惠山区高中2018-2019学年上学期高三数学期末模拟试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

惠山区高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( )
A .向右平移
2π个单位 B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
2. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,
tan ∠PF 1F 2=,则此椭圆的离心率为( )
A .
B .
C .
D .
3. 10y -+=的倾斜角为( )
A .150
B .120
C .60
D .30
4. 已知命题:()(0x
p f x a a =>且1)a ≠是单调增函数;命题5:(,
)44q x ππ
∀∈,sin cos x x >.
则下列命题为真命题的是( )
A .p q ∧
B .p q ∨⌝ C. p q ⌝∧⌝ D .p q ⌝∧ 5. 在△AB
C 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形
个数为( ) A .0
B .1
C .2
D .以上都不对
6. 双曲线=1(m ∈Z )的离心率为( )
A .
B .2
C .
D .3
7. 已知角α的终边经过点(sin15,cos15)-,则2
cos α的值为( )
A .
12+ B .12- C. 34
D .0 8. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )
A .35
B .
C .
D .53
9. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( )
A .30°
B .60°
C .120°
D .150°
10.函数f (x )=x 2﹣2ax ,x ∈[1,+∞)是增函数,则实数a 的取值范围是( ) A .R B .[1,+∞) C .(﹣∞,1] D .[2,+∞)
11.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( )
A .8
B .5
C .9
D .27
12.与椭圆有公共焦点,且离心率
的双曲线方程为( )
A .
B .
C .
D .
二、填空题
13.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).
14.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .
15.向区域
内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .
16.在复平面内,复数
与对应的点关于虚轴对称,且,则____.
17.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.
18.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是.
三、解答题
19.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c 2sin a b A =. (1)求角B 的大小;
(2)若a =5c =,求.
20.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;
(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.
21.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ()
=1,M ,N 分别为C 与x 轴,y 轴的交点.
(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.
22.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.
(1)求S n的最小值及相应n的值;
(2)求T n.
23.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;
(2)若∠DAE=25°,求证:DA2=DC•BP.
24.已知椭圆C:
22
22
1
x y
a b
+=(0
a b
>>),点
3
(1,)
2
在椭圆C上,且椭圆C的离心率为1
2

(1)求椭圆C 的方程;
(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别 交直线:4x =于M 、N 两点,求证:FM FN ⊥.
惠山区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)
一、选择题
1. 【答案】B
【解析】
试题分析:函数()cos ,3f x x π⎛⎫
=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝
⎭,故选B.
考点:函数()sin y A x ωϕ=+的图象变换.
2. 【答案】A
【解析】解:∵

,即△PF 1F 2是P 为直角顶点的直角三角形.
∵Rt △PF 1F 2中,,
∴=
,设PF 2=t ,则PF 1=2t

=2c ,
又∵根据椭圆的定义,得2a=PF 1+PF 2=3t
∴此椭圆的离心率为e==
=
=
故选A
【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.
3. 【答案】C 【解析】
10y -+=,可得直线的斜率为k =tan 60αα==,故选C.1
考点:直线的斜率与倾斜角. 4. 【答案】D 【解析】
考点:1、指数函数与三角函数的性质;2、真值表的应用.
5.【答案】B
【解析】解:∵a=3,,A=60°,
∴由正弦定理可得:sinB===1,
∴B=90°,
即满足条件的三角形个数为1个.
故选:B.
【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.
6.【答案】B
【解析】解:由题意,m2﹣4<0且m≠0,∵m∈Z,∴m=1
∵双曲线的方程是y2﹣x2=1
∴a2=1,b2=3,
∴c2=a2+b2=4
∴a=1,c=2,
∴离心率为e==2.
故选:B.
【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:
c2=a2+b2.
7.【答案】B
【解析】

