茄子河区第三中学校2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

茄子河区第三中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. “a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.
A .充分不必要
B .必要不充分
C .充要
D .既不充分也不必要
2. 已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )
A .p ⌝是真命题
B .q ⌝是真命题
C .p q ∨是真命题
D .()()p q ⌝∨⌝是真命题 3. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .
14 B .1
2
C .1
D .2 4. 一个几何体的三视图是一个正方形,一个矩形,一个半圈,尺寸大小如图所示,则该几何体的表面积是( )
A .π
B .3π+4
C .π+4
D .2π+4
5. 已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3
f t f t f +->,则t 的取值范围是( )
A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭
B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭
C 、16t t ⎧⎫>-⎨⎬⎩⎭
D 、2
13
3t t ⎧⎫-≤≤⎨⎬⎩⎭
6. 已知集合A={﹣1,0,1,2},集合B={0,2,4},则A ∪B 等于( )
A .{﹣1,0,1,2,4}
B .{﹣1,0,2,4}
C .{0,2,4}
D .{0,1,2,4}
7. 等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )
A .3
B .
C .±
D .以上皆非
8. 下列哪组中的两个函数是相等函数( )
A .()()4
f x x =
g B .()()24
=
,22
x f x g x x x -=-+
C .()()1,01,1,0
x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g
9. (+
)2n (n ∈N *
)展开式中只有第6项系数最大,则其常数项为( )
A .120
B .210
C .252
D .45
10.若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣
”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分又不必要条件
11.棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )
A .
B .18
C .
D . 12.有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.
②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
其中正确命题的个数是( ) A .0
B .1
C .2
D .3
二、填空题
13.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .
14.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .
15.若命题“∃x ∈R ,x 2
﹣2x+m ≤0”是假命题,则m 的取值范围是 . 16.设全集
______.
17.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .
18.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是.
三、解答题
19.已知函数f(x)=lnx﹣ax﹣b(a,b∈R)
(Ⅰ)若函数f(x)在x=1处取得极值1,求a,b的值
(Ⅱ)讨论函数f(x)在区间(1,+∞)上的单调性
(Ⅲ)对于函数f(x)图象上任意两点A(x1,y1),B(x2,y2)(x1<x2),不等式f′(x0)<k恒成立,其中k为直线AB的斜率,x0=λx1+(1﹣λ)x2,0<λ<1,求λ的取值范围.
20.已知函数f(x)=|x﹣a|.
(1)若f(x)≤m的解集为{x|﹣1≤x≤5},求实数a,m的值.
(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2).
21.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如
(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)
(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X ,求X 的分布列和数学期望.
22.(本小题满分10分)选修41-:几何证明选讲
如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;
(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.
【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.
23.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .
24.已知椭圆C1:+=1(a>b>0)的离心率e=,且经过点(1,),抛物线C2:x2=2py(p>0)
的焦点F与椭圆C1的一个焦点重合.
(Ⅰ)过F的直线与抛物线C2交于M,N两点,过M,N分别作抛物线C2的切线l1,l2,求直线l1,l2的交点Q的轨迹方程;
(Ⅱ)从圆O:x2+y2=5上任意一点P作椭圆C1的两条切线,切点为A,B,证明:∠APB为定值,并求出这个定值.
茄子河区第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】A
【解析】解:若方程y 2
=ax 表示的曲线为抛物线,则a ≠0. ∴“a >0”是“方程y 2
=ax 表示的曲线为抛物线”的充分不必要条件.
故选A .
【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础.
2. 【答案】C 【解析】]
试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;
()()p q ⌝∨⌝是假命题.故选C.
考点:命题真假判断. 3. 【答案】B
【解析】
试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以
()1
4160,2
λλ+-==
,故选B. 考点:1、向量的坐标运算;2、向量平行的性质.
4. 【答案】B
【解析】解:由三视图可知:原几何体为圆柱的一半,(沿中轴线切开) 由题意可知,圆柱的高为2,底面圆的半径为1,
故其表面积为S=2×π×12
+2×2+×2π×1×2=3π+4
故选:B
【点评】本题考查由几何体的三视图求面积,由三视图得出原几何体的形状和数据是解决问题的关键,属基础题.
5. 【答案】A 【解析】

