高斯列主元消元法解方程组的步骤
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高斯列主元消元法求解线性方程组AX=b 的简要步骤
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n nn n n n n b b b x x x a a a a a a a a a 21212122221
11211 方法说明(以4阶为例):
⏹ 第1步消元——在增广矩阵(A ,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A ,b )做初等行变换使原方程组转化为如下形式:
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡*******0***0***0****4321x x x x ⏹ 第2步消元——在增广矩阵(A ,b )中的第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组转化为:
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡******00**00***0****4321x x x x ⏹ 第3步消元——在增广矩阵(A ,b )中的第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A ,b )做初等行变换使原方程组转化为:
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡*****000
**00***0****4321x x x x ⏹ 按x 4 → x 3→ x 2→ x 1 的顺序回代求解出方程组的解。