压缩机异常喘振原因分析及有效对策

合集下载

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策1、引言在多年对电力、冶金、石油化工、煤化工、油田、航空等行业轴流式压缩机和离心压缩机的状态监测及故障诊断工作中,发现不论是新投产的机组、还是运行多年的机组,都由于各种不同原因引起喘振或旋转分离,经常看到因为喘振问题造成机组振动过大,联锁停机、推力瓦磨损、径向瓦磨损、叶轮开裂、叶片断裂、部件磨损、管线开裂等等问题,引起问题的原因很多,本文列举了13种,并给出7种典型喘振原因案例,包括相应对策和效果,案例和方法基本都是笔者独创和首次提出应用的,没有资料可以参考和借鉴,而应用效果验证了解决问题方法的正确性。

同时本文提出一点设想。

2、旋转分离与喘振常见的与不常见的原因对于离心与轴流式压缩机,由于入口流量低于性能曲线对应的转速下的流量,因为叶片入口安装角的微小误差,会在某只或某几只叶片的非工作面发生边界层分离,并且沿着旋转方向依次发生,故称为:旋转分离,当流量进一步降低,旋转分离在所有流道和整级、整机发生,并和出口罐及管系联合作用,就会发展成喘振;造成喘振的物理机理很简单,而对于一起起发生在具体机组上的喘振故障,所引起喘振的具体原因,却是形形色色、各种不同的存在。

比如发生在西南地区某石化乙烯气透平压缩机进口管线、或出口管线、及机内通流截面局部堵塞引起的,发生在中油辽宁某石化的乙烯气离心压缩机组的喘振是防喘系统控制逻辑问题造成,每天损失产值过亿圆,中石化武汉中韩石化开工过程中乙烯气透平压缩机组喘振是由于入口罐引液不足问题造成,损坏了干气密封;中油东北某石化空分装置透平压缩机的喘振是因为环境湿度过大造成;山东某石化丙烯气透平压缩机喘振是入口气体温度过低造成的;华能公司某电厂的多轴式离心压缩机引起的喘振是环境粉尘造成的,造成机组无法运行;神华某煤化工企业甲醇气透平压缩机喘振是工艺系统反应收率低引起的,每年损失1.8亿圆;西南某石化丙烯气循环压缩机喘振是机后换热器管束粘结物料问题引起的;东北某石化甲烷气透平压缩机喘振是降速过程转速与流量不匹配问题引起的,中海油某石化透平压缩机喘振是现场没有进行实际气体防喘标定造成的,东北某石化焦化装置透平压缩机喘振是选型过大引起,中油、中石化多台新比隆二氧化碳透平压缩机喘振是设计问题造成的,西北某煤化工企业透平压缩机喘振是改造问题引起的,等等。

喘振的原因及解决方法

喘振的原因及解决方法

喘振的原因及解决方法喘振的原因及解决方法1、负荷过低喘振是离心式压缩机的固有特性。

当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。

但是系统管网的压力没有瞬间相应的降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向管网流动。

如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象。

离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。

压缩机排量减小,叶轮达到压头的能力也减小。

而冷凝温度由于冷却水温未改变而维持不变,则此时就可能发生旋转失速或喘振。

2、冷凝压力过高当机组负荷过高时,冷却水温度不能及时降低,就会造成冷凝温度增高,冷凝压力也就随之增高,当增加至接近于排气压力时,冷凝器内部分制冷剂气体会倒流,此时也会发生喘振。

对于任何一台离心式压缩机,当排量小到某一极度限点或冷凝压力高于某一极度限点时就会发生喘振现象。

冷水机组是否在喘振点区域运行,主要取决于机组的运行工况。

喘振运行时离心式制冷机的一种不稳定运行状态,会导致压缩机的性能显著恶化,能效降低;大大加剧整个机组的振动,喘振使压缩机的转子和定子原件经受交变力的动应力;压力失调引起强烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等;叶轮动应力加大。

1、改变压缩机转速对压缩机加装变频驱动装置,将恒速转动改为变速转动。

在低负荷状态运行时,通过同时调节倒流叶片开度和电机转速,调节机组运行状态,可控制离心机组迅速避开喘振点,避免喘振对机组的伤害,确保机组运行安全。

同时,变频离心机运行在部分负荷工况时,低转速运行,降低了电机噪音,并能缓解与建筑物产生共振现象。

2、降低冷凝温度发生喘振时,一般会认为是吸入口压力过低造成的,但机组在80%以上负荷运转时也会产生喘振,则是由于冷凝压力过高引起的,这时就要想法降低冷却水温度来降低冷凝压力。

工艺空气压缩机的喘振及预防

工艺空气压缩机的喘振及预防

工艺空气压缩机的喘振及预防什么是工艺空气压缩机的喘振?在工业生产过程中,空气压缩机是一种常用的设备。

在运行过程中,压缩机可能会出现喘振现象,这是指系统压力在一定流量条件下发生快速周期性的振荡现象。

喘振的形式有多种,常见的有一次振荡、二次振荡和多次振荡等,喘振的发生会导致压缩机的故障、减少设备寿命、能源浪费等问题,影响产品质量和工厂生产效率。

工艺空气压缩机喘振的原因1.过流和过压设备运行过程中,如果进气流量和阻力非常大,输出的风量不能满足生产需求,这时就需要增大排气压力、减小出口截面积,这两个措施都会增加振荡风动力。

出口截面积变小,进一步缩小进口面积,阻力也会更大,容易出现回流,损失也会更大。

2.群体变幻群体变幻的原因是空气压缩机中的气体具有某种定量的弹性模量,当输入侵蚀力发生变化时,气体颗粒和空气充满了一定的空化,会产生一定的变形,会出现气动不稳定的滞后效应,导致喘振产生。