点:函数的性质。

6. 【答案】A
【解析】解:∵A={﹣1,0,1,2},B={0,2,4}, ∴A ∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}. 故选:A .
【点评】本题考查并集及其运算,是基础的会考题型.
7. 【答案】C
【解析】解:∵a 3,a 9是方程3x 2
﹣11x+9=0的两个根, ∴a 3a 9=3,
又数列{a n }是等比数列,
则a
62
=a 3a 9=3,即a 6=±

故选C
8. 【答案】D111] 【解析】
考点:相等函数的概念.
9.【答案】
B
【解析】
【专题】二项式定理.
【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.
【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,
所以展开式有11项,所以2n=10,即n=5,
又展开式的通项为=,
令5﹣=0解得k=6,
所以展开式的常数项为=210;
故选:B
【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.10.【答案】B
【解析】解:若f(x)的图象关于x=对称,
则2×+θ=+kπ,
解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,
反之成立,
即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,
故选:B
【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.
11.【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×()+=,
故选:D.
12.【答案】C
【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.
②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.
综上可知:其中正确命题的是①③.
故选:C.
【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.
二、填空题
13.【答案】.
【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球
故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,
方法二:先求出“第一次摸到红球”的概率为:P1=,
设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P2
再求“第一次摸到红球且第二次也摸到红球”的概率为P==,
根据条件概率公式,得:P2==,
故答案为:
【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.
14.【答案】3.
【解析】解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4=x+=4,
∴x=3,
故答案为:3.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
15.【答案】m>1.
【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,
则命题“∀x∈R,x2﹣2x+m>0”是真命题,
即判别式△=4﹣4m<0,
解得m>1,
故答案为:m>1
16.【答案】{7,9}
【解析】∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},
∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},
故答案为:{7,9}。

17.【答案】0或1.
【解析】解:由A∪B=A知B⊆A,∴t2﹣t+1=﹣3①t2﹣t+4=0,①无解
或t2﹣t+1=0②,②无解
或t2﹣t+1=1,t2﹣t=0,解得t=0或t=1.
故答案为0或1.
【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.
18.【答案】[0,2].
【解析】解:命题p:||x﹣a|<3,解得a﹣3<x<a+3,即p=(a﹣3,a+3);
命题q:x2﹣2x﹣3<0,解得﹣1<x<3,即q=(﹣1,3).
∵q是p的充分不必要条件,
∴q⊊p,
∴,
解得0≤a≤2,
则实数a的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
三、解答题
19.【答案】
【解析】解:(Ⅰ)f(x)的导数为f′(x)=﹣a,
由题意可得f′(1)=0,且f(1)=1,
即为1﹣a=0,且﹣a﹣b=1,
解得a=1.b=﹣2,经检验符合题意.
故a=1,b=﹣2;
(Ⅱ)由(Ⅰ)可得f′(x)=﹣a,x>1,0<<1,
①若a≤0,f′(x)>0,f(x)在(1,+∞)递增;
②0<a<1,x∈(1,),f′(x)>0,x∈(,+∞),f′(x)<0;
③a≥1,f′(x)<0.f(x)在(1,+∞)递减.
综上可得,a≤0,f(x)在(1,+∞)递增;
0<a<1,f(x)在(1,)递增,在(,+∞)递减;
a≥1,f(x)在(1,+∞)递减.
(Ⅲ)f′(x0)=﹣a=﹣a,
直线AB的斜率为k===﹣a,
f′(x0)<k⇔<,
即x2﹣x1<ln[λx1+(1﹣λ)x2],
即为﹣1<ln[λ+(1﹣λ)],
令t=>1,t﹣1<lnt[λ+(1﹣λ)t],
即t﹣1﹣tlnt+λ(tlnt﹣lnt)<0恒成立,
令函数g(t)=t﹣1﹣tlnt+λ(tlnt﹣lnt),t>1,
①当0<λ时,g′(t)=﹣lnt+λ(lnt+1﹣)=,
令φ(t)=﹣tlnt+λ(tlnt+t﹣1),t>1,
φ′(t)=﹣1﹣lnt+λ(2+lnt)=(λ﹣1)lnt+2λ﹣1,
当0<λ≤时,φ′(t)<0,φ(t)在(1,+∞)递减,则φ(t)<φ(1)=0,
故当t>1时,g′(t)<0,
则g(t)在(1,+∞)递减,g(t)<g(1)=0符合题意;
②当<λ<1时,φ′(t)=(λ﹣1)lnt+2λ﹣1>0,
解得1<t<,
当t∈(1,),φ′(t)>0,φ(t)在(1,)递增,φ(t)>φ(1)=0;
当t∈(1,),g′(t)>0,g(t)在(1,)递增,g(t)>g(1)=0,
则有当t∈(1,),g(t)>0不合题意.
即有0<λ≤.
【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键.
20.【答案】
【解析】解:(1)∵f(x)≤m,
∴|x﹣a|≤m,
即a﹣m≤x≤a+m,
∵f(x)≤m的解集为{x|﹣1≤x≤5},
∴,解得a=2,m=3.
(2)当a=2时,函数f(x)=|x﹣2|,
则不等式f(x)+t≥f(x+2)等价为|x﹣2|+t≥|x|.
当x≥2时,x﹣2+t≥x,即t≥2与条件0≤t<2矛盾.
当0≤x<2时,2﹣x+t≥x,即0,成立.
当x<0时,2﹣x+t≥﹣x,即t≥﹣2恒成立.
综上不等式的解集为(﹣∞,].
【点评】本题主要考查绝对值不等式的解法,要求熟练掌握绝对值的化简技巧.
21.【答案】
【解析】解:(1),=5…
且,代入回归直线方程可得
∴=0.6x+3.2,
x=6时,=6.8,…
(2)X的取值有0,1,2,3,则
,,
,…
0 1 2 3
【点评】本题考查线性回归方程、离散型随机变量的分布列及其数学期望,考查学生分析解决问题的能力.22.【答案】
【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.
(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,

