人教版高三数学下学期导数及其应用多选题单元 期末复习测试综合卷学能测试试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、导数及其应用多选题
1.已知(0,1)x ∈,则下列正确的是( )
A .cos 2
x x π
+<
B .22x
x <
C .22
sin 2
4
x x x >+ D .1
ln 1x x <- 【答案】ABC 【分析】
构造函数()sin f x x x =-证明其在0,2π⎛⎫ ⎪⎝⎭
单调递减,即可得sin 22x x ππ
⎛⎫-<-
⎪⎝⎭即可判断选项A ;作出2y
x 和2x y =的函数图象可判断选项B ;作出()sin
2
x
f x =,()2
24
x h x x =
+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在
()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.
【详解】
对于选项A :因为()0,1x ∈,所以02
2
x π
π
<
-<
,令()sin f x x x =-,
()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫
⎪⎝⎭
单调递减,所以()()00f x f <=,
即sin x x <,所以sin 22
x x ππ
⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正
确, 对于选项B :
由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;
对于选项C :要证2
2
sin 2
4
x
x x >
+, 令()sin 2x f x =,()2
2
4
x
h x x =+ ()()f x f x -=-,()sin
2
x
f x =是奇函数, ()()h x h x -=,()2
2
4
x h x x =
+是偶函数, 令222
4
144
x t x x ==-++ ,则y t =, 因为24y x =+在()0,∞+单调递增,所以2
4
14
t x =-+在()0,∞+单调递增,而y t =单调递增,由符合函数的单调性可知()2
2
4
x h x x =+在()0,∞+单调递增, 其函数图象如图所示:
由图知当()0,1x ∈时2
2
sin 2
4
x
x x >
+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()22111
0x g x x x x
-'=-=<, 所以()1
ln 1x g x x
=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x
+
->,可得1
ln 1x x >-,故选项D 不正确.
故选:ABC 【点睛】
思路点睛:证明不等式恒成立(或能成立)
一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出
函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.
2.已知函数()3
sin f x x x ax =+-,则下列结论正确的是( )
A .()f x 是奇函数
B .当3a =-时,函数()f x 恰有两个零点
C .若()f x 为增函数,则1a ≤
D .当3a =时,函数()f x 恰有两个极值点
【答案】ACD 【分析】
利用函数奇偶性的定义可判断A 选项的正误;利用导数分析函数()f x 的单调性,可判断B 选项的正误;利用导数与函数单调性的关系可判断C 选项的正误;利用导数以及零点存在定理可判断D 选项的正误. 【详解】
对于A 选项,函数()3
sin f x x x ax =+-的定义域为R ,
()()()()3
3sin sin f x x x ax x x ax f x -=-+-+=--+=-,函数()f x 为奇函数,A 选
项正确;
对于B 选项,当3a =-时,()3sin 3f x x x x =++,则()2
cos 330f x x x '=++>,
所以,函数()f x 在R 上为增函数,又()00f =,所以,函数()f x 有且只有一个零点,B 选项错误;
对于C 选项,()2
cos 3f x x x a '=+-,
由于函数()f x 为增函数,则()0f x '≥对任意的x ∈R 恒成立,即23cos a x x ≤+. 令()2
3cos g x x x =+,则()6sin g x x x '=-,则()6cos 0g x x ''=->,
所以,函数()g x '在R 上为增函数,
当0x <时,()()00g x g ''<=,此时,函数()g x 为减函数; 当0x >时,()()00g x g ''>=,此时,函数()g x 为增函数. 所以,()()min 01g x g ==,1a ∴≤,C 选项正确;
对于D 选项,当3a =时,()3
sin 3f x x x x =+-,则()2
cos 33f x x x '=+-.
由B 选项可知,函数()f x '在(),0-∞上单调递减,在()0,∞+上单调递增,
()()11cos10f f ''-==>,()020f '=-<,
由零点存在定理可知,函数()f x '在()1,0-和()0,1上都存在一个零点, 因此,当3a =时,函数()f x 有两个极值点,D 选项正确. 故选:ACD. 【点睛】
结论点睛:利用函数的单调性求参数,可按照以下原则进行:
(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在极值点;
(4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.
