果蝇杂交实验设计方案

合集下载

果蝇的三点测交试验

果蝇的三点测交试验

果蝇的三点测交试验
果蝇的三点测交试验是一种经典遗传学实验,用于研究性状的遗传方式和遗传规律。

该实验利用果蝇容易繁殖、生命周期短、遗传稳定等特点,通过人工控制交配,可以确定
基因型和表型的关系,从而深入了解遗传现象。

实验步骤:
1.饲养果蝇:首先需培育出足够数量、健康的果蝇,确保其基因型和表型的稳定性。

采用人工饲养的方式,果蝇的饲养环境需控制恒温、恒湿、恒光、无杂质。

2.选取实验材料:选择具有稳定性状的果蝇为实验材料。

例如,选取表现为黑色眼睛、有翅膀、灰色体色的果蝇为正常型(wild type),选取表现为白色眼睛、无翅膀、黄色体色的果蝇为突变型(mutant type)。

3.实验设计:设计交配方案,进行杂交。

将正常型的雌性与突变型的雄性交配,产生
F1代。

将F1代的雌性与F1代的雄性进行三点测交试验。

4.观察表型:观察F1代和F2代的表型。

例如,如果F1代的全部表现为正常型,说明突变型的性状为隐性遗传;如果F1代和F2代都表现为正常型和突变型的混合,则说明突
变型的性状为隐性遗传;如果F1代表现为正常型,F2代表现为正常型和突变型比例为3:1,则说明突变型的性状为显性遗传。

5.计算遗传比例:根据后代表型推断基因型,利用遗传学计算方法计算各基因型在后
代中分布的比例。

三点测交试验是一种重要的遗传学方法,通过该方法可以深入了解不同性状的遗传方式,对基因表达和遗传变异进行研究,为进一步揭示生命现象的本质提供了重要的方法和
思路。

果蝇综合大实验实验设计

果蝇综合大实验实验设计

附一、数据记录表反交灰体黑体合计♀♂♀♂红、长、直╋╋╋白、短、卷━━━白、长、直━╋╋红、短、卷╋━━红、长、卷╋╋━白、短、直━━╋红、短、直╋━╋白、长、卷━╋━体色合计性别合计性别合计♀♂答:(1)对于正交组,三隐性突变体雌蝇(X w sn m X w sn m)与红眼(+)、直刚毛(+)、长翅(+)野生型雄蝇(X+++Y)杂交,则F1可产生三杂合体雌蝇(Xw sn m X+++)和三隐性雄蝇(X w sn m Y)。

由于Y染色体上不携带相应的等位基因,因而表现出X染色体上三个隐性基因所控制的性状,相当于一个三隐性纯合体。

用F1代杂交(相当于测交),F2代表现出的8种表型及数目与F1雌蝇产生的8种配子及数目一致。

而反交组由于F1中的雄果蝇是野生型的,其显性基因掩盖了F1雌蝇产生的8种配子中的部分隐性性状,导致F2不出现8种表型,因此不能直接进行三点测交。

(2)反交组若要进行三点测交,可以用F1中的处女蝇与6号亲本雄蝇回交,观察F2的表型即可进行三点测交。

反交组三点测交示意图:P ♀+ + +/+ + + ×w m sn/Y♂↓F1 ♀w m sn ⁄+ + + ×w m sn/Y♂(处女蝇)↓(P)F2 w m sn + m sn w + sn w m ++ + + w + + + m + + + sn附二、实验结果分析1..分离定律:χ2检验表反交基因体色基因(B/b)F2表型灰体黑体合计实得数预期数χ2P(n=1)2.自由组合定律:χ2检验表表型合计反交灰体红眼灰体白眼黑檀体红眼黑檀体白眼实得数预期数χ2P(n=3)3.伴性遗传:χ2检验表红眼白眼合计反交F1表型雌雄雌雄实得数预期数χ2P(n=1)F2表型雌雄雌雄合计实得数预期数χ2P(n=2)。

果蝇遗传系列杂交实验

果蝇遗传系列杂交实验
ቤተ መጻሕፍቲ ባይዱ
实验步骤
1.在杂交前19-20天按杂交组合数量,计划和 培养好亲本。
2.收集处女蝇:一般选择在晚上9点钟把亲本 (种蝇)全部活的成虫转出处死(一个都不能 剩),第二天9点钟前(12小时内,最好8- 10小时内)把培养瓶里羽化的成虫转出,并 按♀、♂分开培养,所得的♀蝇即为处女蝇。
3.按各杂交组合需选的果蝇品系,每瓶放入3 -5对,塞好瓶塞,贴好标签,置于25℃恒 温培养箱中培养。
2. 挑处女蝇时, 每次只挑12小时内羽化成 虫,超过12小时的成虫已逐渐 有交配能力,必须一只不留地倒
出处死,才能进行第 二次挑选
3. 刚羽化的果蝇色淡白,体软绵, 难辨♀♂,务必小心区别
4. 使用毛笔和瓷板,要用酒精棉球 消毒,同时必须凉干才能使用。
5. 每个杂交组合放果蝇 2-3对,用毛笔把果蝇扫进 试管,试管要平放,待蝇醒后, 方能竖起,避免果蝇粘在培养
基上被闷死,杂交组合配 好后,放回培养箱。
6. 培养箱温度保持在25℃, 不要随意更改或调整其他旋
钮,以免影响整个实验。
实验结果的观察和统计
1.把各杂交组合的果蝇成虫分别倒出试管, 并逐个组合麻醉,观察性状,做好记录。
2.样本自由度为n-1
4.根据实际观察数计算理论值。 5.计算2 值,结果必须与显著平准作比较
系列杂交实验内容
1.果蝇的单因子实验杂交组合
18#♀ x 2 #♂ (正交) 2#♀ x 18#♂(反交)
2.果蝇二对因子自由组合实验的杂交组合
e♀ x 2#♂ (正交)
2#♀ x e#♂ (反交)
3.果蝇的伴性遗传杂交组合
18#♀ x 22#♂ (正交) 22#♀ x 18#♂ (反交)

