上海市虹口区第四中心小学数学六年级上册试题解决问题解答应用题训练带答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市虹口区第四中心小学数学六年级上册试题解决问题解答应用题训练带答
案解析
一、六年级数学上册应用题解答题
1.电子厂原有工人450人,其中女工占36%。
因为生产需要又招进一批女工,这时女工人数占全厂工人总数的40%。
又招进女工多少人?
解析:30人
【详解】
450×(1-36%)÷(1-40%)-450=30(人)
答:又招进女工30人。
2.电车从A站经过B站到达C站,然后返回.去时在B站停车,而返回时B站不停.去时的车速是每小时48km.
(1)A站到C站的距离是多少千米?
(2)返回时的车速是每小时行多少千米?
解析:(1)432千米(2)72千米
【解析】
【详解】
(1)48×(4+5)=432(千米)(2)432÷6=72(千米)
3.如图是光明小学的运动场的示意图,阴影部分为跑道.求跑道的占地面积.
解析:2750平方米
【详解】
60﹣10×2
=60﹣20
=40(米)
50×10×2+3.14×[(60÷2)2﹣(40÷2)2]
=1000+3.14×[900﹣400]
=1000+3.14×500
=1000+1750
=2750(平方米)
答:跑道的占地面积2750平方米.
4.甲、乙两图中正方形的面积都是40cm2,阴影部分的面积哪一块大?大多少?
解析:乙大,大14.2 cm2
【分析】
甲阴影部分的面积=正方形的面积-圆的面积,甲中圆的面积=π×正方形的面积÷4;
乙阴影部分的面积=圆的面积-正方形的面积,乙中圆的面积=π×正方形的面积÷2;然后进行比较、作差即可。
【详解】
S甲阴=40-3.14×40÷4=8.6(cm2)
S乙阴=3.14×40÷2-40=22.8(cm2)
乙图阴影部分面积大,大22.8-8.6=14.2(cm2)
5.(1)某大酒店里有一种方圆两用餐桌(即外圆中方)。
请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影。
(提示:在圆中画一个最大的正方形)
(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?
解析:(1)
(2)0.285平方米
【详解】
略
6.列出综合算式,不计算。
一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长
的1
4
?
解析:()112140%140%4
⎛⎫
÷-⨯-- ⎪⎝
⎭
【分析】
根据题意可得,12米占这根电线总长度的()140%-,据此求出这根电线总长度。
因为第二
次截取的长度占这根电线长度的1140%4⎛
⎫-- ⎪⎝⎭,最后求出第二次截取的长度即可。
【详解】
()112140%140%4⎛
⎫÷-⨯-- ⎪⎝
⎭
=20×0.35 =7.5(米)
答:需再截去7.5米,这时正好剩下这根电线全长的四分之一。
【点睛】
本题考查百分数,解答本题的关键是找准单位“1”。
7.一玩具商从批发行购进两种大小不同的玩具熊100个,共花了3600元。
在零售时,其中70个大号玩具熊以每个54元卖出。
(1)如果余下的小号玩具熊以每个15元售出,求玩具商在这次买卖中的盈利率。
(2)如果在大号玩具熊卖完后,每个小号玩具熊应定价多少元,才能使盈利率达到25%。
解析:(1)17.5%;(2)24元 【分析】
(1)根据单价×数量=总价分别求出大号玩具和小号玩具一共能卖多少钱,再用卖得的价格减去进价,就是利润;盈利率=利润÷成本×100%,据此解答;
(2)假设每个小号玩具熊应定价x 元,根据(大号玩具和小号玩具一共卖的价钱-成本)÷成本×100%=25%列方程解答即可。
【详解】
(1)54701510070⨯+⨯-()
=3780+450 =4230(元)
(4230-3600)÷3600×100% =630÷3600×100% =0.175×100% =17.5%
答:玩具商在这次买卖中的盈利率是17.5%。
(2)解:设小号玩具熊应定价x 元。
100-70=30(个)
(54×70+30x -3600)÷3600×100%=25% 3780+30x -3600=3600×25% 180+30x =900 30x =900-180
30x=720
x=24
答:每个小号玩具熊应定价24元,才能使盈利率达到25%。
【点睛】
认真审题,看清条件和问题,解答此题用到的数量关系式是:盈利率=利润÷成本×100%。
8.最佳方案。
一辆小汽车与一辆大卡车在一段10000米长的狭路上相遇,必须倒车,才能继续通行。
已知小汽车的速度是每分钟行800米,大卡车的速度是每分钟行500米,两车倒车的速度是
各自速度的1
4
;小汽车需倒车的路程是大卡车需倒车的路程的4倍。
想想你觉得怎样倒车
比较合理?说出你的理由?