3.对于函数2ln ()x
f x x
=,下列说法正确的有( ) A .()f x
在x =12e
B .()f x 有两个不同的零点 C
.(2)f f f <<
D .若21
()f x k x
>-
在(0,)+∞上有解,则2
e k <
【答案】ACD 【分析】
利用导数求出函数的单调区间,进一步求出函数的极值可判断A ;利用函数的单调性和函数值的范围判断B ;利用函数的单调性比较出函数值的大小关系判断C ;利用不等式有解问题的应用判断D . 【详解】
函数2ln ()x f x x =,所以2
431ln 212ln ()(0)x x x
x x f x x x x
⨯-⨯-'==>, 令()0f x '=,即2ln 1x =
,解得x =
当0x <<()0f x '>,故()f x
在上为单调递增函数.
当x >
()0f x '<,故()f x
在)+∞上为单调递减函数.
所以()f x
在x =
1
2f e
=
,故A 正确;
当0x <<
()0f x '>,()f x
在上为单调递增函数,
因为()10f =,所以函数()f x
在上有唯一零点,
当x ≥
2ln ()0x
f x x
=
>恒成立,即函数()f x
在)
+∞上没有零点, 综上,()f x 有唯一零点,故B 错误.
由于当x >
()0f x '<,()f x
在)+∞上为单调递减函数,
因为2>>
>
(2)f f f <<,故C 正确;
由于2
1()f x k x >-在(0,)+∞上有解,故221ln 1
()x k f x x x +<+=有解,
所以2ln 1()max x k x +<,设2
ln 1()x g x x +=,则32ln 1
()x g x x --'=,
令()0g x '=,解得x
=
当x
>
()0f x '<,故()f x 在
)+∞上为单调递减函数. 当0x
<<
时,()0f x '>,故()f x 在上为单调递增函数. 所以()
22
max e e
g x g e ==-
=. 故2
e
k <
,故D 正确. 故选:ACD . 【点睛】
方法点睛:本题通过对多个命题真假的判断,综合考查导数的应用,这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.
4.已知:()f x 是奇函数,当0x >时,()'
()1f x f x ->,(1)3f =,则( )
A .(4)(3)f ef >
B .2(4)(2)f e f ->-
C .3(4)41f e >-
D .2(4)41f e -<--
【答案】ACD 【分析】
由已知构造得'
()+10x x e f ⎡⎤>⎢⎥⎣⎦
,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;
()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.
【详解】 因为当0x >时,()'
()1f
x f x ->,所以()'()10f x f x -->,即
()[]
'()+10x
f x f e x ->,所以'
()+10x x e f ⎡⎤
>⎢⎥
⎣⎦
,
令()()+1x
f x
g x e
=
,则当0x >时,()'
>0g x ,函数()g x 单调递增, 所以()()4>3g g ,即43
(4)+1(3)+1
>f f e e
,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;
()()4>2g g ,即
42
(4)+1(2)+1>f f e e ,化简得222(4)(2)1>(2)f f e e e f >+-, 所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2
(4)(2)e f f -<-,故B 不正确;
()()4>1g g ,即
4
(4)+1(1)+1>f f e e
,又(1)3f =,化简得3
(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2
(4)41f e -<--,又()f x 是奇函数,所以2
(4)41f e -<--,故D 正确,
故选:ACD. 【点睛】
关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.
