。

2、⽓体相对分⼦质量图2 不同相对分⼦质量时的性能离⼼压缩机在相同转速、不同相对分⼦质量下恒压进⾏的曲线,从曲线中可以看出,在恒压运⾏条件下,当相对分⼦质量M=20的⽓体发⽣喘振时,相对分⼦质量为M=25和M=28的⽓体运⾏点还远离喘振区。

因此,在恒压运⾏⼯况下,相对分⼦质量越⼩,越容易发⽣喘振。

3、⼊⼝压⼒图3 不同⼊⼝压⼒时的性能压缩机的⼊⼝压⼒P1>P2>P3,在压缩机恒压的运⾏⼯况下,⼊⼝压⼒越低,压缩机越容易发⽣喘振,这也是⼊⼝过滤器压差增⼤时,要及时更换滤⽹的原因。

4、⼊⼝温度图4 不同⼊⼝温度时的性能恒压恒转速下进⾏的离⼼式压缩机在不同⼊⼝⽓体温度时的进⾏曲线,从曲线上可以看出在恒压运⾏⼯况下,⽓体⼊⼝温度越⾼,越容易发⽣喘振。

离心式压缩机喘振原理

离心式压缩机喘振原理

离心式压缩机喘振原理喘振的原因通常可以归结为以下几种情况:1.气体流量与压缩比不匹配:当压缩机的工作点离开了设计范围,即气体流量和压缩比的匹配不合理时,就会发生喘振。

一般来说,离心式压缩机的设计工况是在特定的气体流量和压缩比范围内进行的。

如果超过了这个范围,就容易发生喘振。

2.气体不稳定性:一些气体在不同的压缩比下会发生热力学不稳定性,即存在压力和温度的波动现象。

这些波动将通过反馈回路进一步放大,导致压缩机发生振动。

3.系统堵塞或阻塞:如果系统中存在堵塞或阻塞,气体流动将受到限制,从而使得压缩机无法正常工作。

此时,压缩机可能会试图通过提高流量来克服这个问题,导致喘振的发生。

为了解决喘振问题,可以采取以下措施:1.优化设计:在离心式压缩机的设计过程中,应该充分考虑气体流动和压缩比的匹配。

通过合理的设计,可以最大程度地减少喘振的风险。

2.增加稳定性:通过改变压缩机的结构和控制策略,可以提高其工作的稳定性。

例如,在压缩机的出口增加脉动消除器,可以降低气体流动的不稳定性。

3.检测和控制:监测离心式压缩机的运行状态,及时发现异常振动和声音。

通过自动控制系统对压缩机进行调节,可以避免喘振的出现。

4.维护和保养:定期检查和维护压缩机,确保其正常运行。

及时清理系统中的污垢和堵塞物,以保证气体流动的畅通。

综上所述,离心式压缩机的喘振是由多种原因引起的,包括气体流量与压缩比不匹配、气体不稳定性以及系统堵塞或阻塞等。

为了解决喘振问题,可以通过优化设计、增加稳定性、检测和控制、维护和保养等方式进行。

这些措施可以提高压缩机的工作效率和稳定性,延长设备的使用寿命。

离心式压缩机喘振及控制

离心式压缩机喘振及控制

离心式压缩机喘振及控制一、什么是喘振?离心式压缩机产生喘振的原因?当离心机压缩机的负荷降低,排气量小于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,产生强烈的震荡,并发出如哮喘病人的喘气的噪声,此时可看到气体出口压力表、流量表的指示发生大幅度的波动,随之,机身也会发生剧烈的震动,并带动出口管道,厂房振动,压缩机将会发生周期性、间断的吼响声。

如不及时采取措施,压缩机将会产生严重的破坏,这种现象就叫做压缩机的喘振,也称飞动。

喘振是因为离心式压缩机的特性曲线程驼峰状引起的,离心式压缩机是其压缩比(出口绝压P2与入口绝压P1之比)与进口气体的体积流量之间的关系曲线,具体图如下(其中n 为压缩机的转速):从上图可以看出每种转速下都有一个P2/P1的最高点,这个点称之为驼峰,将各个驼峰点连接起来就可以得到一条喘振边界线,如图中虚线所示,边界线左侧的阴影部分为不稳定的喘振区,边界线右侧部分则为安全运行区,在安全运行区压缩比P2/P1随流量Q的增大而减小,而在喘振区P2/P1随流量的增大而增大举例说明:假设压缩机在n2转速下工作在A点,对应的流量为QA,如果此时有某个干扰使流量减,小,但仍在安全区内,这时压缩比会增大,即P2增大,这时就会使压缩机的排出压力增大并恢复到稳定时的流量QA。