解析:大车倒车,理由见解析
【分析】
已知小汽车的速度是每分钟行800米,大卡车的速度是每分钟行500米,则两车倒车的速度比是800:500=8:5,又小汽车需倒车的路程是大卡车需倒车的路程的4倍,即路程比
是4:1,则大车倒回需要时间为1
5
,小车需要
1
2
,比较即可得出结论。
【详解】
两车倒车的速度比是800:500=8:5,小车与大车倒车的路程比是4:1,
4 8=
1
2
>
1
5。
所以大车倒车用时少,所以大车倒车比较合理。
【点睛】
首先根据题意求出两车的速度比与路程比是完成本题的关键。
9.有甲、乙两列火车,乙车的速度比甲车速度慢20%。
乙车先从B站出发开往A站行驶到距离B站72千米处时,甲车从A站出发开往B站,相遇时,甲、乙两列火车行的路程之比是3∶4。
(1)甲、乙两列火车的速度比是()∶();
(2)A、B两站之间的路程是多少千米?
解析:(1)5;4
(2)315千米
【分析】
(1)甲车速度是单位“1”,乙车的速度比甲车速度慢20%,甲车速度看作100,乙车速度是100-20,写出速度比化简即可。
(2)路程比=速度比,设相遇时甲行驶的路程是x千米,乙车形式的路程是4
72
5
x+千
米,根据甲车和乙车的路程比=甲车和乙车的时间比,列出方程求出甲车行驶路程,相遇
时,甲、乙两列火车行的路程之比是3∶4,甲车行驶了路程的
3
34
+
,用甲车路程÷对应分
率=A 、B 两站之间的路程。
【详解】
(1)100∶(100-20)=100∶80=5∶4 (2)解:设相遇时甲行驶的路程是x 千米。
34
4725
x x =
+
47234512
21645855216588
x x x x
x ⎛⎫+⨯= ⎪⎝⎭+=⨯=⨯ 135x =
3+4=7 3
1353157
÷
=(千米) 答:A 、B 两站之间的路程是315千米。
【点睛】
本题考查了百分数和比的意义,列方程解决问题和按比例分配应用题,较为综合,关键是理解速度、时间、路程之间的关系以及比的意义。
10.小明放一群鸭子,已知岸上的只数与水中的只数比是3:4,现在从水中上岸9只后,岸上的只数是水中的4
5
,这群鸭子有多少只? 解析:567只 【详解】 3:4=34
9÷(
445+-334+)
=9÷(49-37
) =9÷
163
=567(只)
答:这群鸭子有567只.
11.在一次做“有趣的平衡”的综合实践中,小林拿来一根粗细均匀的竹竿,他从左端量到1.2米处做一个记号A ,再从右端量到1.2米处做一个记号B 。
这时,他发现A 、B 之间的长度恰好是全长的20%,这根竹竿长度可能是多少米?(提示:请试着画图理解,然后列式求得两个不同的答案) 解析:2米或3米 【分析】
方法一:如图所示,这根竹竿的距离小于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1+A、B之间的长度是全长的百分之几);
方法二:如图所示,这根竹竿的距离大于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1-A、B之间的长度是全长的百分之几)。
【详解】
①
(1.2+1.2)÷(1+20%)=2(米)
②
(1.2+1.2)÷(1-20%)=3(米)
答:这根竹竿可能是2米或3米。
12.某服装店将两件不同的衣服都以每件120元的价格出售,与进价相比,结果一件赚了20%,另一件亏了20%。
服装店老板出售这两件衣服是赚了还是亏了?赚了(或亏了)多少元?
解析:亏了亏了10元
【详解】
120-120÷(1+20%)=20(元)
120÷(1-20%)-120=30(元)
20<30
所以亏了
30-20=10(元)
答:服装店老板出售这两件衣服亏了,亏了10元。
13.小明和小丽原来存款数量的比是4:3,现在小明取出自己存款的40%还多100元,小丽存进500元,现在小丽的存款比小明多900元,小明取出存款多少元?