3.流向的变化和节流当压缩机在运行过程中遇到节流或流量变化时,会出现流方向的变化,这种转换会改变压缩机过滤物的动力性质,引起喘振现象。

4.非完全气体压缩机可能在设备或管路中加入了一些液体或固体物质,它们会突然随着气流经过时变化,这个突变会引起气体流的不稳定性,导致喘振。

工艺空气压缩机喘振的预防经过上述对工艺空气压缩机喘振原因的分析,以下是一些有效的预防措施。

1.控制进气及排气流量要预防喘振问题,就需要控制进气流量和排气流量,这样可以减少气体压缩程度,降低气体流动的剧烈程度。

此外,还应根据工艺需要进行有效的处理大量的空气。

2.流量约束在设计或安装空气压缩机时,应该对流量进行约束。

这可以通过增加流量容量,增加气室容积、阀门调节、分流减少气流量、缩小进排气口等措施来实现。

3.安装振动杀器振动杀器一般采用振动减震弹性体,能吸收压力波,而且不影响空气压缩机的输出,并且可以降噪,提高工艺设备的运行效率。

4.增加进气管路及附加装置进气口和出气口的大小比应该尽可能的小,进口管道直径应该比出口大,这样可以起到一定的减小压差,降低流速,减小输出封堵荷载,从而减少喘振概率。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。

喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。

1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。

2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。

3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。

4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。

1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。

2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。

3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。

4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。

5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。

6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。

7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。

通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。

压缩机喘振原因及预防措施

压缩机喘振原因及预防措施

压缩机喘振原因及预防措施压缩机喘振原因及预防措施0 引言压缩机运行中一个特殊现象就是喘振。

防止喘振是压缩机运行中极其重要的问题。

许多事实证明,压缩机大量事故都与喘振有关。

喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。

喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。

喘振在运行中是必须时刻提防的问题。

在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。

判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。

1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。

当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。

上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。

在一定转速下使流量大于喘振流量就不会发生喘振。

1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。

2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施压缩机作为工业制造的重要设备,在生产过程中扮演着非常重要的角色。

随着使用时间的延长,压缩机防喘振系统出现的问题也随之而来。

这些问题不仅会影响生产效率,还可能会对设备造成严重的损坏,给企业带来经济损失。

及时发现并解决压缩机防喘振系统的问题,以及采取有效的防范措施,对于保障设备的稳定运行、提高生产效率具有非常重要的意义。

1. 压缩机防喘振系统工作不稳定:在使用过程中,由于设备长时间运行或操作不当等原因,导致压缩机防喘振系统工作不稳定,出现频繁的起伏和抖动现象,影响了设备的正常运行。

2. 压缩机防喘振系统噪音大:在运行中,压缩机防喘振系统发出噪音过大,不仅影响了生产员工的工作环境,还可能会干扰周围的环境、甚至影响到其他设备的正常运行。

过大的噪音还可能会对设备本身造成损害。

以上问题的出现,不仅会影响到生产效率,还可能会对设备的寿命和稳定性造成影响,我们必须及时采取措施来解决这些问题。

二、防范措施:1. 定期检查和维护:压缩机防喘振系统作为设备的重要部分,必须经常进行维护和检查,及时发现并解决一些潜在的问题,保障设备的正常运行和稳定性。

2. 保持设备清洁:定期清洁设备表面和内部的灰尘和杂物,保持设备的清洁,减少设备的摩擦和损耗,从而减少防喘振系统的问题出现。

3. 定期更换易损件:对于一些易损件,比如密封件、软管等,需要定期进行更换,以保证设备的正常运行和防喘振系统的稳定性。

也可以增加易损部分的使用寿命,减少设备故障的发生。

4. 合理安装和使用设备:在设备安装和使用过程中,要根据设备的使用说明书进行安装和使用,避免不当的操作导致的设备问题和损坏。

5. 清理并调整设备周围环境:设备周围的环境也会对设备的运行和防喘振系统产生影响,因此需要定期清理设备周围的杂物,保持设备周围的通风良好,减少设备的运行噪音和震动。