5.若直线l 与曲线C 满足下列两个条件: (i )直线l 在点()00,P x y 处与曲线C 相切;
(ii )曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C . 下列命题正确的是( )
A .直线:0l y =在点()0,0P 处“切过”曲线3:C y x =
B .直线:1l x =-在点()1,0P -处“切过”曲线()2
:1C y x =+
C .直线:l y x =在点()0,0P 处“切过”曲线:sin C y x =
D .直线:l y x =在点()0,0P 处“切过”曲线:tan C y x = 【答案】ACD 【分析】
分别求出每个选项中命题中曲线C 对应函数的导数,求出曲线C 在点P 处的切线方程,再由曲线C 在点P 处两侧的函数值对应直线上的点的值的大小关系是否满足(ii ),由此可得出合适的选项. 【详解】
对于A 选项,由3
y x =,可得2
3y x '=,则0
0x y ='
=,
所以,曲线C 在点()0,0P 处的切线方程为0y =,
当0x >时,0y >;当0x <时,0y <,满足曲线C 在点()0,0P 附近位于直线0y =两侧,
A 选项正确;
对于B 选项,由()2
1y x =+,可得()21y x '=+,则1
0x y =-'
=,
而直线:1l x =-的斜率不存在,所以,直线l 在点()1,0P -处不与曲线C 相切,B 选项错误;
对于C 选项,由sin y x =,可得cos y x '=,则0
1x y ='
=,
所以,曲线C 在点()0,0P 处的切线方程为y x =,
设()sin x x x f -=,则()1cos 0f x x '=-≥,所以,函数()f x 为R 上的增函数, 当0x <时,()()00f x f <=,即sin x x <; 当0x >时,()()00f x f >=,即sin x x >.
满足曲线C 在点()0,0P 附近位于直线y x =两侧,C 选项正确; 对于D 选项,由sin tan cos x
y x x ==
,可得2
1cos y x
'=,0
1x y ='=,
所以,曲线C 在点()0,0P 处的切线方程为y x =,
当,22x ππ⎛⎫∈- ⎪⎝⎭时,设()tan g x x x =-,则()222
1sin 10cos cos x
g x x x
=-=-≤', 所以,函数()g x 在,22ππ⎛⎫
- ⎪⎝⎭
上单调递减.
当02
x π
-
<<时,()()00g x g >=,即tan x x >;
当02
x π
<<
时,()()00g x g <=,即tan x x <.
满足曲线C 在点()0,0P 附近位于直线y x =两侧,D 选项正确. 故选:ACD. 【点睛】
关键点点睛:本题考查导数新定义,解题的关键就是理解新定义,并把新定义进行转化,一是求切线方程,二是判断在切点两侧函数值与切线对应的函数值的大小关系,从而得出结论.
6.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:
()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直
线”.已知函数()2
2
x f x =(x ∈R ),()12g x x =(0x <),()ln h x e x =,(e 为自
然对数的底数),则( )
A .()()()m x f x g x =-在
0x ⎛
⎫∈ ⎪⎝⎭内单调递减 B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为2- C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]
2,1-
D .()f x 和()g x 之间存在唯一的“隔离直线”,方程为2
e
y =-
【答案】BD 【分析】
对于A :令()()()m x f x g x =-,利用导数可确定()m x 单调性,进而作出判断; 对于B 和C :利用二次函数的性质以及不等式恒成立的知识求出b 、k 的范围,进而作出判断;
对于选项D :根据隔离直线过()f x 和()h x 的公共点,可假设隔离直线为
2e y kx =-;可得到222
x e
kx ≥-,再利用恒成立得出k 的值,最后尝试利用
导数证明()2
e
h x ≤-
,进而作出判断. 【详解】
对于A ,()()()21
22x m x f x g x x =-=-
, ()322
121
022x m x x x x
+'∴=+=>, 当
x ⎛
⎫∈ ⎪⎝⎭时,()0m x '>,()m x ∴单调递增,故A 错误; 对于B ,C ,设()f x ,()g x 的隔离直线为y kx b =+,
2
2
x kx b ≥+对任意x ∈R 恒成立,即2220x kx b --≥对任意x ∈R 恒成立, 所以2
1480k b ∆=+≤,所以0b ≤,
又
1
2kx b x ≤+对任意(),0x ∈-∞恒成立,即22210kx bx +-≤对任意(),0x ∈-∞恒成立,
因为0b ≤,所以0k ≤且2
1480b k ∆=+≤,
所以22k b ≤-且22b k ≤-,4248k b b ≤≤-,解得20k -≤≤,同理20b -≤≤, 所以b 的最小值为2-,k 的取值范围是[]