果蝇杂交的实验报告

果蝇杂交的实验报告

实验四:果蝇的杂交姓名:许哲同组者:李永久班级:生科08级学号:200805140167 实验时间:周二下午摘要经典遗传学的三大遗传定律分别是:分离定律,自由组合定律和连锁与交换规律。

果蝇具有生活史短、繁殖率高、饲养简便等特点,是研究遗传学的好材料,尤其在基因分离、连锁、交换等方面,对果蝇的研究更是广泛而充分。

本次通过自行设计实验方案,观察后代中果蝇的各种性状,结合各种统计处理方法,从而证明这三大定律。

1.引言孟德尔定律是G.J.孟德尔根据豌豆杂交实验的结果提出的遗传学中最基本的定律,包括分离定律和独立分配定律。

孟德尔最早选用豌豆,根据从简单到复杂的原则,提出了分离定律和自由组合定律。

对之后遗传学的发展奠定了基础。

分离定律(law of segregation)是指在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。

其表现在两个具有相对性状的纯种个体进行杂交,F1代全部表现显性个体的性状,F1代自交,F2代出现隐性个体的性状。

并且,在理论上,F2代中,显性个体与隐性个体的比例为3:1。

孟德尔最初使用豌豆的花色(红花和白花来验证)。

理论如图所示:图一:分离定律图示自由组合定律(the Law of Independent Assortment)是指非同源染色体上的决定不同对性状的基因在形成配子时等位基因分离,不同对基因(非等位基因)之间互不干扰,其实质是F1产生配子时,等位基因分离,非同源染色体上的非等位基因自由组合。

最初由孟德尔在做两对相对性状(豌豆的子叶颜色黄色,绿色,圆粒和绉粒)的杂交实验时发现,基因分离比为9:3:3:1。

(如图所示)图二:自由组合定律图示独立组合位于不同染色体上的2个等位基因是独立传给子代的。

因此可在验证自由组合定律的同时,选取其中一组性状来验证分离定律。

用于杂交的2对等位基因必须位于不同染色体上,即不能连锁。

遗传学实验报告——果蝇杂交实验

遗传学实验报告——果蝇杂交实验

遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。

实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。

正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。

正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。

白眼、卷刚毛、小翅均为X 染色体上的隐性性状。

P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。

果蝇杂交综合实验方案

果蝇杂交综合实验方案

果蝇杂交实验——验证遗传学三大定律1 实验目的:1.1 通过对果蝇的一对相对性状的杂交试验,观察性状的显、隐性关系及其在后代中的分离现象,验证孟德尔的第一定律——分离定律。

1.2 通过对果蝇两对相对性状的杂交试验,验证孟德尔第二定律:自由组合定律。

1.3 通过位于果蝇性染色体的基因控制的性状的杂交试验,验证遗传学第三个规律:连锁遗传。

并了解伴性遗传与非伴性遗传的区别以及掌握伴性基因在正、反交中的差异。

2 实验原理2.1 果蝇的生活史:果蝇的生活周期长短与温度有密切关系。

一般来说,30℃以上温度能使果蝇不育或死亡,低温能使生活周期延长,生活力下降,饲养果蝇的最适温度为20~25℃。

生活周期长短与饲养温度的关系果蝇在25℃时,从卵到成蝇需10天左右,成虫可活26~33天。

果蝇的生活史如下:雌蝇→减数分裂→卵受精雄蝇→减数分裂→精子羽化(第八天)(可活26~33天)产第一批卵蛹(第四天)第二次蜕皮第一批卵孵化(第二天)(第零天)第一次蜕皮幼虫(第一天)果蝇的生活周期和各发育阶段的经过时间2.2 果蝇的性别及突变性状的鉴别:果蝇的每一体细胞有8个染色体(2n=8),可配成4对,其中3对在雌雄果蝇中是一样的,称常染色体。

另外一对称性染色体,在雌果蝇中是XX,在雄蝇中是XY。

果蝇的雌雄在幼虫期较难区别,但到了成虫期区别相当容易。

雄性个体一般较雌性个体小,腹部环纹5条,腹尖色深,第一对脚的跗节前端表面有黑色鬃毛流苏,称性梳(Sex combs)。

雌性环纹7条,腹尖色浅,无性梳。

实验中选用的果蝇突变性状一般都可用肉眼鉴定,例如红眼与白眼,正常翅与残翅等。

而另一些性状可在解剖镜下鉴定,如焦刚毛与直刚毛等。

现列表如下:实验中使用的果蝇突变品系2.3 黑体果蝇的体色为黑色(b),与之相对应的野生型果蝇的体色为灰色(+),灰色对黑色为完全显性,控制这对相对性状的基因位于第二号染色体上。

用具有这对相对性状的两纯合亲本杂交,性状的遗传行为应符合分离定律。

最新果蝇杂交实验实验报告材料

最新果蝇杂交实验实验报告材料

最新果蝇杂交实验实验报告材料在本次实验中,我们采用了先进的分子生物学技术,对果蝇(Drosophila melanogaster)进行了杂交实验,旨在探索特定基因的遗传模式及其对果蝇表型的影响。