压缩机防喘振系统的问题不容忽视,只有及时发现和解决这些问题,采取有效的防范措施,才能保证设备的正常运行和稳定性。

压缩机喘振 压差

压缩机喘振 压差

压缩机喘振:原因、影响与解决方法一、引言压缩机在工业领域中的应用十分广泛,特别是在石油、化工、制冷和空调等行业。

然而,压缩机在运行过程中可能会遇到喘振问题,这不仅会影响压缩机的性能,严重时甚至可能导致压缩机损坏。

本文将对压缩机的喘振现象进行详细介绍,包括其产生原因、影响及解决方法。

二、压缩机喘振的产生原因喘振是压缩机的一种特有现象,主要发生在低流量、高压力比的情况下。

当压缩机的流量减少时,叶轮叶片的背面会产生涡流,导致气流周期性地倒流,从而引起压缩机的振动和噪声。

此外,压缩机的喘振还与其设计、安装、运行工况等因素有关。

三、压缩机喘振的影响压缩机喘振会产生一系列负面影响。

首先,喘振会导致压缩机的振动和噪声,严重时甚至可能损坏压缩机。

其次,喘振会影响压缩机的效率,使其性能下降。

此外,喘振还可能引起流体机械的疲劳裂纹,缩短压缩机的使用寿命。

四、解决压缩机喘振的方法针对压缩机喘振问题,有多种解决方法。

首先,可以通过改变压缩机的工作点来避免喘振。

例如,通过降低压缩机的入口压力或提高出口压力,可以将压缩机的工作点移至喘振区之外。

此外,还可以通过优化压缩机的设计来降低喘振的可能性。

例如,优化叶轮和扩压器的设计,降低流体在叶轮中的旋转速度,从而减小离心力和减小流体在进入扩压器前的速度。

同时,增加一级或多级中间冷却器可以有效降低温度和减小温差,从而减小气体的密度差和减小压差。

五、结论通过对压缩机喘振的深入研究,可以发现其产生原因主要与流体的物理性质、压缩机的设计、运行工况等因素有关。

喘振会导致压缩机的振动和噪声,影响其性能和寿命。

因此,采取有效的解决方法来避免或减小喘振是十分必要的。

这需要我们在实践中不断探索和创新,以实现压缩机的安全、高效和长寿命运行。

同时,加强对于流体机械内部流场的监测和控制也是未来研究的重要方向。

六、展望随着科技的不断发展,未来对于压缩机喘振的研究有望在多个方面取得突破。

首先,数值模拟和实验研究将更加深入,为解决喘振问题提供更精确的理论依据和实践指导。

17喘振发生的原因及解决方案

17喘振发生的原因及解决方案
制逻辑提供信号,使其减少导流叶片的开度。
c随着冷负荷的继续下降,来自压缩机的转速信号继继关闭导流叶片,并提高电动机的转速。工作原理如
下图所示。
喘振会带来的后果:
1) 使压缩机的性能显著恶化,气体参数(压力、排量)产生大幅度脉动
2) 噪声加大。
3) 大大加剧整个机组的振动,喘振使用压缩机的转子和定子的元件经受交变的动应力,压力失调引起强
烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等,叶轮动应力加大;
4) 电流发生脉动;
凝器中的压力下降到等于压缩出口压力为止。这时压缩机又开始向冷凝器送气,压缩机恢复正常工作。但
当冷凝器中的压力也恢复到原来的压力时,压缩机的流量又减小,压缩机出口压力又下降,气体又产生倒
流,如此周而复始,产生周期性的气流振荡现象。
喘振是压缩机一种不稳定的运行状态,压缩机周期性的发生间断的吼响声,整个机组出现强烈的热气排到蒸发器,降低压比,同时提高排气量,从而避免喘振的发生。
2)变频防喘振措施
VSD是Varialbe Speed Drives的简称,译为变频驱动装置,通过调节电动机的转速和优化压缩机导流叶片
的位置,使机组在各种工况下,尤其是部分负荷情况下,始终保持最佳效率。
喘振发生的原因及解决方案
1、喘振的原因
离心机组运行在部分负荷时,压缩机导叶开度减小,制冷剂的流量变得很小,压缩机流道中出现严重的
气体脱流,压缩抽的出口压力突然下降。由于压缩机和冷凝器联通工作,而冷凝器中气体的压力并不同时
降低,于是冷凝器中的气体压力反大于压缩机出口外的压力,造成冷凝器中的气体倒流回压缩机,直至冷
VSD控制的基本参数是是冷水出水温度实际值与设定值的温差。

喘振原因及常用解决办法

喘振原因及常用解决办法

喘振是透平式压缩机也叫叶片式压缩机在流量减少到一定程度时所发生的一种非正常工况下的振动;离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害离心式压缩机发生喘振时,典型现象有:1压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;2压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;3拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;4机器产生强烈的振动,同时发出异常的气流噪声; 5离心机在极端部分负荷、冷却有问题时会发生目前来说解决喘振常用的方法:①在压气机上增加放气活门,使多余的气体能够排出;②使用可调节式叶片;③确保压气机足够流量;喘振的内部原因当气体流量减少到一定程度时,压缩机内部气流的流动方向与叶片的安装方向发生严重偏离,使进口气流角与叶片进口安装角产生较大的正冲角,从而造成叶道内叶片凸面气流的严重脱离;此外,对于离心式压缩机的叶轮而言,由于轴向涡流等的存在和影响,更极易造成叶道里的速度不均匀,上述气流脱离现象进一步加剧;气流脱离现象严重时,叶道中气体滞流,压力突然下降,引起叶道后面的高压气流倒灌,以弥补流量的不足和缓解气流脱离现象,并可使之暂恢复正常;但是,当将倒灌进来的气体压出时,由于流量缺少补给,随后再次重复上述现象;这样,气流脱离和气流倒灌现象周而复始地进行,使压缩机产生一种低频高振幅的压力脉动,机器也强烈振动,并发出强烈的噪声,管网有周期性振荡振幅大频率低并伴有周期性吼叫声,压缩机振动强烈机壳轴承均有强烈振动并发出强烈的周期性的气流声,由于振动强烈轴承液体润滑条件会遭到破坏,轴瓦会烧坏转子与定子会产生摩擦碰撞密封元件将严重破坏;离心式压缩机在生产运行过程中有时会突然产生强烈振动气体介质的流量和压力也出现大幅度脉动并伴有周期性沉闷的呼叫声以及气流波动在管网中引起的呼哧呼哧的强噪声这种现象通称为压缩机的喘振工况,压缩机不能在喘振工况长时间运行一旦压缩机进入喘振工况操作人员应立即采取调节措施降低出口压力或增加入口流量使压缩机工况点脱离喘振区实现压缩机的稳定运行;从上述分析可以看出喘振不仅与叶轮流道中气体的旋转脱离有关而且与管网容量有密切关系管网容量愈大喘振的振幅也愈大,振频愈低管网容量愈小则喘振的振幅就小喘振频率愈高这就是喘振的内部原因;。

压缩机喘振的原因1

压缩机喘振的原因1

压缩机喘振的原因:
(1)压缩机出口压力升高,系统压力大于出口压力,使气体流量降到喘振流量。

系统压力高,造成压缩机出口憋压,气体在机组出口发生喘流或倒流回压缩机,造成压缩机出口气体低流量,发生喘振。

(2)入口流量、压力低于规定值。

在一定转数和一定气体密度下,能维持一定压力,入口流量低时,最容易引起压缩机入口流量低。

从而造成出口流量低,使机组运行曲线落入喘振区。

(3)气体密度变化。

压缩的介质突然发生大幅变化,在一定转数下,离心力下降,引起出口压力及排量下降,气体倒流入压缩机,造成机内气体低流量造成喘振。

压缩机喘振的预防:
(1)固定极限流量法。

一般在开车时,就把机组的转速控制在比较高的范围,使机组出口流量始终保持一个比较高的流量,负荷一般靠放空调节。

从而避免机组进入喘振区,但浪费较大。

(2)可变极限流量法。

机组的负荷调节靠转速和防喘振阀控制,防喘振阀的开度和机组流量配合调节,防喘振阀的控制要沿安全控制线精心控制,防止机组运行曲线落入喘振区。

工艺空气压缩机的喘振及预防范文(二篇)

工艺空气压缩机的喘振及预防范文(二篇)