但如果流量继续下降到小于n2转速下的驼峰值QB,这时压缩比不但不会增大,反而会下降,即出口压力P2会下降,这时就会出现恶性循环,压缩机的排出量会继续小,P2会继续下降,当P2下降到低于管网压力时瞬间将会出现气体的倒流,随着倒流的产生,管网压力下降,当管网压力降到与压缩机出口压力相等时倒流停止,然而压缩机仍处于运转状态,于是压缩机又将倒流回来的气体又重新压缩出去,此时又会引起P2/P1下降,被压出的气体又重新倒流回来,这种现象将反复的出现,气体反复进出,产生强烈的整理,这就是所谓的喘振。

二、防喘振控制的方案(两种)固定极限流量防喘振控制:把压缩机最大转速下的喘振点的流量作为极限值,是压缩运行时流量始终大于该极限值。

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析发布时间:2023-04-28T02:55:27.576Z 来源:《新型城镇化》2023年7期作者:王翠翠[导读] 在离心式压缩机应用范围不断扩大的情况下,离心式压缩机已经成为空分行业制氧、制氮的主要设备,一旦离心式压缩机在应用过程中发生喘振现象,将会影响制氧、制氮的正常产量,也会降低压缩机使用寿命。

山东华鲁恒升化工股份有限公司山东省德州市 253000摘要:在离心式压缩机应用范围不断扩大的情况下,离心式压缩机已经成为空分行业制氧、制氮的主要设备,一旦离心式压缩机在应用过程中发生喘振现象,将会影响制氧、制氮的正常产量,也会降低压缩机使用寿命。

因此相关工作应该重点分析导致离心式压缩机出现喘振问题的基本原因,有针对性地设计一些问题预防措施,能够在提高离心式压缩机运行质量的基础上,有助于提升离心式压缩机的运行安全性。

关键词:离心式压缩机;喘振原因;预防措施离心式压缩机又叫透平式压缩机,整个压缩机没有中间罐等装置,也没有巨大且笨重的基础元件,整体结构十分紧凑,总体尺寸小,分量轻。

机器内部耗油量很少,只有轴承部分需要润滑,减少了压缩空气被污染的可能性。

压缩机运行过程中振动小,出口排气连续,易于调节,维修简单。

因此广泛应用在石油化工行业的多种装置上。

1喘振产生的原因离心式压缩机主要由定子与转子两部分组成,在工作时转子中的叶轮会快速旋转,在旋转的过程中,压缩机内部气体在离心力作用下会进入后方的扩压装置中,而这时外部的新鲜气体则会进入叶轮当中。

随着叶轮的不断转动,压缩机外部的气体不断被吸入入口并从出口排出,在这一过程中,气体压力增大,出口压力远大于入口压力。

在离心机工作时如果入口气体流量过小或者出口堵塞引起憋压,会导致下游设备中的气体反向流入压缩机腔内,在压缩机内产生震荡,而这一震荡过程是周期性的,于是压缩机会产生周期性的振动,叫作喘振。

发生喘振会导致压缩机转子振动、位移变大,有可能使转子发生磨损,对压缩机的安全运行过程造成很严重的负面影响,有时甚至会引起安全事故的发生。

离心式制冷压缩机的喘振与防喘振措施

离心式制冷压缩机的喘振与防喘振措施

离心式制冷压缩机的喘振与防喘振措施一、喘振产生的机理离心压缩机的基本工作原理是利用高速旋转的叶轮对气体做功,将机械能加给气体,使气体压力升高,速度增大,气体获得财务压力能和速度能。

在叶轮后面设置增设有通流面积逐渐扩大的扩压元件,高压气体从叶轮流向后,再流经扩压器进行降速扩压,使气体流速降低,压力继续升高,即把气体的一部分能转变为压力能,完成了压缩过程。

扩压器流道内的边界层分离现象:扩压器流道内所气流的流动,来自叶轮对气流所做功变为做功的动能,边界层内气流流动,主要靠主流产品传递中传递来的动能,形变内气流流动时,要克服梁柱的摩擦力,由于沿流道方向速度降低,压力增大,大众化的动能也不断减小。