以下是实验的主要步骤和发现:1. 实验设计:- 选择了两个具有不同表型的果蝇品系,一个具有红色眼睛(R),另一个具有白色眼睛(r)。

- 通过人工授精的方式,将两个品系的果蝇进行杂交,以产生F1代。

- F1代果蝇的表型记录显示所有个体均表现为红色眼睛,表明红色眼睛是显性表型。

2. F1代杂交:- 将F1代果蝇随机配对,产生F2代。

- 对F2代果蝇的表型进行详细观察和记录,以分析遗传模式。

3. 数据分析:- 统计结果显示,F2代中约有3/4的果蝇表现为红色眼睛,1/4表现为白色眼睛。

- 这些数据与孟德尔的分离定律相符,表明眼睛颜色基因遵循简单的孟德尔遗传规律。

4. 分子分析:- 利用PCR和测序技术,对F1代和F2代果蝇的眼色基因进行了分子水平的分析。

- 发现红色眼睛果蝇的基因序列中存在一个特定的插入元件,而白色眼睛果蝇则没有这个元件。

5. 结论:- 本实验证实了果蝇眼睛颜色的遗传是一个典型的孟德尔显性遗传。

- 分子生物学分析进一步揭示了控制眼睛颜色的基因机制,为未来研究果蝇遗传学提供了重要的分子标记。

6. 后续研究方向:- 计划对其他影响果蝇表型的基因进行类似的杂交实验,以揭示更多遗传规律。

- 将探索环境因素对果蝇遗传表型的影响,以及表观遗传学在其中的作用。

本报告提供了对果蝇杂交实验的详细描述和分析,为理解基本遗传原理和开展进一步的生物学研究奠定了基础。

实验五果蝇饲养和杂交综合实验

实验五果蝇饲养和杂交综合实验
通过实验操作,学习并掌握果蝇的杂交方法,了解杂交在遗传学研 究中的应用。
观察和分析实验结果
通过对实验数据的观察和分析,理解基因型和表现型之间的关系, 以及基因在遗传中的作用。
实验背景
01
果蝇作为模式生物
果蝇具有繁殖周期短、数量大、易饲养等特点,是遗传学研究中的常用
模式生物。
02 03
遗传学的发展
自孟德尔提出遗传定律以来,遗传学经历了漫长的发展历程,果蝇在其 中扮演了重要角色。通过对果蝇的研究,科学家们揭示了基因的本质和 遗传规律。
数据可视化
利用图表、图像等形式将数据呈现出来,直观展 示数据的分布和趋势。
结果展示形式
1 2 3
文字报告
撰写实验报告,详细描述实验过程、数据处理方 法和结果分析,以及实验结论和意义。
图表展示
根据实验需求选择合适的图表类型(如柱状图、 折线图、散点图等),将处理后的数据呈现出来, 直观反映实验结果。
实验五果蝇饲养和杂交综合实验
目录
• 实验目的与背景 • 果蝇饲养基础知识 • 杂交实验设计 • 实验操作步骤详解 • 数据收集与处理 • 实验注意事项及安全规范
01 实验目的与背景
实验目的
学习果蝇的饲养方法
掌握果蝇的饲养技巧,包括培养基的配制、温度湿度的控制以及 果蝇的繁殖等。
掌握果蝇杂交技术
实验材料检查
检查实验所需的果蝇品系、培养基、饲养器具等是否齐全、符合要求, 如有缺损或污染应及时更换。
安全操作规范
个人防护
实验过程中需穿戴实验服、手套、口罩等个人防护用品,避免直 接接触果蝇及其培养基。
操作规范
严格按照实验步骤进行操作,避免产生误差;使用显微镜等仪器时, 应注意轻拿轻放,避免损坏。

果蝇杂交实验

果蝇杂交实验

2018/11/16
13
(二)果蝇的饲养
2018/11/16
14
1、果蝇的生活史和生活习性
3.5-4.5天后,
羽化成虫
成虫交 配后1天
2.5-3.5天 后,成蛹
产卵, 1天孵化 为一龄幼虫
1天后, 成三龄虫
1-1.5天 后,成二龄虫
2018/11/16
15
羽化后的成虫一般要经过至少12小时 才能交配,此时的成虫又称为处女蝇; 温度越低,生活周期越长,25℃平均 10-12天一个世代;但超过30℃ 易出现 变异; 生活习性:果蝇是以水果上的酵母为 食,所以实验室内凡能发酵的基质都可作 为果蝇的饲料。
取F16-7对于一培养 瓶内做自交实验
为什么自交不 需要处女蝇?
统计天数为7-8天 列表统计F1的性别、 体色、翅形、眼色及 是否有异常,数量: 250-300只
7-8天后除去F1,或转一次瓶
数量为400只以上 F1自交可做2瓶
统计F2的性状
五、实验数据的统计及分析
将原始数据(眼色、翅形、体色、性 别)列表归纳统计; 用统计学原理和遗传学原理对数据 进行分析、假设和判断;
七、实验报告
封面:果蝇杂交实验 实验人: 实验时间: 实验地点:
前言:主要讲述实验的原理和目的;
1、实验材料及方法 1.1、实验材料:品系及性状 1.2、实验用品 1.3、培养基的配置 1.4、实验流程
2、实验结果及分析 2.1、一对性状的结果及分析 2.2、两对性状的结果及分析 2.3、三对性状的结果及分析 3、结论与讨论 4、体会与建议
2018/11/16
19
4、转瓶(示范)
5、处死
6、取处女蝇
• 在培养瓶中出现第一个蛹后,除去所 有的成虫,每隔9h观察一次,此时出现的 雌蝇还未能进行交配,分离出来后即为处 女蝇。