工艺空气压缩机的喘振及预防范文工艺空气压缩机是一种广泛使用的工业设备,常用于提供压缩空气给各类工厂和生产线使用。

然而,工艺空气压缩机在使用过程中可能出现喘振现象,给设备运行和生产效率带来极大影响。

为了有效预防和解决喘振问题,以下将介绍一些预防措施和应对策略。

首先,要了解喘振产生的原因和机制。

工艺空气压缩机的喘振主要是由于压缩机内部气流失稳引起的。

当压缩机运行时,气流通过机内多个部件时的速度和压力变化会导致气流失稳,产生喘振现象。

所以,为了预防喘振,首先要保证压缩机内部的气流稳定。

其次,要进行良好的设计和安装。

设计上要考虑到空气压缩机的稳定工作条件,包括适当的排气设备、冷却系统和降噪装置。

安装时要注意合理设置空气进出口和管道连接,确保气流通畅,减少阻力和振动的产生。

另外,定期维护和保养也是预防喘振的重要措施。

定期检查和清洁空气压缩机的内部部件,保证其正常运行。

特别是注意清理滤芯和冷却系统,防止积尘和堵塞影响空气流通和散热效果。

此外,合理控制空气压缩机的工作参数和运行状态也是重要的预防喘振的手段。

根据实际需要调整压缩机的出口压力和转速,保持在合适的范围内。

避免过载和长时间高速运行,以免产生过大的振动和压力变化。

总之,预防工艺空气压缩机喘振的关键是保证气流的稳定和通畅。

通过良好的设计安装、定期维护和合理控制运行参数,可以有效预防喘振的发生。

这不仅可以提高压缩机的工作效率,还可以延长其使用寿命,减少故障和维修成本。

最后,在操作空气压缩机时,也要注意操作规范和安全。

必须按照使用说明书和工艺要求进行操作,不可随意更改工作参数或超负荷使用。

同时,在操作过程中及时观察和处理异常情况,如异响、振动等,以防止喘振发生。

通过以上预防措施,可以有效避免工艺空气压缩机的喘振问题,保证其正常运行和稳定性能。

这对于各类工厂和生产线的正常生产和运营有着重要的意义。

因此,在使用工艺空气压缩机的过程中,我们应该充分重视喘振问题的预防,并采取相关措施,以确保设备的安全和稳定运行。

压缩机喘振与调节方法

压缩机喘振与调节方法

压缩机喘振与调节方法压缩机的喘振是指压缩机在运行过程中出现的振动和噪音现象,通常产生的原因有两个方面:机械方面和气动方面。

喘振会严重影响压缩机的正常运行,甚至导致设备故障和损坏。

因此,对于压缩机的喘振问题,需要采取一些调节方法来减少和消除。

一、机械方面1.检查压缩机的支撑结构和基础,确保其稳定性。

如果支撑结构不牢固或基础不稳定,容易引发振动和噪音,导致喘振问题。

2.检查压缩机的叶轮、轴承和其他转动部件的装配情况和磨损程度。

如果叶轮装配不当或者轴承磨损严重,都会导致不平衡振动和喘振现象。

需要及时更换磨损严重的部件,并确保装配的正确性。

3.清洗和维护压缩机的冷却系统,确保冷却效果良好。

如果冷却系统存在堵塞或冷却水流量不足,会导致压缩机过热,引发振动和喘振。

4.对于柱塞式压缩机,要定期检查气缸套的磨损情况,及时更换磨损严重的气缸套,并确保柱塞的正确配合度。

柱塞不良配合度会引发气缸内部的振动和噪音。

二、气动方面1.检查压缩机的进气阀和排气阀的工作情况。

如果阀门存在卡滞或密封不良,会导致气体回流和压力不稳定,引发喘振现象。

需要及时清洗和维护阀门,确保其正常工作。

2.对于容积式压缩机,要调节气缸的容积比。

容积比过大或过小都会引发振动和噪音,需要根据实际情况进行调整。

3.检查压缩机的冷却器的工作情况,确保冷却器散热良好。

如果散热不良,会导致压缩机过热,引发振动和喘振。

4.检查压缩机的管道系统,确保管道的密封性和稳定性。

如果管道存在泄漏或支撑不稳定,会导致气体流动不畅,引发喘振。

在调节压缩机喘振时,应先排除机械方面的问题,检查和维护压缩机的各个部件。

如果机械方面的问题已经解决,但喘振问题仍然存在,则需要进一步检查和调节气动方面的问题。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施压缩机是工业生产中常见的设备,用于将气体或蒸气压缩成高压气体的装置。