当主流传递给边界层的动能不足以压力差之克服以使继续前进时,最终停顿边界层的气流停滞下来,进而会发生旋涡和倒流,使气流边界层分离。

气体在叶轮中的流动也微粒是一种扩压流动,当流量减小或压差增大时也会出现这种边界层分离现象。

当流道内共气体流量减少到某一值后,叶道进口气流的就和叶片进口角很不一致,冲角α大大增加,在非工作面引起流道中气流已引起边界层严重分离,使流道进出口出现强烈的气流脉动。

当流量大大减小时,由于气流流动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有西风带一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B 流道转移到A流道。

这样分离区就以和叶轮旋转方向相反的方向旋转,这种现象称为旋转脱离。

扩压器同样存在滑动脱离。

在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的偏转脱离脱离,流动严重恶化,使轴承压缩机出口排气财务压力突然大大下降,低于冷凝器的顾虑,气流就倒流向压缩机,一直到冷凝压力低于财务压力涡轮出口排气压力为止,这时倒流停止,压缩机的排量增加,压缩机趋于稳定工作。

离心压缩机异常振动、异常噪音、喘振原因与处理方法

离心压缩机异常振动、异常噪音、喘振原因与处理方法
离心压缩机异常振动、异常噪音、喘振原因与处理方法
1、压缩机的异常振动和异常噪音:
可能的原因
处理方法
①、机组找正精度被破坏,不对中。
检查机组振动情况,轴向振幅大,振动频率与转速相同,有时为其2倍、3倍……卸下联轴器,使原动机单独转动,如果原动机无异常振动,则可能为不对中,应重新找正。
②、转子不平衡。
检查振动情况,若径向振幅大,振动频率为n,振幅与不平衡量及n2成正比;此时应检查转子,看是否有污垢或破损,必要时转子重新动平衡。
⑦、防喘装置或机构工作失准或失灵。
定期检查防喘装置的工作情况,发现失灵、失准或卡涩,动作不灵,应及时修理调整。
⑧、防喘整定值不准。
严格整定防喘数值,并定期试验,发现数值不准及时校正。
⑨、升速、升压过快。
运行工况变化,升速、升压不可过猛、过快,应当缓慢均匀。
⑩、降速未先降压。
降速之前应先降压,合理操作才能避免发生喘振。
④、压缩机出口气体系统压力超间。
压缩机减速或停机时气体未放空或未回流,出口逆止阀失灵或不严,气体倒灌,应查明原因,采取相应措施。
⑤、工况变化时放空阀或回流阀未及时打开。
进口流量减少或转速下降,或转速急速升高时,应查明特性线,及时打开防喘的放空阀或回流阀。
⑥、防喘装置未投自动。
正常运行时防喘装置应投自动。
⑮、气体管道对机壳有附加应力。
气体管路应很好固定,防止有过大的应力作用在压缩机气缸上;管路应有足够的弹性补偿,以应付热膨胀。
⑯、压缩机附近有机器工作。
将它的基础、基座互相分离,并增加连结管的弹性。
⑰、压缩机负荷急剧变化。
调节节流阀开度。
⑱、部件松动。
紧固零部件,增加防松设施。
2、离心压缩机喘振:

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析

离心式压缩机的喘振原因与预防措施分析摘要:离心式压缩机是通过叶轮带动气流,增大气流的速度,把气流中的能量转换成气压,从而提高气体的压强。

其优点是单级流量大,压力比高,气体介质密封效果好。

离心式压缩机具有较强的压力、流量相关性,其稳态工作区间较小,且极易产生喘振现象,为了保证离心式压缩机的安全、稳定工作,需要对喘振现象进行有效的控制。

通过对压缩机特性曲线的测试,可以得到满足特定工况的压缩机抗喘振特性曲线,该防喘振系统控制下的机组应是最安全和经济的。

关键词:预防喘振;离心式压缩机;故障分析1.离心式压缩机喘振原理离心式压缩机是一种利用叶轮高速转动来持续提高气压的转动设备。

气体压力主要是通过扩散阀和推进器来提高的。

当压缩机内的气体速度下降到一定程度时,将引起压缩机内叶轮的转动、分离,并在叶轮内产生大量的气体漩涡。

在这种情况下,由于阻塞严重,会使压缩机出口的压力大大下降。

因为管网的容积很大,所以出现在管网上的气体压力快速降低的可能性很小。

一般情况下,管网内的气压比压缩机出口气压高的多,造成管网内气压回流。

直到压缩机出口的气压和管道内的气压相同,这种回流现象才会发生。

此后,在人工转动叶轮的作用下,气压逐渐上升。

在管网内气压快速升高后,气压又会逐步下降,使系统内再一次发生回流,导致系统内出现大幅的气体喘振及周期的低频现象。

这就是压缩机的喘振现象。

2.离心式压缩机喘振的影响因素2.1内部因素离心式压缩机产生喘振的内在原因有两个:一个是叶轮,另一个是介质。

如果进气体速小于规定的数值,则会使压缩机的风向发生偏移。

如果有非常大的偏离,也可能造成分离。

这时,气体将滞留于叶轮流道内,使压缩机内压下降。

但是,在工程管道中,由于背压的存在,出口的压力不会下降,从而引起气体的回流,从而补充气体的流动,最终达到正常水平。

若持续降低且补给不充分,仍然存在回流现象。

长此以往,设备内的空气将产生喘振,这就是造成离心式压缩机喘振的内部因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心式压缩机的喘振原因及预防]离心式压缩机的喘振原因及预防田立华(中石油前郭石化分公司)摘要离心式压缩机发生喘振时,转子及定子元件经受交变的动应力,级间压力失调引起强烈的振动,使密封及轴承损坏,甚至发生转子与定子元件相碰、压送的气体外泄、引起爆炸等恶性事故。

因此,离心式压缩机严禁在喘振区域内运行。

本文针对喘振的原因和预防措施做了详细论述。

关键词离心式压缩机喘振喘振点性能曲线旋转脱离一、喘振机理喘振的产生包含两方面因素:内在因素是离心式压缩机中的气流在一定条件下出现“旋转脱离”;外界条件是压缩机管网系统的特性。

当外界条件适合内在因素时,便发生喘振。

2.喘振与管网的关系离心压缩机的喘振是其本身的固有特性。

压缩机是否在喘振工况点附近运行,这主要取决于管网的特性曲线P=Pa+AQ2。

图2为离心压缩机和管网联合工作性能曲线。

交点M为稳定工况点,当出气管路中的闸阀关小到一定程度时,管道中的阻力系数A增大,管网特性曲线左移到图2中曲线4的位置时,与压缩机性能曲线2交于N点,压缩机出现喘振工况,N点即为喘振点。

相反闸阀开大时,管道中的阻力系数A减小,管网特性曲线1右移,压缩机流量达到Qmax时,出现滞止工况。

最小流量与滞止流量之间的流量为离心压缩机的稳定工况范围。

3.喘振的产生从图2可以看出:由于管网阻力的增加,管网特性曲线左移,致使压缩机工况点向小流量偏移。

压缩机的流量Qj 减少,气体进入叶轮和叶片扩压器的正冲角i增加,附面层分离区扩大,产生相对于叶轮旋转方向的“旋转脱离”,使叶轮前后压力产生强烈的脉动。

发生旋转脱离时在叶轮的凹面形成涡流区,当流量减小到Qmin时,上述的正冲角i 增加得更大,涡流区扩大到整个叶片流道,气流受到阻塞,压缩机出口压力突然下降,而管网中气体压力并不同时下降,这时,管网中压力P1大于压缩机出口压力P2,因而管网中气体倒流向压缩机,直至管网中压力下降到低于压缩机出口压力时才停止倒流。

这时压缩机又开始向管网压送气体,使管网中的气体压力再次升高至P1时,压缩机的流量Qj减少到Qmin,出口压力突然降到P2,P1>P2后,管网中气体又倒流向压缩机。

如此周而复始地进行,压缩机时而有气流输出,时而有气体由管路倒灌入机器,产生周期性气流脉动,出现喘振。

喘振过程中参数变化的频率和幅度的大小与管网容量有很大的关系。

管网的容量相当于整个系统的基本谐振器。

管网的容量愈大,喘振的频率愈低,振幅愈大;管网的容量愈小,喘振的频率则愈高,振幅愈小。

由此可知,发生喘振的根本原因就是低流量,在操作中造成低流量的因素很多,归纳为以下几个方面:(1)压缩机出口压力升高,系统压力大于出口压力,使气体流量降到喘振流量。