果蝇大实验设计(初稿加草稿)

果蝇大实验设计(初稿加草稿)

果蝇大实验设计初稿PS:求吐槽、拍砖~PPS:和新蕾讨论出来后,感觉现在有的材料果蝇有:1、转基因果蝇A(Tau)2、转基因果蝇B(绿色荧光)3、残刻翅果蝇(有balancer)4、短刚毛果蝇(有balancer)5、GMR-Gal4果蝇(与A杂交后会有发育不良的表征)实验需要的是转基因果蝇A和转基因果蝇B的三号染色体上基因重组,追求的稳定遗传则可以是“balancer+重组基因”(因为两条的纯合重组感觉很困难的样子),其余三只是供我们选择,作为工具的。

而balancer的效果是:1)与残刻翅/短刚毛决定基因在同一条染色体上,让其不发生重组2)如果出现残刻翅/短刚毛纯合,也即是balancer纯合,那么果蝇死亡(这样使活着的都满足残刻翅/短刚毛杂合)另外,感觉还有一点(通过题目前提介绍和后来强调的白眼):A的纯合度(也就是插入进的基因数)越大,那么眼睛越红(也就是与白眼纯合杂交后会生出橙色眼的子代)实验大致设计:[1]选取A果蝇的处女蝇和B果蝇的雄蝇杂交(数量,防止回交)[2]选取[1]中子代(应该是相同的基因型)中的处女蝇与残刻翅(感觉残刻翅更好观察区分)雄果蝇杂交(数量,防止回交)[3]选取[2]中子代有绿色荧光且残刻翅的,并将其中的处女蝇与GMR-Gal4雄果蝇杂交,出现眼睛发育不良即证明亲代处女蝇为目标蝇(这里就发现亲代处理方面会存在问题,所以不知道能不能通过眼睛颜色来进行判断;或许可以采用先用眼睛颜色判断,然后再用GMR-Gal4果蝇进行检验;也可以在眼睛发育不良的子代中挑选绿色荧光的子代,但这会导致以后的子代出现眼睛发育不良,应该不是上上选)(数量、防止回交)求大大们拍砖呐~。

果蝇综合大实验

果蝇综合大实验

果蝇综合大实验(反交组)综合实验内容果蝇分离定律的实果蝇自由组合的实验分析果蝇的伴性遗传实验分析实验第一部分果蝇综合大实验实验设计一、实验目的1、理解和验证分离定律;2、了解两对不连锁基因的杂交方法,验证自由组合定律;3、正确认识伴性遗传的正、反交的差别,验证伴性遗传规律;4、理解连锁和交换的原理,学习实验结果的数据处理和重组值的计算方法,绘制遗传学图。

二、实验原理(1)分离定律一对等位基因在杂合子中,各自保持其独立性,在配子型城市,彼此分开,随即进入不同的配子,在一般情况下:F1杂合子的配子分离比为:1:1;F2表型分离比是3:1;F2基因型分离比为1:2:1。

P 黑檀体(e e)×灰体(++)↓F1 灰体(+e)↓F2 灰体(++):灰体(+e):黑檀体(ee)1 2 1(2)自由组合定律支配两对(或两对以上)不同形状的等位基因,在杂合状态保持其独立性。

配子形成时,各等位基因彼此独立分离,不同对的基因自由组合。

在一般情况下,F1配子分离比是1:1: 1: 1;F2基因型分离比率(1:2:1)2, F2表型比率:9:3:3:1P 长翅黑檀体(++ee)×短翅灰体(++mm)↓F1 长翅灰体(+m +e)↓F2 长翅灰体:长翅黑檀体:短翅灰体:短翅黑檀体9 3 3 1(3)伴性遗传由性染色体所携带的基因在遗传时与性别相联系的遗传方式。

果蝇野生型红眼(X+)和突变型白眼(Xw)是一对相对性状,X+对Xw是显性。

将显性纯合的红眼雌蝇(X+X+)与白眼雄蝇(XwY)杂交,F1不论雌雄均表现为红眼。

F1雌雄个体互交,F2红眼与白眼的比例为3:1,但无白眼雌蝇。

白眼(X+X+)♀ 红眼(XwY) ♂↓红眼(X+ Xw)♀(X+Y)♂↓⊕红眼雌X+X + 红眼雌X+X w 红眼雄X+ Y 白眼雄XwY红眼:白眼=3 :1雌性:雄性=1 :1三、实验材料1、果蝇材料:陕师大生命科学学院遗传学实验室保存的6和26号品系:品系体色眼色翅型刚毛6 灰白w(1) 短m(1) 卷sn(1)26 黑檀体e(3) 红长直2、实验器具与药品用具:解剖镜、麻醉瓶、毛笔、培养瓶、白瓷板、死蝇瓶药品:乙醚四、实验步骤(技术路线)1)挑选至少4只6处女蝇,4只26雄蝇放入培养瓶(亲本杂交瓶),贴标签↓(7~8天)倒去亲本果蝇↓(3~5天)F1代果蝇出现↓(2~3天)移出5~6对雌雄蝇(无需处女蝇)放入新的培养瓶(F1瓶),贴标签↓(7~8天)倒去F1亲本↓(3~5天)F2代果蝇出现,观察统计↓数据归类,结果分析,卡方检测,结论,总结等2)反交组的具体分配反交组,26号8管、6号8管↓确认亲本蝇性状,有三龄幼虫时,倒去已有成蝇↓反交组(2管/4位—26号)收集26处女蝇和26♂各8只,分别放入新培养瓶;↓交换♂后,每4位同学做1管正交6(♀)×26 (♂) 或1管反交26(♀) ×6(♂),每管4对亲本蝇,贴标签;↓每4人1管P1×P2(亲本瓶)↓待F1成蝇出现后,统计并观察性状,分别挑选4~5对F1 ♀♂转入新的培养管,贴标签;↓每2人1管(F1瓶)↓每两位同学统计一个杂交管中的F2,统计至200只左右,并分别写出实验报告(若F2数量太少,相同杂交组同学可合并统计数据)五、实验结果记录表格实验记录表格(自行设计)。