解析:900元
【详解】
解:设小明和小丽原来存款各是4x元、3x元,
3x+500=4x×(1﹣40%)﹣100+900
3x+500=2.4x+800
3x=2.4x+300
0.6x=300
x=500
4x=4×500=2000
2000×40%+100
=800+100
=900(元)
答:小明取出存款900元。
14.一辆客车从甲地开往乙地,第一天行了全程的20%,第二天行了450km,这时已行的路程和剩下的路程比是3:7.甲、乙两地相距多少千米?
解析:4500千米
【详解】
450÷(-20%)=4500(km)
答:甲、乙两地相距4500千米.
15.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑瓷砖。
(如图所示)
(1)填写下列表格。
想一想,这些数量之间有什么关系?
大正方形每边的块数3
黑瓷砖块数8
(2)如果所拼的图形中,用了64块白瓷砖,那么,黑瓷砖用了多少块?
解析:(1)4,5,6,7
12,16,20,24
(2)36块
【分析】
(1)大正方形每边的块数每增加1块,所用的黑瓷砖块数就增加4块;
(2)白瓷砖的总块数是每个边上的块数的平方,而黑瓷砖的总数量是白瓷砖一边的数量加1的四倍。
【详解】
(1)
大正方形每边的块数增加1块,所用的黑瓷砖数就增加4块;
(2)64=8×8;
(8+1)×4 =9×4 =36(块); 答:黑瓷砖用了36块。
【点睛】
解答本题的关键是根据图形找到规律,再根据规律来求解。
16.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n 个图形中的三角形个数为8057,n 是多少?
解析:解:第一个图形中三角形个数:1个; 第二个图形中三角形个数:1×4+1=5(个); 第三个图形中三角形个数:2×4+1=9(个); 第四个图形中三角形个数:3×4+1=13(个); 第n 个图形中三角形个数: (n-1)×4+1=(4n-3)(个) 4n-3=8057,n=2015. 答:n 是第2015个图形. 【解析】 【详解】
由已知图形中三角形个数推出三角形个数与图形个数之间的数量关系式,再根据题意代入数据计算即可解答. 17.观察下列等式: 第1个等式:1111
(1)1323
a ==⨯-⨯; 第2个等式:21111
()35235a ==⨯-⨯; 第3个等式:31111()57257a ==⨯-⨯; 第4个等式:41111()79279
a ==⨯-⨯; ……
请解答下列问题:
(1)按以上规律列出第5个等式:5a =( )=( ); (2)求1234100a a a a a +++++的值。
解析:(1)1
911⨯;111()2911
⨯-;(2)100201
【分析】
(1)观察可知,第一个等号右边的分数形式,分母是两数相乘,第一个乘数是按1、3、5…一个比一个大2,第二个乘数比第一个乘数大2,据此确定第一个等号右边的分数形
式;第二个等号右边的算式,都是1
2⨯前边第一个乘数分之一和第二个乘数分之一的差,
据此确定第二个等号右边的算式;
(2)每一个乘法算式都可以用乘法分配律进行分配,据此将1234100a a a a a +++++按第
(1)小题规律,通过乘法分配律分配后,中间抵消,再计算即可。
【详解】
(1)按以上规律列出第5个等式:5a =1
911⨯=111()2911
⨯-; (2)1234100a a a a a ++++
+
=11(1)23⨯-+111()235⨯-+111()257⨯-…+111
(
)2199201
⨯- =11111111111
2661010141418398398402-+-+-+--……-+
=
1126-16+110-110+114-114+118-1398……-1398+1402
- =112402- =100
201
【点睛】
在数学算式中探索规律,需要仔细观察算式特点,找出规律,根据规律填出这一类算式的结果。
18.佳惠超市按商品标价的80%进行促销。
光明小学在此超市按促销价购买了200支钢笔,共付2040元。
(1)每支钢笔的标价是多少元?