稳定系统压力高,造成压缩机出口憋压,气体倒流入压缩机,造成机内气体低流量。

(2)入口流量低于规定值,反飞动调节阀失灵。

在一定转数和一定气体密度下,能维持一定压力,当开、停机时气体流量少,或者放火炬阀开得过大,最容易引起压缩机入口流量低。

(3)气体密度变化,在一定转数下,离心力下降,引起出口压力及排量下降,通常误认为是抽空现象。

(4)分馏系统操作不稳致使压缩机入口气体带油(例如瓦斯罐液位、界位失灵),液体组分进入机体。

(5)汽轮机的蒸汽压力低或质量差(温度低),机组出现满负荷,转速下降。

(6)调速系统失灵,辅助系统故障,真空效率下降,机组不能额定做功。

二、离心压缩机性能曲线的分析Pc 3 η=φ(Qj)N1 P=Pa+AQ2Pcm 4 MN’2 Pc=f (Qj)PaQmin Qjm Qmax Qj图2离心压缩机和管网联合工作性能曲线1.管网特性曲线2. 压缩机性能曲线3.效率曲线1、P=Pa+AQ2 管网特性曲线的特点(见图2线1)。

A.关小管网中的闸阀开度,阻力系数A增大,曲线向左移动,当移动至4的位置,与压缩机性能曲线2交于N点,压缩机出现“喘振”的不稳定现象。

B.开大闸阀开度,阻力系数A减小,曲线向右移动与压缩机性能曲线2交于N’点,压缩机在N’点稳定工作。

2、Pc(或ε)=f (Qj) 压力-流量曲线的特点(见图2线2)A.Pc(或ε)随Qj的增加而降低。

Qj=Qjm时,冲击、分离损失最小,此时压缩机工作最稳定,效率最高,是设计工况点M。

B.Qj≤Qmin时,当流量达到Qmin时离心压缩机发生喘振现象,压缩机严禁在喘振点N运行。

Qmin为喘振流量,也叫最小流量。

不同转速下的Pc=f (Qj)曲线都有一喘振工况点,各喘振点的连接曲线就是该压缩机喘振边界线,离心压缩机不允许在喘振边界线的左侧工作。

C.Qj≥Qmax时,离心压缩机发生滞止现象。

Qmax为滞止流量,也叫最大流量。

滞止工况就是当压缩机流量达到Qmax 时,叶轮或叶片扩压器最小截面处的气流速度达到音速,此时流量再也不能增加;或者气流速度虽未达到音速,但叶轮对气体做的功全部用来克服流动损失,气体压力并不升高。

D.喘振流量Qmin与滞止流量Qmax之间即为离心压缩机的稳定工况范围。

用比值KQ=Qmax/Qmin表示;或者以比值KQ′=(Qmax-Qmin)/ Qjm表示。

比值KQ 、KQ′越大,压缩机的稳定工况范围越宽。

衡量离心压缩机的性能好坏,不仅要求在设计流量下应有最高的效率,而且要求稳定工况范围要宽。

3、η=φ(Qj)效率-流量曲线的特点(见图2线3)A.Qj=Qjm(设计流量)时,冲击、分离损失最小,故效率η最高。

该工况点为设计工况点。

又称最佳工况点。

B.Qj>Qjm时,随着Qj的增加,冲击、分离损失与摩擦损失增加的很快,使效率下降的很快,故这段η=φ(Qj)曲线较陡。

C.Qj<Qjm时,随着Qj的减少,冲击损失增加,同时相对漏气和轮阻损失增加,使效率下降。

故效率曲线一般为中间(设计工况点附近)高,偏离设计工况点(即Qj>Qjm或Qj<Qjm 效率低,形成如图1中所示的η=φ(Qj)曲线的形状。

所以离心压缩机应在最高效率点(即设计工况点)附近进行工作。

三、典型的喘振事例例:前郭炼油厂一催化装置的MB-CH型气压机是七级串联水平中分离心式气体压缩机。

1.由转速变化引起的喘振正常情况下,压缩机转速的改变是由系统反应的压力信号控制,但在机器发生故障时,压力信号不能使汽轮机转速自由调节。

某年冬季,由于蒸汽量不足,蒸汽管网压力低,汽轮机用蒸汽经常出现0.7—0.8MPa,机组出现满负荷时非常多,转速上不去,有时只达到给定信号的80—90%,常出现喘振。

2.气体分子量减小引起喘振催化装置试验采用掺炼渣油,20天后由于渣油中重金属含量高,引起催化剂中毒,使裂化气体组分发生变化,富气中H2组分高达40%(体积百分比),富气分子量降低到将近35(原设计分子量50)。

分子量降低后,压缩机发生喘振。

3.压缩机出口管线节流引起喘振1990年5-6月份,在压缩机出口管路上入容器前打洗涤水,管内径是150mm,结垢后内径变成30mm,出口管路阻塞,管路性能曲线上移,工作点进入喘振区域,发生喘振。