在压缩机运行过程中,可能会出现喘振现象,给生产带来一系列的问题,防止压缩机出现喘振现象是非常重要的。

本文将就压缩机防喘振系统出现的问题及防范措施进行探讨。

1. 噪音过大当压缩机出现喘振现象时,会导致机器工作不稳定,产生较大的噪音。

噪音过大不仅会影响生产场地的环境,也会对工人的身心健康造成影响。

2. 设备损坏喘振现象会导致压缩机产生振动,长期下去会导致机器损坏,减少设备的使用寿命,增加维护成本。

3. 产能下降当压缩机出现喘振现象时,会导致机器输出功率下降,从而使得生产产能受到严重影响。

4. 安全隐患喘振现象会给设备运行带来了不稳定因素,可能会引发设备故障,造成安全隐患。

二、压缩机防喘振系统的防范措施1. 定期维护检查要定期对压缩机进行维护检查,包括检查连接螺栓是否松动,轴承是否磨损,润滑油是否足够等,确保设备运行的稳定性。

2. 安装减振装置在压缩机设备上安装减振装置,如减振脚,减振垫等,能有效地减少设备的震动。

3. 保持压缩机平稳运行在使用压缩机时,要保持设备的平稳运行,避免频繁启停和负载变化,减少机器运行过程中的工况变化,降低喘振的发生几率。

4. 定期清洗要定期对压缩机进行清洗,清理设备内部的灰尘和杂物,保持设备的通风性能,防止因灰尘积聚导致设备运行不畅。

5. 合理设置控制系统通过合理设置控制系统,如安装变频器、压力传感器等,对压缩机的运行状态进行监控和调节,提高设备的运行效率,减少喘振现象的发生。

6. 增强员工培训对操作压缩机的员工进行专业的培训,使其能够正确地使用和保养压缩机设备,及时发现并解决设备运行中的异常情况。

7. 定期更换易损件对压缩机设备的易损件进行定期更换,避免因零部件磨损或老化导致设备产生异常振动。

三、总结在工业生产中,压缩机是一个非常重要的设备,防止压缩机出现喘振现象对生产的稳定性和效率有着重要的影响。

工艺空气压缩机的喘振及预防模版

工艺空气压缩机的喘振及预防模版

工艺空气压缩机的喘振及预防模版一、引言工艺空气压缩机是工业生产中广泛使用的设备之一,用于将大气中的空气压缩为压缩空气,为各种设备和工艺提供所需的气体动力。

但在使用过程中,可能会出现喘振现象,严重影响设备的正常运行和寿命。

因此,本文将探讨工艺空气压缩机的喘振问题,分析其原因,并提出相关预防措施。

二、工艺空气压缩机的喘振原因1. 运行负荷不稳定:当压缩机的负荷发生突变或波动时,容易导致喘振。

这可能是由运行设备的使用需求的变化引起的,比如设备的启停或负荷改变。

2. 系统设计不合理:如果压缩机的系统设计不合理,比如管道过长、接口设计不良等,都会导致过大的压力损失和气体流动不稳定,从而引发喘振。

3. 调节系统失效:有时候压缩机的调节系统可能出现失效,无法及时响应压缩机负荷的变化,导致压缩机无法实现稳定的运行。

4. 压缩机结构问题:压缩机的结构问题,比如机械松动、叶片磨损等,都会引发喘振。

三、工艺空气压缩机的喘振预防措施1. 稳定负荷:稳定压缩机的负荷是避免喘振的关键。

可以通过合理规划工艺流程,避免频繁启停、负荷波动等问题。

另外,可以选择具有更好负荷调节性能的压缩机,以满足负荷变化的需求。

2. 合理的系统设计:在设计压缩机系统时,要合理选择管道尺寸、通道设计等,以减小压力损失和气体流动的不稳定性。

此外,要确保系统中的所有接口都严密可靠,避免漏气和振动引发喘振。

3. 定期维护检查:定期对压缩机进行维护和检查,包括润滑、紧固连接件、叶片磨损等的检查,及时发现和修复问题。

此外,还要及时更换磨损的零部件,以保证压缩机的正常运行。

4. 使用合适的控制系统:控制系统的选择和使用对于避免喘振也十分关键。

可以选择采用先进的控制系统,能够实时监测和调节压缩机的运行状态,提高负荷调节的稳定性。

5. 增加缓冲容量:在压缩机系统中增加缓冲容量,可以减小压力波动对系统的影响,从而减少喘振的发生。

6. 优化供气系统:对压缩机的供气系统进行优化,包括调整管道布局、增加气体过滤和干燥装置等,可以改善气体流动性和质量,从而减轻压缩机的负荷和喘振的风险。

工艺空气压缩机的喘振及预防范文

工艺空气压缩机的喘振及预防范文

工艺空气压缩机的喘振及预防范文工艺空气压缩机是工业生产过程中常用的设备之一,其功效在于提供所需的压缩空气。

然而,在实际使用过程中,有时候会出现喘振现象,这对设备的正常运行和生产效率都会造成不利的影响。

因此,了解喘振的原因,并采取预防措施是非常重要的。

一、喘振的原因:1. 设备内部压力不稳定:设备内部的压力过高或过低都会导致喘振现象的发生。

例如,若压缩机的排气压力超过了设定的阀门压力,就会引起气体压缩过程中的喘振。

2. 气流不均匀:系统内部的气流不均匀也会引起喘振现象。

例如,气流在管道中存在突然变窄或变宽的情况,就会导致气体的流动不稳定,从而引起喘振。

3. 过载运行:设备长时间的过载运行也是造成喘振的重要原因之一。

过载运行会导致设备的负荷过大,进而导致设备内的压力不稳定,从而引起喘振。

二、喘振的预防措施:1. 设备维护保养:定期对设备进行维护保养是预防喘振的重要措施之一。

例如,定期检查和清洁设备内部的管道、阀门等,以确保设备正常工作,并消除可能引起喘振的问题。

2. 压力控制:恰当地控制设备内的压力,避免过高或过低的压力出现,可以有效地预防喘振。

例如,定期检查和调整设备的阀门压力,确保在设备正常工作范围内。

3. 管道设计优化:合理设计和布置管道,避免气流不稳定的情况出现,也是预防喘振的重要措施之一。

例如,避免管道中存在过多的弯曲和分支,以保证气流的均匀流动。

4. 过载保护装置的安装:安装过载保护装置是预防喘振的有效手段之一。

当设备负荷超过预定值时,过载保护装置会自动停机,避免设备长时间运行过载,从而减少喘振的发生。

三、喘振的处理方法:1. 减小负荷:当设备出现喘振现象时,可以适当减小设备的负荷,以降低设备压力,从而减少喘振的发生。

2. 检查管道:检查设备内部的管道和阀门是否存在堵塞或漏气等问题,并及时进行处理。

3. 检查压力控制装置:检查设备内的压力控制装置是否正常工作,若存在问题,及时修复或更换。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施压缩机是工业生产中常用的设备之一,但在使用中常常会出现喘振或振动等问题,这不仅会影响生产效率,还可能导致设备的损坏和人员的安全问题。

因此,必须采取有效的防范措施来避免这些问题的出现。

一、喘振和振动的原因1、系统管道设计不合理,直径过小或过长;2、系统管道漏气,或管道连接处泄漏;3、压缩机自身结构松动或损坏;4、压缩机受力不平衡,导致机身振动;5、系统管道内气体流速过大或变化不稳定。

二、防范措施1、管道设计合理根据气体流量、压力差等参数合理选择管道直径,并保证管道通畅,减少管道连接点,避免漏气点的出现。

2、管道漏气检查定期检查系统管道的连接点是否漏气,可以利用泄漏检测仪等设备进行检测,在压缩机运行时进行检测可以更好地发现问题。

3、压缩机结构检查定期检查压缩机的结构是否松动,比如固定螺栓是否正常、机内管道是否连接紧等,若发现问题及时处理。

4、维护压缩机平衡在运行中,尽量避免出现过载或空载状态,这将导致压缩机产生不平衡的受力,增加喘振和振动的风险。

此外,也要注意机体的平衡,如润滑系统油量、过滤器清洗等。

5、气体流速控制压缩机出气管道内,冷却风机叶轮和散热排成型件都可能成为引发振动的元凶。

其工作原理类似于翼型。

对于翼型式风机或散热器,为减小旋翼的阻力,其内壁通常都采用低密度网格或微小的平衡凸起,如果此类内壁材料堆积有灰尘和油污,将严重干扰了其工作,打破平衡状态,从而产生振动,因此要进行定期清洗。