(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的? 解析:(1)12.75元 (2)20% 【分析】
(1)用总价除以钢笔数量,求出每支钢笔售价,再用每支钢笔的售价除以它占原标价的百分率,求出每支钢笔标价;
(2)先算出每支钢笔的售价,再用售价比进价多的部分除以进价,求出超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的。
【详解】
(1)2040÷200÷80% =10.2÷80% =12.75(元)
答:每支钢笔的标价是12.75元。
(2)(2040÷200-8.5)÷8.5 =1.7÷8.5 =20%
答:超市是在进价基础上加价百分之二十将这200支钢笔卖给光明小学的。
【点睛】
本题考查百分数,解答本题的关键是理解按80%进行促销是指售价占标价的百分之八十。
19.公园里有一个圆形花圃(如图),直径20米,花圃中的绿地面积是254.34平方米,花圃中石子路的宽度是多少米?<5分>
解析:1米 【详解】
254.34÷3.14=81(平方米) 因为9×9=81
所以绿地的半径是9米。
<2分> 20÷2-9=1(米) <3分> 答:花圃中石子路的宽度是1米。
考察学生对圆环面积以及其内圆半径和外圆半径之间关系的理解,从而找到正确的突破口进行解答。
20.六年级举行“小制作比赛”,六(1)班同学上交32件作品,六(2)班比六(1)班多交
1
4
,六(2)班交了多少件? 解析:40件 【分析】
由于六(2)班比六(1)班多交1
4
,所以可利用乘法求出六(2)班交了多少件。
【详解】
13214⎛⎫⨯+ ⎪⎝⎭
=5
324
⨯
=40(件)
答:六(2)班交了40件。
【点睛】
本题考查了分数乘法的应用,已知一个数比另一个数多几分之几,求这个数,用乘法。
21.修一段公路,甲队独修要用20天,乙队独修要用24天,现在两队同时从两端开工,结果在距中点750m处相遇。
求这段公路长多少米?
解析:16500米
【分析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这段公路的距离即可。
【详解】
1÷(11 2024
+)
=1÷
11 120
=120
11
(天)
750×2÷(11201120 20112411
⨯-⨯)
=1500÷(65 1111
-)
=1500×11
=16500(米)
答:这段公路长16500米。
【点睛】
本题考查工程问题和路程问题中的相遇问题,画线段图可以帮助快速理清题意。
22.打一份稿件,小红需要8小时,小明需要10小时,两人合作打了4小时,还剩5000个字,这份稿件一共有多少个字?
解析:50000个
【分析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。
【详解】
1
18
8
÷=
1
110
10
÷=
119
81040
+=
99
4
4010
⨯=
91
1
1010
-=
1
500050000
10
÷=(个)
答:这份稿件一共有50000个字。
【点睛】
量率对应求单位“1”,在分数除法应用题中广泛应用,但量和率一定要对应。
23.甲乙两仓库共存粮54吨,甲仓用了4
5
,乙仓用了
3
4
后,剩下的两仓一样多,原来两
仓各存粮多少吨?
解析:甲:30吨,乙:24吨【分析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了4
5
之后,剩余粮食为(1
-4
5
)x;乙仓用了
3
4
之后,剩余粮食为(1-
3
4
)×(54-x);此时剩下的两仓一样多,
据此列出方程解答。
【详解】
解:设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨。
(1-4
5
)x=(1-
3
4
)×(54-x)
1 5x=
1
4
×(54-x)
1 5x=
1
4
×54-
1
4
x
1 5x+
1
4
x=
1
4
×54
9 20x=
54
4
x=54
4
÷
9
20
x=30
54-30=24(吨)
答:原甲仓存粮30吨,乙仓存粮24吨。
【点睛】
用方程解答关键是找出等量关系式:甲仓库原存粮吨数×剩余存粮所占分率=乙仓库原存粮吨数×剩余存粮所占分率,并根据等式的性质解方程。
24.一个书架上下两层共有图书450本,如果将上层书增加它的5
8
,下层书增加它的
3
10
,
这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?解析:上层200本,下层250本
【详解】
解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得
(1+5
8
)x=(450﹣x)×(1+
3
10
)
138x =(450﹣x )×1310 138
x =585﹣1310x 11740
x =585 x =200
450﹣200=250(本)
答:原来上层书架有图书200本、下层书架有图书250本.
25.一个水池早晨放满了水,上午用去这池水的,下午又用去25升,这时水池的水比半池水还多2升,这个水池早晨用去了多少水?