果蝇杂交实验设计方案

果蝇杂交实验设计方案

果蝇杂交实验方案组员:鲁登位周云马晓龙张桃詹剑琴史鸿宣王丽权嘎玛央金动科 1002 班第二组㈠实验目的:本次实验中我们使用果蝇作为材料来验证基因分离规律、自由组合规律、伴性遗传。

加深理解遗传定律。

同时在实验过程中要掌握果蝇杂交技术和学会运用生物统计方法进行数据分析。

㈡实验原理:选取果蝇做为遗传学研究的原因: 1、果蝇体型小,体长不到半厘米;饲养管理容易,既可喂以腐烂的水果,又可配培养基饲料;一个牛奶瓶里可以养上成百只。

2、果蝇繁殖系数高,孵化快,只要1 天时间其卵即可孵化成幼虫,2-3 天后变成蛹,再过 5 天就羽化为成成虫。

从卵到成虫只要 10 天左右,一年就可以繁殖 30 代。

3、果蝇的染色体数目少,仅 3 对常染色体和 1 对性染色体,便于分析。

作遗传分析时,实验者只需用放大镜或显微镜一个个地观察、计数就行了。

分离定律:一对等位基因在杂合子中保持相对独立性,形成配子时彼此分离并随机分配到不同的配子里。

F1配子的分离比是1: 1;基因型的分离比是1: 2: 1,F 表型的分离比是3: 1。

2自由组合定律:位于非同源染色体上的两对等位基因决定的性状在杂种第二代形成配子时是自由组合的。

由分离定律可知一对等位基因决定性状在杂种第二代表型比是3: 1,两对互不连锁的基因决定的性状在杂种第二代表型比是9: 3: 3: 1。

伴性遗传:位于性染色体上的基因所控制的性状在遗传上与性别相联系的遗传现象,称为伴性遗传。

㈢实验材料:果蝇材料: 6 个品种的果蝇: 4 号、 6 号、 18 号、 22 号、 25 号、 e 号其性状特征如下:性状眼色体色翅型刚毛品种25 号瓶白 w灰 y长 +直 Sn6 号瓶(三隐性)白 w灰 y长 (小翅 )m卷 sn4 号瓶红 X W灰 y残 Vg直 Sn18 号瓶红 st灰 y长 +直 Sne 号瓶 (三显性 )红 st黑 B长 +直 Sn22 号瓶白 w灰 y长 +直 Sn实验器具和药品:1.用具:果蝇饲养瓶、麻醉瓶、双目解剖镜、毛笔、镊子、标签2.药品:乙醚、玉米粉、琼脂、蔗糖、酵母粉、丙酸②培养基的制作 :根据实验进程的需要提前配置好培养基水76ml玉米粉糖琼脂丙酸酵母(四)实验分组经过小组讨论将小组分为三小组,做三组实验来探究出一个最好的可以在一组实验中验证三个定律的杂交组合。

设计果蝇杂交实验报告

设计果蝇杂交实验报告

设计果蝇杂交实验报告引言果蝇(Drosophila melanogaster)是一种常见的模式生物,因其短寿、易于培养和遗传特性而被广泛应用于遗传学研究中。

果蝇的杂交实验可以帮助我们理解基因的遗传规律以及基因型与表型之间的关系。

本实验旨在通过果蝇杂交,观察不同基因型的果蝇交配后后代的表型分布,并验证孟德尔遗传定律。

实验方法实验材料和设备- 双眼突变型白眼果蝇(眼睛呈白色)- 原生型红眼果蝇(眼睛呈红色)- 无翅型果蝇(翅膀退化)- 硬纸板盒子- 室温恒温培养箱- 透明胶带实验步骤1. 准备双眼突变型白眼果蝇组,计划交配白眼果蝇与红眼果蝇。