以上就是压缩机防喘振的问题及防范措施,对于企业来说,应重视这些问题的发生,加强日常维护,确保设备的正常稳定运行,提高生产效率和安全性。

离心压缩机异常振动、异常噪音、喘振原因与处理方法

离心压缩机异常振动、异常噪音、喘振原因与处理方法
离心压缩机异常振动、异常噪音、喘振原因与处理方法
1、压缩机的异常振动和异常噪音:
可能的原因
处理方法
①、机组找正精度被破坏,不对中。
检查机组振动情况,轴向振幅大,振动频率与转速相同,有时为其2倍、3倍……卸下联轴器,使原动机单独转动,如果原动机无异常振动,则可能为不对中,应重新找正。
②、转子不平衡。
检查振动情况,若径向振幅大,振动频率为n,振幅与不平衡量及n2成正比;此时应检查转子,看是否有污垢或破损,必要时转子重新动平衡。
⑦、防喘装置或机构工作失准或失灵。
定期检查防喘装置的工作情况,发现失灵、失准或卡涩,动作不灵,应及时修理调整。
⑧、防喘整定值不准。
严格整定防喘数值,并定期试验,发现数值不准及时校正。
⑨、升速、升压过快。
运行工况变化,升速、升压不可过猛、过快,应当缓慢均匀。
⑩、降速未先降压。
降速之前应先降压,合理操作才能避免发生喘振。
④、压缩机出口气体系统压力超间。
压缩机减速或停机时气体未放空或未回流,出口逆止阀失灵或不严,气体倒灌,应查明原因,采取相应措施。
⑤、工况变化时放空阀或回流阀未及时打开。
进口流量减少或转速下降,或转速急速升高时,应查明特性线,及时打开防喘的放空阀或回流阀。
⑥、防喘装置未投自动。
正常运行时防喘装置应投自动。
⑮、气体管道对机壳有附加应力。
气体管路应很好固定,防止有过大的应力作用在压缩机气缸上;管路应有足够的弹性补偿,以应付热膨胀。
⑯、压缩机附近有机器工作。
将它的基础、基座互相分离,并增加连结管的弹性。
⑰、压缩机负荷急剧变化。
调节节流阀开度。
⑱、部件松动。
紧固零部件,增加防松设施。
2、离心压缩机喘振:

浅谈压缩机喘振原因及解决措施

浅谈压缩机喘振原因及解决措施

浅谈压缩机喘振原因及解决措施一、设备喘振流体机械及其管道中介质的周期性振荡,是介质受到周期性吸入和排出的激励作用而发生的机械振动。

例如,泵或压缩机出现流量减小到最小值时,出口压力会突然下降,管道内压力反而高于出口压力,于是被输送介质倒流回机内,直到出口压力升高重新向管道输送介质为止;当管道中的压力恢复到原来的压力时,流量再次减少,管道中介质又产生倒流,如此周而复始。

人们把以上现象称为喘振。

喘振现象在压缩机使用过程较为常见,设备和管道系统出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏。

喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。

一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。

为防止喘振,必须使流体机械在喘振区之外运转。

在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。

当多台机器串联或并联工作时,应有各自的防喘振调节装置。

二、风机喘振的现象当风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也发生很大的波动。

风机的电动机电流波动很大,最大波动值有50A左右。

风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动。

风机发出“呼噜、呼噜”的声音,使噪声剧增。

风量、风压、电流、振动、噪声均发生周期性的明显变化,持续一个周期时间在8s左右。

三、喘振原因根据对轴流式通风机做的大量性能试验来看,轴流式通风机的p-Q性能曲线是一组带有驼峰形状的曲线(这是风机的固有特性,只是轴流式通风机相对比较敏感),如左图所示。

当工况点处于B点(临界点)左侧B、C之间工作时,将会发生喘振,将这个区域划为非稳定区域。

发生喘振,说明其工况已落到B、C之间。

离心压缩机发生喘振,根本原因就是进气量减少并达到压缩机允许的最小值。

理论和实践证明:能够使离心压缩机工况点落入喘振区的各种因素,都是发生喘振的原因。

压缩机喘振现象及处理方法

压缩机喘振现象及处理方法

压缩机喘振现象及处理方法压缩机喘振现象及处理方法1. 喘振现象的定义喘振是指在压缩机工作过程中发生的一种流动性现象,表现为压缩机机体及管道内的气流产生剧烈的振荡。

喘振会导致压缩机性能下降、噪音增大,并且对设备寿命和安全造成影响。

2. 喘振的原因喘振的产生原因较为复杂,主要有以下几个方面:•气流回流现象:当气流经过突然的节流或阻碍,会产生压力波,并引起喘振。

•气体返流:由于管路系统设计不当或安装错误,会导致气体返流,进而引起压缩机喘振。

•系统过载:当压缩机运行在过载工况下,过多的气体被压缩,产生的压力波会引起喘振。

•系统堵塞:管道内的污染物或异物堵塞,导致气流不畅,也会引起喘振。

3. 处理喘振的方法为了解决压缩机喘振问题,可以采取以下方法:安装减振装置•在压缩机的进气口和排气口安装减振器,可以有效降低振动的传导和扩散,减少喘振的发生。

•在压缩机和管道连接处安装减振垫,起到缓冲作用,减少振动对管道的影响。

调整压缩机的工况•根据压缩机的额定工况,合理设置压缩机的运行参数,避免过载运行,减少喘振的可能性。

•对于多台压缩机并联运行的系统,需要合理分配压缩机的负荷,避免负载不均衡引起的喘振。

清洁管道和过滤器•定期清洗管道和过滤器,防止污染物和异物堵塞管道,保持气流通畅,减少喘振的概率。

优化系统设计•在设计压缩机系统时,合理选用管道材料和直径,减小阻力,降低压缩机运行时的压力波。

•合理设计气流通道,避免急转弯、突变节流等情况,减少压力波的产生。

总结压缩机喘振是一个常见且严重的问题,但通过合适的处理方法,可以有效地降低喘振的发生。

在实际操作过程中,需要根据具体情况综合考虑上述方法,并结合实际经验进行处理,以确保压缩机正常工作,延长设备寿命,保障工作安全。

4. 使用软启动装置•软启动装置可以帮助降低压缩机的启动冲击,减少振动和喘振的发生。

•软启动可以逐渐增加电流和转速,避免突然的负载变化,降低喘振的风险。

5. 定期维护和检查•定期维护和检查压缩机,包括清洁和更换滤芯、润滑油等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩机异常喘振原因分析及有效对策1、引言在多年对电力、冶金、石油化工、煤化工、油田、航空等行业轴流式压缩机和离心压缩机的状态监测及故障诊断工作中,发现不论是新投产的机组、还是运行多年的机组,都由于各种不同原因引起喘振或旋转分离,经常看到因为喘振问题造成机组振动过大,联锁停机、推力瓦磨损、径向瓦磨损、叶轮开裂、叶片断裂、部件磨损、管线开裂等等问题,引起问题的原因很多,本文列举了13种,并给出7种典型喘振原因案例,包括相应对策和效果,案例和方法基本都是笔者独创和首次提出应用的,没有资料可以参考和借鉴,而应用效果验证了解决问题方法的正确性。