解析:18升
【解析】
【分析】
把这池水的体积看作单位“1”,若下午用去25+2=27升,那么此时剩余的水的体积与用去水的体积相等,也就是用去水的体积占这池水体积的,先求出这池水体积的比上午用去水的体积多的分率,也就是27升水占这池水体积的分率,再依据分数除法意义,求出这池水的体积,最后依据分数乘法意义即可解答.
【详解】
(25+2)÷(﹣)×
=27
×
=90×
=18(升)
答:这个水池早晨用去了18升水.
26.下图中,以圆的半径为边长的正方形的面积是75平方厘米.求圆的面积.
解析:52cm
【详解】
2222753.1475235.5r cm S r cm π===⨯=圆()
()
27.甲、乙二人同时从A地走向B地,当甲走了全程的5
7
时,乙走了全程的
3
5
;当甲离B
地还有1
7
时,乙离B地还有50米,A、B两地相距多少米?
解析:1250
7
米
【详解】
相同时间内:甲乙的速度比就是5
7
:
3
5
=25:21;
乙的速度就是甲的21
25
,相同时间内,已走的路程就是甲的
21
25
1﹣1
7
=
6
7
6 7×
21
25
=
18
25
50÷(1﹣18 25
)
=50÷7 25
=1250
7
(米)
答:A、B两地相距1250
7
米.
28.已知,在直角三角形ABC中,∠ACB=90°,AC=8,BC=6,AB=10,以AB边为直径作半圆,把4个相同的直角三角形通过一定的图形运动拼成四叶草的形状(如图所示),求阴影部分的面积.
解析:61
【详解】
根据题意得:
[3.14×(10÷2)2×1
2
﹣
1
2
×6×8]×4
=[39.25﹣24]×4
=15.25×4
=61
答:阴影部分的面积是61.
29.如图,一只狗被一根12米长的绳子拴在一建筑物的墙角上,这个建筑的平面图是边长为10米的正方形,狗不能进入建筑物内活动.求狗所能活动到的地面部分的面积.(精确到1平方米)
解析:345平方米
【详解】
如图所示:
3 4×3.14×122+2×
1
4
×3.14×(12﹣10)2
=108×3.14+2×3.14
=110×3.14
≈345(平方米)
答:狗所能活动到的地面部分的面积345平方米.
30.甲、乙两辆汽车同时从A、B两地相向开出,2小时后在途中相遇,这时甲车正好行了
全程的2
5
,已知乙车每小时行36千米,A、B两地间公路长多少千米?
解析:120km 【详解】
2 3621120
5km
⨯÷-=
()()
答:A、B两地间公路长120千米.
31.一个工程队修一条公路,第一天修45米,第二天修全长的1
4
,第二天修的米数又恰
好比第一天多1
5
,这条公路全长多少米?
解析:216m
【详解】
11 451216
54m
⨯+÷=
()()
答:这条公路全长216米.
32.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为4:3,两车第一次相遇地点距离第二次相遇地点24千米,求甲、乙两城相距多少千米?
解析:84千米
【分析】
两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知
卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是
43
4343
-
++
,用24除
以路程差,就是两倍的城市距离,再除以2即可。
【详解】
24÷(
43
4343
-
++
)÷2
=24÷1
7
÷2
=84(千米)
答:甲、乙两城相距84千米。
【点睛】
此题考查了学生对多次相遇问题的理解能力及其比的应用,关键是找出数量对应的分率。
33.一件工作,由甲单独做要15天完成,现在由甲、乙两人各做3天后,余下的工作由乙单独做。
如果甲、乙两人工作效率的比是2∶3,乙完成这件工作还需要多少天?
解析:5天
【分析】
甲的工作效率是
1
15
,根据甲、乙的工作效率之比,求出乙的工作效率是
1
10
,甲、乙两人
各做3天后,还剩下1
2
,交给乙单独做还需要5天。
【详解】
1
115
15
÷=
11
÷23
1510
⨯=
11
133
1510
-⨯-⨯
13
1
510
=--
1
2
=
11
5
210
÷=(天)
答:乙完成这件工作还需要5天。
【点睛】
工程问题,主要是利用工作效率、工作时间、工作总量的关系求解,
⨯=
工作效率工作时间工作总量。
34.妈妈买来一些水果糖,小华吃掉一半后又多吃了两粒,第二天也是这样吃了剩下的一半再多吃两粒,第三天又吃了剩下的一半再多吃两粒,第四天打开糖盒时,里面只有4粒了,妈妈究竟买了多少粒水果糖?