2. 将双眼突变型白眼果蝇和红眼果蝇分别放养于不同的果蝇匣中,培养3天以保证果蝇的适应环境。

3. 在交配前一天,将两种果蝇分别转移到新的果蝇匣中,同时粘贴一层透明胶带在果蝇匣的一侧,以阻止果蝇之间的接触。

4. 第二天,取下透明胶带,让白眼果蝇与红眼果蝇自由交配。

5. 观察交配后果蝇的表型特征。

6. 培养交配后的果蝇约10天,观察后代果蝇的表型特征。

实验结果交配后果蝇的表型观察交配后果蝇的表型特征符合预期:部分果蝇眼睛呈现为白色,部分果蝇眼睛呈现为红色。

后代果蝇的表型观察经过10天培养,观察到后代果蝇中有白眼果蝇和红眼果蝇。

白眼果蝇占据了约1/4的比例,而红眼果蝇占据了约3/4的比例。

这与孟德尔的等位基因分离定律相符,并且支持了白眼果蝇为显性突变基因。

讨论本实验通过果蝇杂交,成功观察到了不同基因型果蝇交配后后代的表型分布,并验证了孟德尔遗传定律。

在果蝇的杂交实验中,白眼果蝇是由于突变基因导致的,而红眼果蝇是其正常的基因型。

通过将白眼果蝇与红眼果蝇交配,我们观察到了白眼果蝇和红眼果蝇在后代中的分布比例,证明了显性突变基因对其后代的影响。

然而,本实验也存在一些限制。

首先,在果蝇的杂交实验中,由于果蝇繁殖速度较快,可能会出现自然杂交的情况。

为了尽量避免这种情况的发生,我们采取了粘贴透明胶带的措施,并尽可能将果蝇放养在不同的果蝇匣中。

果蝇培养杂交实验报告

果蝇培养杂交实验报告

果蝇培养杂交实验报告通过果蝇的杂交实验,观察和分析种质间的基因表达情况,探究遗传规律以及基因型的相互作用。

实验材料与方法:1. 实验材料:- 雄性果蝇:纯种黑色果蝇(BB),纯种白色果蝇(WW)。

- 雌性果蝇:纯种黑色果蝇(BB),纯种白色果蝇(WW)。

2. 实验装置与方法:- 实验装置:果蝇培养箱、显微镜、显微镜玻片、玻璃注射器、培养基等。

- 实验方法:a) 将纯种黑色果蝇与纯种白色果蝇交配,记录下自交和杂交的结果。

b) 观察产生的杂种果蝇,并统计各个表型的数量。

c) 根据观察结果,对各个表型的遗传关系进行分析和总结。

实验结果与分析:根据实验操作,我们观察到了产生的杂种果蝇及其表型。

在本实验中,我们假设黑色为显性基因B的表达,白色为隐性基因b的表达。

根据这个假设,我们可以得出以下结果并进行分析:1. F1代杂种果蝇:- 外观:所有杂种果蝇均为黑色,没有白色果蝇出现。

- 分析:由于黑色为显性基因B的表达,而白色为隐性基因b的表达,说明黑色基因B在F1代中占据主导地位。

2. F2代杂种果蝇:- 外观:F2代果蝇中,出现了黑色和白色两个表型。

- 数量:黑色表型的果蝇数量明显多于白色表型的果蝇数量。

- 分析:根据孟德尔遗传规律,F1代后代中两个相对纯合的个体的杂交后代,基因型组合比例为1:2:1。

因此,F2代果蝇中黑色和白色表型的数量比例为3:1,符合孟德尔遗传规律。

实验结论:通过果蝇培养的杂交实验,我们观察并分析了果蝇的遗传特征和表型的分离情况。

根据实验结果,我们总结出以下结论:1. 基因型:黑色为显性基因B的表达,白色为隐性基因b的表达。

2. F1代:所有F1代杂种果蝇均为黑色,即显性表型。

3. F2代:F2代果蝇中,出现了黑色(显性表型)和白色(隐性表型)两个表型,数量比例符合孟德尔遗传规律的3:1。

通过这个实验,我们可以初步了解基因的传递规律,对后续的遗传研究以及物种保育等方面有着重要的参考价值。

实验三果蝇观察及杂交

实验三果蝇观察及杂交

三、实验材料
实验材料:
野生型果蝇 红眼、灰身 突变型果蝇 白眼、黑身
四、实验用品
1. 试剂:果蝇培养基、麻醉剂 2. 仪器及器具:解剖镜、毛笔刷、培养箱等
五、实验方法与步骤
1. 雌雄果蝇的主要性状特征
特 征 雄蝇 雌蝇
个体 小

腹部条纹 3
5
腹部末端 圆

性梳 有

性梳
2. 观察野生型和突变型果 蝇的各种性状特征
实验三:果蝇形态观察、性别鉴定及 双因子杂交后代分析
一、实验目的
1. 学习区别雌雄果蝇的主要性状特征 2. 了解野生型和突变型果蝇的各种性状特征 3. 通过果蝇杂交实验,分析相对性状在杂交后代中
的分离情况,从而验证和深入理解遗传学规律。
二、实验原理
1. 性连锁:指性染色体上的基因控制的某些性状伴随性别而遗 传的现象。
六、实验结果
1. 观察及统计F1代正反交,结果是否相同?并解释 为什么。
2. 观察统计分析F2代,判断红白眼和灰黑身性状与 性别间的遗传方式,并做卡方测验。
眼色的遗传
正交
P : 红眼(♀) X+X+×白眼(♂) XwY
F1:X+Xw (♀)红眼 X+Y (♂)红眼
F2:2 X+X+ (♀)红眼 X+Y (♂)红眼 XwY (♂)白眼
正交:
红眼(♀)×白眼(♂)
红眼
白眼
合计
反交:
白眼(♀)×红眼(♂)
红眼
白眼
合计
身体颜色的遗传
正交及反交
P:
灰身(♀)× 黑身(♂)
+/+
h/h