4.入口节流(进口压力低)导致压缩机喘振。

一次,由于压缩机前油气分离罐破沫网脱落,被吸入压缩机入口管,形成节流,进口压力低,导致喘振。

四、防止喘振的措施防止喘振的基本原理是使流量和压力远离喘振点,即保证流量在稳定工况范围内Qmin<Q<Qmax 。

压缩机入口的进气量低于机器的喘振流量即Qmin,必将导致喘振的发生,故一般在管路中考虑防喘振的措施,常用方法有几种:1.部分气流通过防喘振阀放空这种防喘振措施的作用原理如图3a所示。

当机器排气量降低到接近喘振点时,经常感受着气量变化的文氏管流量传感器1便传出信号给伺服马达2,使之开始动作而将防喘振放空阀3打开,使部分气流经放空阀放空。

因此不论外面需气量是多少,压缩机中流过的气量,总是大于喘振气量而使压缩机能正常工作。

该方法的缺点是,被放空的气体是经过压缩的,浪费了部分压缩功。

2.部分气流经防喘振阀后回吸气管如图3b所示,其防喘振作用原理与上述放空法是一样的,区别是将放空的气体接至吸气管循环使用。

主要用于有毒,或易燃、易爆的气体管路,以及经济价值较高不宜放空的情况。

3.使机器与供气系统脱开见图3c,这种防喘振措施适用于供气系统中有几台机器并联工作,或供气系统的容量很大,因而在一段时间内压缩机停止供气时用户仍能得到所需气量。

当压缩机的排气量小到接近喘振点时,流量传感器1发生讯号而使伺服马达2工作,它将反喘振阀3打开。

这时压缩机排压便下降到接近于放空的压力,而管路端压Pe大于Pc,因此止逆阀4关闭,机器与供气系统脱开。

在此同时,由流量传感器1送出的讯号也使伺服马达5工作,进气节流阀6关小到只允许有少量的气流经过机器自反喘振阀3排出,它使机器中的温度不致升高到不允许的数值。

采用这种措施时,由于机器与供气系统脱开,同时机器的进气还采取节流措施,故这时机器的功耗大为减小。

过一段时间后,因用户不断用气而使供气管路中储气量减小及压力下降,当端压Pe下降到某个规定的最低允许值Pemin时,压力传感器7便起作用。

它发出讯号使伺服马达2及5动作,将反喘振阀3关闭而使进气节流阀6打开。

这时机器的排压便逐步升高,当排压Pc升高到稍大于Pemin时,止逆阀4自动被打开,机器又重新接入供气系统中工作。

为了有效地防止喘振,必须控制放空阀,使其流量维持在不小于整定压力所限制的流量,另外在操作中还要有具体办法:(1)增加反飞动量,开、停工时不放火炬,压缩机入口的气体流量小,这样就要增加反飞动量,开工时还要从稳定系统向分馏系统倒气体补充气体流量,来维持压缩机入口的流量,保证其在规定值内。

(2)加强稳定系统压力的调节,不能超压。

(3)加强对分馏系统油气分离器液位、界位的控制,加强脱水。

(4)加强压缩机出、入口的排凝,决不能让气体带油。

(5)保证汽轮机的蒸汽压力平稳,不低于设计值。

(6)反应压力高时,可打开入口放火炬阀,压缩机出口压力高时,可打开出口放火炬阀,但注意出、入口放火炬阀不能同时打开。

五、小结由于在生产实践中,我们积累了大量有关喘振的数据和条件,掌握了喘振发生的根本原因,摸索出喘振发生的规律,并因地制宜采取了一系列行之有效的预防措施,另外对机组实行了特护管理办法,杜绝了压缩机喘振现象的发生,为机组长周期安全运行提供了可靠的保障,从而大大降低了检维修费用,提高了经济效益。

总之,离心式压缩机组是催化裂化装置的关键设备之一,该设备的良好运行是经济效益和安全生产的保证,因此,在生产过程中一定要加强机组的维护和保养,避免喘振等现象的发生。

实践证明,喘振现象是完全可以避免的。

所谓旋转失速,是因容积流量偏小,在压缩机叶轮中所形成的气流脉动。

在正常工况下,气体在流经由叶片组成的扩压通道时,靠近叶轮壁面处的气体会因粘性而速度降低、压力增高,产生边界层分离,在叶片非工作面靠近出口处形成与主流分离的脱离区。

相关文档
最新文档