同时本文提出一点设想。

2、旋转分离与喘振常见的与不常见的原因对于离心与轴流式压缩机,由于入口流量低于性能曲线对应的转速下的流量,因为叶片入口安装角的微小误差,会在某只或某几只叶片的非工作面发生边界层分离,并且沿着旋转方向依次发生,故称为:旋转分离,当流量进一步降低,旋转分离在所有流道和整级、整机发生,并和出口罐及管系联合作用,就会发展成喘振;造成喘振的物理机理很简单,而对于一起起发生在具体机组上的喘振故障,所引起喘振的具体原因,却是形形色色、各种不同的存在。

比如发生在西南地区某石化乙烯气透平压缩机进口管线、或出口管线、及机内通流截面局部堵塞引起的,发生在中油辽宁某石化的乙烯气离心压缩机组的喘振是防喘系统控制逻辑问题造成,每天损失产值过亿圆,中石化武汉中韩石化开工过程中乙烯气透平压缩机组喘振是由于入口罐引液不足问题造成,损坏了干气密封;中油东北某石化空分装置透平压缩机的喘振是因为环境湿度过大造成;山东某石化丙烯气透平压缩机喘振是入口气体温度过低造成的;华能公司某电厂的多轴式离心压缩机引起的喘振是环境粉尘造成的,造成机组无法运行;神华某煤化工企业甲醇气透平压缩机喘振是工艺系统反应收率低引起的,每年损失1.8亿圆;西南某石化丙烯气循环压缩机喘振是机后换热器管束粘结物料问题引起的;东北某石化甲烷气透平压缩机喘振是降速过程转速与流量不匹配问题引起的,中海油某石化透平压缩机喘振是现场没有进行实际气体防喘标定造成的,东北某石化焦化装置透平压缩机喘振是选型过大引起,中油、中石化多台新比隆二氧化碳透平压缩机喘振是设计问题造成的,西北某煤化工企业透平压缩机喘振是改造问题引起的,等等。

3、引起喘振的7种原因及解决方案和效果验证因为篇幅关系,上述13种引起喘振原因及解决办法不能全部列出,这里仅通过近几年完成的7个效益显著的案例,介绍引起喘振的不同原因的解决方案;3.1、案例1 中油辽宁某石化防喘系统控制逻辑问题造成的乙烯气离心压缩机组的喘振案例该机组2012年10月与80万吨乙烯装置同步投产运行,刚刚投入正常生产,突然出现因为振动过大,联锁停机的问题,每天一到三次振动过大联锁停机,我们利用机组的互联网远程在线监测系统及时进行了远程监测诊断分析,根据远程数据分析,立即给出书面分析报告,振动联锁停机原因是属于喘振引起的;但是数次发出书面诊断报告后,现场采取相应措施后,喘振一直没有得到抑制。

每停机一次就会损失1仟多万元的乙烯气原料,每天停机两次就会造成一亿多圆人民币的产值损失,面临着严重的经济效益和环保等社会效益问题。

急生产所急,立即赶到现场,进一步解决问题。

现场调取在线监测系统历史数据,确认故障性质与远程诊断一致。

然后在控制室调取DCS数据,发现机组发生喘振时,控制系统中的防喘控制系统,已经动作,防喘系统执行了降速、提流量控制程序,但是我们根据历史流量趋势曲线、降速趋势曲线、联锁停机时间点等数据综合分析,防喘控制系统程序的逻辑存在问题,不适合该机组。

于是我们与压缩机控制系统提供商3C公司进行了沟通,立即修改了防喘控制逻辑参数,此后再没有因此造成喘振停机问题,为企业赢取了明显的经济效益和社会效益!由此改变了一个日产值过亿圆的大型化工装置开工过程的命运。

3.2案例2 中石化武汉中韩石化开工过程中由于入口罐引液不足问题造成乙烯气透平压缩机组喘振案例2013年7月,中石化武汉中韩石化开工,年产80万吨乙烯装置的乙烯气透平压缩机组投入运行,开机时间不长,带负荷运行了数分钟,发生了多次振动过大现象,只好停机分析原因。

当时指挥开工的企业副总经理,在机组发生强烈振动时,他恰好位于单向阀附近,感觉单向阀振动非常大,建议拆检单向阀,其他人没有异议,最后设备监测诊断人员,根据在线监测系统采集的数据和图谱,分析认为机组强烈振动不是单向阀的问题,例如,振动信号中20Hz 的低频分量远远高于转频分量等迹象,说明机组发生了喘振!此时自控专业开工领导认为:防喘系统调试得非常正常,不会喘振;我们认为:防喘系统正常并不能完全防止喘振,关键是要有足够的体积流量,就如同人饿了,仅仅张开嘴,并不解决饥饿问题,必须有食物进入口中并咽下,才起作用!此时工艺专业开工专家指出:主机厂负责人担心降温太快造成转子弯曲,不允许操作人员引足够介质液进入入口缓冲罐;证实了引起喘振的原因是机组入口流量不足,防喘系统也无法真正发挥作用。

第二天发现干气密封及动环已经由于喘振过大而损坏!现场无法修复,返厂修复。

3.3案例3 神华某煤化工企业因为工艺系统反应收率问题引起的甲醇气透平压缩机喘振案例2015年4月,神华某煤化工企业的甲醇气透平压缩机组出现振动过大问题,无法满负荷运行,只能带50%负荷运行,造成每天派出30台大罐车长途运回甲醇,满足后续生产,每年经济损失1.8亿人民币,同时还存在极大的安全环保隐患!我们应邀去分析原因和解决问题。