最新果蝇杂交实验实验报告

最新果蝇杂交实验实验报告

最新果蝇杂交实验实验报告在本次实验中,我们旨在探究果蝇(Drosophila melanogaster)杂交后的遗传特性及其表现。

实验采用了两种不同品系的果蝇进行杂交,一种是具有红色眼睛的纯合子品系(rr),另一种是具有白色眼睛的纯合子品系(RR)。

我们通过精确的遗传学方法,详细记录了杂交后代的表现型和基因型,并对结果进行了统计分析。

实验步骤如下:1. 从两个品系中各选取健康的成年果蝇,确保它们分别具有纯合的红眼和白眼基因。

2. 将这些果蝇按照性别比例1:1混合在特定的培养容器中,允许它们自由交配。

3. 观察并记录F1代果蝇的眼色,以确定显性特征。

4. 选取F1代中的成年果蝇进行再次杂交,产生F2代。

5. 对F2代果蝇的眼色进行详细观察和分类,记录各种表现型的比例。

6. 利用孟德尔遗传定律对实验结果进行解释,并计算期望的表现型比例与实际观察到的比例之间的吻合度。

实验结果显示,在F1代中所有果蝇均表现为白色眼睛,这表明白眼基因(R)是显性的,红眼基因(r)是隐性的。

在F2代中,我们观察到大约3:1的表现型比例,即3/4的果蝇具有白色眼睛,1/4的果蝇具有红色眼睛。

这一结果与孟德尔的分离定律相符,进一步验证了基因的显性和隐性关系。

此外,我们还对杂交果蝇的生存率、繁殖能力和行为特征进行了观察,以评估杂交对果蝇整体适应性的影响。

结果表明,杂交后代并未表现出明显的适应性下降,这为杂交优势提供了一定的生物学依据。

综上所述,本次果蝇杂交实验不仅加深了我们对遗传规律的理解,而且为未来的遗传学研究和应用提供了重要的实验数据。

未来的研究可以进一步探索不同基因座的杂交效应,以及环境因素对杂交后代表现型的影响。

果蝇杂交实验报告

果蝇杂交实验报告

果蝇杂交实验报告摘要经典遗传学的三大遗传定律分别是:分离定律,自由组合定律和连锁与交换规律。

果蝇具有生活史短、繁殖率高、饲养简便等特点,是研究遗传学的好材料,尤其在基因分离、连锁、交换等方面,对果蝇的研究更是广泛而充分。

本次通过实施已有实验方案,观察后代中果蝇的各种性状,结合各种统计处理方法,从而证明这三大定律。

1.原理分离定律一对等位基因在杂合状态中保持相对的独立性,在配子形成时,按原样分离到不同的配子中去,理论上配子分离比是1∶1,F2代基因型分离比是1∶2∶1,若显性完全,F2代表型分离比是3∶1 。

控制体色性状的突变基因位于2号常染色体,灰体对黑体完全显性,用灰体果蝇与黑体果蝇交配,得到F1代都是灰体,F1代雌雄个体之间相互交配,F2代产生性状分离,出现两种表现型。

(图1)图1 图2自由组合定律不同相对性状的等位基因在配子形成过程中,等位基因间的分离和组合是互不干扰,各自独立分配到配子中去,它们所决定的两对相对性状在F2代是自由组合的,在杂种第二代表型分离比就呈9∶3∶3∶1。

控制体色性状的突变基因位于2号常染色体,灰体对黑体完全显性,控制眼色性状的突变基因位于性染色体。

红眼对白眼完全显性,用黑体红眼果蝇(♀)与灰体白眼果蝇(♂)交配,得到F1代都是灰体,F1代雌雄个体之间相互交配,F2代产生性状分离,出现四种表现型。

(图2)伴性遗传位于性染色体上的基因,其传递方式与位于常染色体上的基因不同,它的传递方式与雌雄性别有关,因此称为伴性遗传。

果蝇的性染色体有X和Y两种,雌蝇为XX,雄蝇为XY。

红眼与白眼是一对相对性状,控制该对性状的基因(W)位于X染色体上,且红眼(W)对白眼(w)为完全显性。

当红眼雌蝇与白眼雄蝇杂交时,F1代雌性果蝇、雄性果蝇都为红眼,F2代雌性果蝇都是红眼,雄性果蝇红眼和白眼的比例为1∶1;当白眼雌蝇与红眼雄蝇杂交时,F1代雌性果蝇为红眼,而雄性果蝇为白眼,此现象又称为绞花式遗传,F2代雌性果蝇的红眼与白眼比例为1∶1,雄性果蝇的红眼与白眼比例也是1∶1 。

果蝇的杂交试验

果蝇的杂交试验

实验六、果蝇的杂交试验一、实验目的1、了解伴性遗传和常染色体遗传的区别2、理解和验证伴性遗传和分离、连锁交换定律:3、学习和掌握基因定位的方法4、加深理解孟三个遗传定律二、实验原理红眼与白眼是一对相对性状,控制该对性状的基因(W)位于X染色体上,且红眼(W)对白眼(w)为完全显性。

当红眼雌蝇与白眼雄蝇杂交时,无论雌雄均为红眼,F2中红眼:白眼=3:1,但雌蝇全为红眼,雄蝇中红眼:白眼=1:1;反交时F1中雌蝇为红眼,雄蝇为白眼,F2中红眼:白眼=1:1,雌蝇和雄蝇中的红眼与白眼的比例均为1:1。