ED
EP
EF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 2
9
=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .
∴4
15
=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2
∴)29427(4152
+⨯=PA ,解得4
315=PA .……………………10分 23.【答案】(1)2=AD ;(2)3
π
=
B .




考点:正余弦定理的综合应用,二次方程,三角方程.
【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.
24.【答案】
【解析】解:(Ⅰ)设椭圆的半焦距为c,则,即,则,
椭圆方程为,将点的坐标代入得c2=1,
故所求的椭圆方程为焦点坐标为(0,±1),
故抛物线方程为x2=4y…
设直线MN:y=kx+1,M(x1,y1),N(x2,y2),代入抛物线方程得x2﹣4kx﹣4=0,
则x1+x2=4k,x1x2=﹣4,由于,所以,故直线l1的斜率为,l1的方程为
,即,
同理l2的方程为,
令,即,显然x1≠x2,
故,即点Q的横坐标是,
点Q的纵坐标是,即点Q(2k,﹣1),
故点Q的轨迹方程是y=﹣1…
(Ⅱ)证明:①当两切线的之一的斜率不存在时,根据对称性,设点P在第一象限,
则此时P点横坐标为,代入圆的方程得P点的纵坐标为,
此时两条切线方程分别为,此时,
若∠APB的大小为定值,则这个定值只能是…
②当两条切线的斜率都存在时,即时,设P(x0,y0),切线的斜率为k,
则切线方程为y﹣y0=k(x﹣x0),
与椭圆方程联立消元得…
由于直线y﹣y0=k(x﹣x0)是椭圆的切线,
故,
整理得…
切线PA,PB的斜率k1,k2是上述方程的两个实根,故,…
点P在圆x2+y2=5上,故,所以k1k2=﹣1,所以.
综上可知:∠APB的大小为定值,得证…
【点评】本题考查直线与椭圆的综合应用,椭圆以及抛物线的方程的求法,考查转化是以及计算能力.。

相关文档
最新文档