2,0-, 故B 正确,C 错误;
对于D ,
函数()f x 和()h x 的图象在x =
∴若存在()f x 和()h x 的隔离直线,那么该直线过这个公共点,
设隔离直线的斜率为k
,则隔离直线方程为(2
e
y k x -
=
,即2e y kx =-,
则222
x e
kx ≥-(x ∈R
),得2220x kx e -+≥对x ∈R 恒成立,
则()
2
4420k e ∆=-≤
,解得k =,
此时隔离直线方程为:2
e
y =-,
下面证明(
)2
e h x ≤-
, 令(
)(
)ln 22e e G x h x e x =--=--(0x >),则(
)x G x x
'=,
当x =
()0G x '=
;当0x <<()0G x '<
;当x >()0G x '
>;
∴
当x =()G x 取到极小值,也是最小值,即(
)0min G x G
==,
(
)()02e G x h x ∴=--≥在()0,∞+上恒成立,即(
)2
e
h x ≤-,
∴函数()f x 和()h x
存在唯一的隔离直线2
e
y =-
,D 正确. 故选:BD . 【点睛】
关键点睛:本题考查导数中的新定义问题的求解;解题关键是能够充分理解“隔离直线”的定义,将问题转化为根据不等式恒成立求解参数范围或参数值、或不等式的证明问题,属于难题.
7.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有
一个对称中心点()()
00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''
是
()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式
(ln 1)x e e mx x -+32()3e
f x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )
A .3a =
B .1b =
C .m 的值可能是e -
D .m 的值可能是1
e
-
【答案】ABC 【分析】
求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,
()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化
为()1ln 1
e x x e x e m x --++<+,由于1x e x >+,故ln ln 1e
e x x x x e e x e x --+=≥-+,进而得
()1ln ln 1ln 1e x x e x e e x e
e x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.
【详解】
由题意可得()1112f a b -=-+-+=,
因为()2
321x ax f x =++',所以()62f x x a ''=+,
所以()1620f a ''=-+=-,
解得3,1a b ==,故()3
2
31f x x x x =+++.
因为1x >,所以()()3
2
ln []13x
e
e
e mx x
f x x x e x -+≥--+等价于
()1ln 1
e x x e x e m x --++≤
+. 设()()10x
g x e x x =-->,则()10x
g x e '=->,
从而()g x 在()0,∞+上单调递增.
因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1e
e x x
x
x e e x e x --+=≥-+(当且仅当x e =时,等号成立),
从而()1ln ln 1ln 1
e x x e x e e x e e x x --++--≥=-++,故m e ≤-.
故选:ABC. 【点睛】
本题解题的关键在于根据题意得()3
2
31f x x x x =+++,进而将不等式恒成立问题转化
为()1ln 1
e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得
ln ln 1e
e x x
x
x e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难
题.
8.已知函数()2
1ln 2
f x ax ax x =-+的图象在点()()11,x f x 处与点()()22,x f x 处的切线均平行于x 轴,则( )
A .()f x 在1,上单调递增
B .122x x +=
C .()()121212x x x x f x f x +++
+的取值范围是7,2ln 24⎛⎫
-∞-- ⎪⎝⎭
D .若163
a =
,则()f x 只有一个零点 【答案】ACD
【分析】 求导,根据题意进行等价转化,得到a 的取值范围;对于A ,利用导数即可得到()f x 在()1,+∞上的单调性;对于B ,利用根与系数的关系可得121x x =+;对于C ,化简()()121212x x x x f x f x ++++,构造函数,利用函数的单调性可得解;对于D ,将163
a =
代入()f x ',令()0f x '=,可得()f x 的单调性,进而求得()f x 的极大值小于0,再利用零点存在定理可得解.