正常翅(Sn3)对小翅(sn3)为显性,正常刚毛(M)对焦刚毛(m)为显性,与红眼(W)和白眼(w)一样,均位于(X)染色体上。

利用三点测交的方法只需通过一次杂交和一次测交就能同时确定三个基因在染色体上的位置顺序和基因的相对距离,绘出连锁图。

让白眼小翅焦刚毛♀蝇与野生型♂蝇杂交,F1雌蝇是三杂合体:表型为野生型。

F1♂蝇是白眼焦刚毛小翅。

F1代的雌雄蝇互交实际上相当于三杂合体雌蝇与三隐性雄蝇的测交。

通过对互交后代中各种表型比例的分析,就可进行w、sn3和m等基因的定位。

三、实验材料、器具和试剂1、实验材料野生型雄蝇、雌蝇、白眼焦刚毛小翅雌雄蝇。

野生型品系:长翅,直刚毛,红眼突变型品系:小型翅,卷刚毛,白眼2、实验器具放大镜、显微镜、麻醉瓶、白瓷板、毛笔、记录本。

3实验试剂乙醚、酒精棉球、培养基。

四、实验步骤1.选处女蝇选白眼焦刚毛小翅处女蝇8只,同时选野生型处女蝇8只。

方法:将野生型和白眼焦刚毛小翅果蝇培养瓶内的成蝇全部赶去,12小时内将重新孵化出的雌雄果蝇分开,即可得所需处女蝇和雄蝇。

2.杂交将白眼焦刚毛小翅处女蝇麻醉,并挑取野生型♂蝇8只麻醉后放入培养瓶,此杂交组合可用作伴性遗传和基因定位的观察统计。

将野生型处女蝇8只麻醉,同时将同样数量的白眼焦刚毛小翅雄蝇麻醉,放入培养瓶,此组合用于分离定律和伴性遗传实验的反交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

果蝇杂交实验方案
组员:鲁登位周云马晓龙
张桃詹剑琴史鸿宣
王丽权嘎玛央金
动科1002班第二组
㈠实验目的:
本次实验中我们使用果蝇作为材料来验证基因分离规律、自由组合规律、伴性遗传。

加深理解遗传定律。

同时在实验过程中要掌握果蝇杂交技术和学会运用生物统计方法进行数据分析。

㈡实验原理:
选取果蝇做为遗传学研究的原因:1、果蝇体型小,体长不到半厘米;饲养管理容易,既可喂以腐烂的水果,又可配培养基饲料;一个牛奶瓶里可以养上成百只。

2、果蝇繁殖系数高,孵化快,只要1天时间其卵即可孵化成幼虫,2-3天后变成蛹,再过5天就羽化为成成虫。

从卵到成虫只要10天左右,一年就可以繁殖30代。

3、果蝇的染色体数目少,仅3对常染色体和1对性染色体,便于分析。

作遗传分析时,实验者只需用放大镜或显微镜一个个地观察、计数就行了。

分离定律:一对等位基因在杂合子中保持相对独立性,形成配子时彼此分离并随机分配到不同的配子里。

F1配子的分离比是1:1;基因型的分离比是1:2:1,
F2表型的分离比是3:1。

自由组合定律:位于非同源染色体上的两对等位基因决定的性状在杂种第二代形成配子时是自由组合的。

由分离定律可知一对等位基因决定性状在杂种第二代表型比是3:1,两对互不连锁的基因决定的性状在杂种第二代表型比是9:3:3:1。

伴性遗传:位于性染色体上的基因所控制的性状在遗传上与性别相联系的遗传现象,称为伴性遗传。

㈢实验材料:
果蝇材料:6个品种的果蝇:4号、6号、18号、22号、25号、e号
实验器具和药品:
1.用具:果蝇饲养瓶、麻醉瓶、双目解剖镜、毛笔、镊子、标签
2.药品:乙醚、玉米粉、琼脂、蔗糖、酵母粉、丙酸
(四)实验分组
经过小组讨论将小组分为三小组,做三组实验来探究出一个最好的可以在一组实验中验证三个定律的杂交组合。

具体实验方案如下:
第一组:选用黑檀体三显性(e号瓶)和灰体三隐性(6号瓶)
第二组:选用黑檀体三显性(e号瓶)和红眼残翅(4号瓶)
第三组:灰体三隐性(6号瓶)和18号瓶
(五)实验步骤:
1、选出亲本蝇5-6对(保证亲本雌蝇为处女蝇):挑选处女蝇的方法:将亲本培养瓶中的成蝇全部除去(可在晚上22:00至23:00期间将成蝇移入另一个培养瓶中,次日早晨8:00至9:00对新羽化的果蝇进行挑选)。

以后每隔6-8h观察一次,并将新羽化的雌雄成蝇取出并分别放入培养瓶内备用。

2、F1杂交培养与观察统计:把选出的雌雄果蝇,根据杂交实验组合的要求装入一个培养瓶内,每瓶放2~3对。

贴上标签标明正反交,组名,日期.在20-25℃恒温培养箱中培养,7~8天后,倒去亲本蝇.倒去亲本蝇后的4~5天F1代成蝇出现后,观察记录其表型和数量
3、F2代果蝇的培养:从F1代中选出10~15对果蝇,放入新的培养瓶中继续杂交。

每瓶2~3对(这里的雌蝇无须是处女蝇)。

在各瓶上贴好标签。

于20-25℃恒温培养箱中培养.培养7~8天后,移去亲本蝇
4、F2代果蝇观察与统计
4~5天后,F2代成蝇出现,开始观察。

检查眼色、翅形、刚毛,各类果蝇分别计数,检查过的果蝇处理过2天后再检查第二批,连续检查6~8天,即3~4次,以保证获得足够数目的被观察后代,记录于对应的统计表中。

(六)结果记录与分析
1.分离定律:(任选一种)4号和e号体色
6号和18号翅型
6号和e号翅型
预期结果:(翅型同理)
♀(灰体) E/E ×♂(黑檀体)e/e
F1: E/e(灰体)

F2:基因型E/E 2E/e ee
表型(灰体) (灰体) (黑檀体)
3 : 1
2.自由组合定律: e 号和6号 体色、翅型、刚毛(任选2个性状分析)
e 号和4号 体色、翅型 6号和18号 翅型、刚毛
3.伴性遗传:6号和
18号
e 号和6号
F 2代数据分析表
(七)实验结果:
根据实验统计数据分别对分离定律、自由组合定律、伴性遗传进行验证并分组讨论。

相关文档
最新文档