解析:60粒
【解析】
【详解】
(4+2)÷(1-1
2
)=12(粒)
(12+2)÷(1-1
2
)=28(粒)
(28+2)÷(1-1
2
)=60(粒)
35.某赛车的左、右轮的距离是2m,因此在转弯时,外侧的轮子比内侧的轮子要多走一些路。
当赛车绕下面的运动场跑一圈时,外轮比内轮多走多少米?
解析:56m
【详解】
(50÷2+2)×2=54(m)
3.14×54-3.14×50=12.56(m)
36.一项工程,甲队单独完成需要60天。
若甲队先单独做18天,则剩余的甲、乙两队合作24天可以完成。
乙队单独完成这项工程需要多少天?
解析:80天
【分析】
根据题意可知,工作总量为单位“1”,甲队的工作效率为
1
60
,则甲队单独做18天后,剩下
总量的1-
1
60
×18,再除以甲、乙两队合作的工作时间即可求出工作效率之和,再减去甲
队的工作效率即可求出乙队的工作效率,进而解答即可。
【详解】
(1-
1
60
×18)÷24-
1
60
=21
30
÷24-
1
60
=
7
240
-
1
60
=1
80
;
1÷1
80
=80(天);
答:乙队单独完成这项工程需要80天。
【点睛】
解答本题的关键是明确甲队的工作效率,进而根据工作效率、工作时间和工作总量之间的关系求出乙队的工作效率,从而进一步解答。
37.已知下面三个图中大正方形的边长相等。
常常有人说,图中阴影部分的面积相等,但很少有人说清楚为什么。
请根据你所学的知识证明这个结论,并且尽可能让你的理由充分一些,结论可信一些,说理过程清楚一些。
解析:见详解
【分析】
假设正方形的边长是4,图①阴影部分的面积=正方形面积-圆的面积;图②阴影部分的面积=正方形面积-4个小圆的面积;图③阴影部分的面积=正方形面积-扇形面积,分别求出三个阴影部分的面积,比较即可。
【详解】
假设正方形的边长是4。
图①阴影部分的面积:
4²-3.14×(4÷2)²
=16-3.14×4
=16-12.56
=3.44
图②阴影部分的面积:
4²-3.14×(4÷2÷2)²×4
=16-3.14×4
=16-12.56
=3.44
图③阴影部分的面积:
4²-3.14×4²×14
=16-3.14×4
=16-12.56
=3.44
三幅图阴影部分的面积都是正方形的面积减去4π,结果都是3.44,所以三个图中阴影部分的面积相等。
【点睛】
关键是掌握正方形和圆的面积公式,圆的面积=πr²。
38.一项工程,甲单独做30天完成,乙单独做40天完成,现在两人一起做,共用25天完成,其间甲休数是乙休息天数的2倍。
乙休息几天?
解析:乙休息5天。
【分析】 根据题意知:甲的工作效率是130,乙的工作效率是140
;两人一起做,共用25天,甲休数是乙休息天数的2倍,设乙休息了x 天,则工作时间为(25x -)天,甲休息了2x 天,工作时间为(252x -)天;甲的工作量是1(252)30x -⨯,乙的工作量是1(25)40x -⨯;甲做的工作量+乙做的工作量=总工作量,可列方程解答。
【详解】
解:设乙休息子x 天,则甲休息子2x 天,根据甲做的工作量+乙做的工作量=总工作量,可列方程如下:
11(252)(25)13040
x x -⨯+-⨯= 1008753120x x -+-=
17511120x -=
11175120x =-
5x =
答:乙休息了l5天。
【点睛】
本体的关键是找到甲做的工作量+乙做的工作量=总工作量这一数量关系,然后列方程解答。
39.商店购进一批自行车,购入价为每辆420元,卖出价为每辆500元,当卖出自行车的45
多20辆时,已获得全部成本,当自行车全部卖完时,共盈利多少元? 解析:40000元
【详解】
略
40.
为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同种植,五年级种植了这
批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵.五、六年级分别种植了多少棵?
解析:五年级:24棵六年级:32棵
【详解】
(10−1+2)÷(1−−)
=66棵
66×+2=24(棵)
66×−1=32(棵)
答:五年级种植了24棵,六年级种植了32棵.。