【详解】 由题意可知,函数()f x 的定义域为()0,∞+,且()211ax ax ax a x x x
f -+=-+=', 则1x ,2x 是方程210ax ax -+=的两个不等正根,则2124010a a x x a ⎧∆=->⎪⎨=>⎪⎩
,解得4a >, 当()1,x ∈+∞时,函数210y ax ax =-+>,此时()0f x '>,
所以()f x 在()1,+∞上单调递增,故A 正确;
因为1x ,2x 是方程210ax ax -+=的两个不等正根,所以121x x =+,故B 错误; 因为()()221212121112221111ln ln 22
x x x x f x f x x ax ax x ax ax a ++++=+++-++- 1112111ln 1ln 22a a a a a a a a
⎛⎫=+++--=--+ ⎪⎝⎭, 易知函数()11ln 2h a a a a
=--+在()4,+∞上是减函数, 则当4a >时,()()742ln 24h a h <=-
-, 所以()()121212x x x x f x f x +++
+的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭,故C 正确; 当163a =时,()1616133f x x x '=-+,令()0f x '=,得14x =或34
, 则()f x 在10,4⎛
⎫ ⎪⎝⎭上单调递增,在13,44⎛⎫ ⎪⎝⎭上单调递减,在3,4⎛⎫+∞ ⎪⎝⎭
上单调递增, 所以()f x 在14
x =取得极大值,且104f ⎛⎫< ⎪⎝⎭,()2ln 20f =>, 所以()f x 只有一个零点,故D 正确.
【点睛】
关键点点睛:导数几何意义的应用主要抓住切点的三个特点:
①切点坐标满足原曲线方程;
②切点坐标满足切线方程;
③切点的横坐标代入导函数可得切线的斜率.
9.已知函数()f x 的定义域为()0,∞+,其导函数()f x '满足()1f x x
'<
,且()11f =,则下列结论正确的是( )
A .()2f e >
B .10f e ⎛⎫> ⎪⎝⎭
C .()1,x e ∀∈,()2f x <
D .1,1x e ⎛⎫∀∈ ⎪⎝⎭, ()120x f x f ⎛⎫+>
⎪⎝⎭- 【答案】BCD
【分析】
令()()ln F x f x x =-,求导得:'1()()0F x f x x
'=-<,可得函数的单调性,再结合(1)1f =,可得(1)1F =,对选项进行一一判断,即可得答案;
【详解】
令()()ln F x f x x =-,∴'1()()0F x f x x
'=-<, ()F x ∴在(0,)+∞单调递减,
(1)1f =,(1)(1)1F f ∴==,
对A ,()(1)()11()2F e F f e f e <⇒-<⇒<,故A 错误;
以B ,111(1)()110e F F f f e e ⎛⎫⎛⎫>⇒+>⇒> ⎪ ⎪⎝⎭⎝⎭
,故B 正确;
对C ,(1,)()(1)()ln 1x e F x F f x x ∈∴<⇒-<,()1ln f x x ∴<+, (1.),ln (0,1)x e x ∈∈, 1ln (1,2)x ∴+∈,()2f x ∴<,故C 正确;
对D ,111,1,,()x x F x F e x x ⎛⎫⎛⎫∈>> ⎪ ⎪⎝⎭⎝⎭
()1ln ln f x x f x x ⎛⎫⇒->+ ⎪⎝⎭ 1()2ln f x f x x ⎛⎫⇒-> ⎪⎝⎭,1,1,ln (1,0)x x e ⎛⎫∈∴∈- ⎪⎝⎭
, 1()2f x f x ⎛⎫∴->- ⎪⎝⎭1()20f x f x ⎛⎫⇒-+> ⎪⎝⎭
,故D 正确;
【点睛】
根据条件构造函数,再利用导数的工具性研究函数的性质,是求解此类抽象函数问题的关键.
10.已知函数()21,0log ,0
kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点
C .当0k >时,有4个零点
D .当0k <时,有1个零点 【答案】CD
【分析】
令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.
【详解】
令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,
①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,
∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,
由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解,
即函数y =f [f (x )]+1有4个零点.
②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,
由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .
【点睛】
本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.。