初步的信息是:机组一加负荷就会振动过大停机。

我们对该机组不同转速工况的振动信号进行了分别采集分析,现场实际情况是,一台汽轮机驱动一台离心压缩机,压缩机一个缸内一根转子分为两段:合成段,压缩输送新鲜甲醇气体、循环段,压缩输送反应塔内反应后剩余的甲醇气体,工艺包设计为合成段+循环段总流量,在同一工况下为常数,我们监测到的数据说明,转速即负荷一提高合成段就会发生喘振,因为负荷一旦提高,来自合成反应塔的循环段气体流量就增加,合成段流量就会随之下降,造成合成段发生喘振。

这种状况下负荷需要增大,循环段需要提流量增速,而为了保证系统的总流量,合成段需要降低流量及降速,汽轮机只有一台,压缩机转子只有一根,不可能循环段升速、合成段降速;企图在机组本体上解决喘振问题是不可能的!于是我们想到一个降低循环段流量的办法,循环段流量能降低,合成段流量就可以提高,也就能消除喘振问题!据此我们向企业提出提高合成反应塔收率即提高反应塔内温度的办法,第一步提高10℃,神华包头煤化工企业人员立即咨询国外的反应塔生产商,外商回复是:合成反应塔可以提高10℃。

我们在现场立即出具分析书面诊断报告,给出诊断结论和解决方案;结论:1、通过升降速排除油膜涡动和油膜震荡问题;2、振动过大属于因合成段流量过小、循环段流量过大,造成的合成段旋转分离和喘振问题;建议:1、合成反应塔温度提高10℃;2、尽量保证合成段质量流量约在300T/H(根据组成略作调整),循环段尽量保证流量在额定流量。

企业采用我们的措施后,负荷提高到95%以上。

企业再也不需要每天30台大罐车长途运回甲醇啦!每年可节省1.8亿圆人民币,取得明显的经济效益和社会效益。

3.4 案例4西南某石化因为机后换热器管束粘结物料引起的离心压缩机喘振案例2018年3月5日8:40到9:30,该企业一台丙烯气循环离心压缩机,突然出现异常振动,轴振动峰峰值达到85微米以上,该压缩机轴振动报警值60微米、联锁停机值80微米,转速999转/分,之前多年运行时正常轴振动峰峰值20-35微米之间,振幅正常时频谱中主要是转频分量,频率16.54Hz、幅值22.4微米,而振动增大时,仅可明显见到15Hz分量、幅值达到51.9微米,高于正常时的通频振幅。

我们快速排除其他不可能原因,认为该压缩机发生了喘振,在再次出现过大振动之前,我们向客户提交了分析诊断结论:机组因为体积流量过小发生了喘振;原因是介质入口温度偏低、并且机组气流通流系统通流截面存在减小问题。

确认该机组振动原因的难点在于,出现振动变化前后,见图(5),频率之比是15Hz(异常频率)/16.5Hz(转频)=0.91倍频,这种情况下,下喘振的结论,受到国内外设备状态监测及故障诊断专业书籍、资料、案例的约束!国内外资料、书籍,给出的喘振频率及旋转分离频率都在0.8倍频之下,那么这起喘振案例的0.91倍频,属于史上少见、颠覆传统的存在。

我们认真全面分析之后,冲破约束、打破现有资料的条条框框,从故障机理与离心压缩机的气动热力分析原理的角度大胆给出结论,3月12日再次从技术角度与业主沟通,达成共识,决定进一步查清引起罕见喘振的原因。

3月16日停机,全面检查压缩机通流系统:阀门、管线、机后冷却器等部位,检查发现机组的列管式后冷却器的管束被物料堵塞、反应器内大量结块物料堵塞流道,验证了我们的结论。

3.5 案例5中油、中石化多台透平压缩机因为设计问题引起的喘振案例前些年,中石油、中石化等从国外引进的十三套大化肥装置,其中关键的五大机组中的二氧化碳透平压缩机,机组是由一台汽轮机驱动压缩机的低压缸、再连接增速箱驱动压缩机的高压缸,高压缸工作转速13900-15000转/分,出口压力150kg/cm2,均由意大利新比隆压缩机公司设计制造(之前是美国的技术)。

在对该机组进行长达二十多年的离线与在线监测过程中,我们发现机组无论在任何工况下运行,都避不开轻度的喘振即旋转分离状态,在任何工况下监测机组高压缸的振动信号中都存在0.75倍频的分量,转频231.8Hz,同时始终存在一个低频170.835Hz,170.835/231.8=0.74倍频。

我们对该机组高压缸的额定流量、压力、级数、效率、压比分配等,采用流道法进行了气动热力校核,模拟现场运行环境,得出结果是,在该机高压缸的特定介质、流量、压力等参数下,常规设计方法,试图保证运行时不发生轻度喘振即旋转分离是很难做到的。

二十多年后,对装置进行扩能改造,在该机前增加了一台增压机,使入口体积流量和压力增加,转速略有降低之后,实际特性曲线适度向左移动,防喘安全度提高,该机高压缸“天生”轻度喘振即旋转分离问题得到解决,见下图;此时再无170.835Hz的低频的旋转分离分量出现。

3.6 案例6某煤化工企业因为改造引起的喘振案例这是一台煤化工企业的丙烯气透平压缩机组,额定转速3618转/分,工作转速3455转/分,6级5段。

2018年该压缩机投入使用后流量和压力达不到设计和生产的需求;为此进行改造,增加了1级叶轮的直径及隔板尺寸,以及3、4级的隔板几何尺寸。

改造后运行时发现轴振动增大轴振动报警值63.5微米,实际振幅达到88.7微米以上,并且振动信号中出现了之前不存在的29Hz分量,而且幅值明显大于59Hz的转频分量幅值,同时压缩机的轴位移值也出现30微米以上的振幅波动,我们分析认为振动过大的原因是,压缩机流道改造时,一级叶轮直径的设计尺寸过大,工艺系统工况的实际体积流量,不能满足叶轮改造后的体积流量,压缩机内发生了喘振。

相关文档
最新文档