点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
8.【答案】D
【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是53,
故选:D.
【点评】本题主要考查分步计数原理的应用,属于基础题.
9.【答案】C
【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2﹣c2=3bc,
可得a2=7c2,
所以cosA===﹣,
∵0<A<180°,
∴A=120°.
故选:C.
【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.
10.【答案】C
【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,
故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,
又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.
故答案为:C
11.【答案】C
【解析】解:令log2(x2+1)=0,得x=0,
令log2(x2+1)=1,得x2+1=2,x=±1,
令log
(x2+1)=2,得x2+1=4,x=.
2
则满足值域为{0,1,2}的定义域有:
{0,﹣1,﹣},{0,﹣1,},{0,1,﹣},
{0,1,},{0,﹣1,1,﹣},{0,﹣1,1,},
{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.
则满足这样条件的函数的个数为9.
故选:C.
【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.
12.【答案】A
【解析】解:由于椭圆的标准方程为:
则c2=132﹣122=25
则c=5
又∵双曲线的离心率
∴a=4,b=3
又因为且椭圆的焦点在x轴上,
∴双曲线的方程为:
故选A
【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.
二、填空题
13.【答案】180
【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r
可知r=2,所以系数为C102×4=180,
故答案为:180.
【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.
14.【答案】

【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高
由于此三角形的高为,故圆锥的高为
此圆锥的体积为=
故答案为
【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.
15.【答案】.
【解析】解:不等式组的可行域为:
由题意,A(1,1),∴区域的面积为
=(x3)=,
由,可得可行域的面积为:1=,
∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与
与坐标原点连线的斜率大于1的概率为:=
故答案为:.
【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.
16.【答案】-2
【解析】【知识点】复数乘除和乘方 【试题解析】由题知:
所以
故答案为:-2 17.【答案】
【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,
则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),
由y =ax +ln x 得y ′=a +1
x
(x >0),
∴⎩⎪⎨⎪
⎧a +1x 0
=1
y 0=x 0
-1y 0
=ax 0
+ln x
,解之得x 0
=1,y 0
=0,a =0. ∴a =0. 答案:0
18.【答案】.
【解析】由题意,y ′=ln x +1−2mx
令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,
函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,

当m =
1
2
时,直线y =2mx −1与y =ln x 的图象相切, 由图可知,当0<m <1
2
时,y =ln x 与y =2mx −1的图象有两个交点,
则实数m 的取值范围是(0,1
2
),
故答案为:(0,1
2
).
三、解答题
19.【答案】(1)6
B π
=;(2)b =
【解析】1111]
(2)根据余弦定理,得
2222cos 2725457b a c ac B =+-=+-=,
所以b =
考点:正弦定理与余弦定理.
20.【答案】
【解析】(Ⅰ)证明:∵ABCD﹣A1B1C1D1为正方体,
∴B1C1⊥平面ABB1A1;
∵A1B⊂平面ABB1A1,
∴B1C1⊥A1B.
又∵A1B⊥AB1,B1C1∩AB1=B1,
∴A1B⊥平面ADC1B1,
∵A1B⊂平面A1BE,
∴平面ADC1B1⊥平面A1BE;
(Ⅱ)证明:连接EF,EF∥,且EF=,
设AB1∩A1B=O,
则B1O∥C1D,且,
∴EF∥B1O,且EF=B1O,
∴四边形B1OEF为平行四边形.
∴B1F∥OE.
又∵B1F⊄平面A1BE,OE⊂平面A1BE,
∴B1F∥平面A1BE,
(Ⅲ)解:====.
21.【答案】
【解析】解:(Ⅰ)由
从而C的直角坐标方程为

θ=0时,ρ=2,所以M(2,0)
(Ⅱ)M点的直角坐标为(2,0)
N点的直角坐标为
所以P点的直角坐标为,则P点的极坐标为,
所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)
【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
22.【答案】
【解析】解:(1)S n=2n2﹣19n+1=2﹣,
∴n=5时,S n取得最小值=﹣44.
(2)由S n=2n2﹣19n+1,
∴n=1时,a1=2﹣19+1=﹣16.
n≥2时,a n=S n﹣S n﹣1=2n2﹣19n+1﹣[2(n﹣1)2﹣19(n﹣1)+1]=4n﹣21.
由a n≤0,解得n≤5.n≥6时,a n>0.
∴n≤5时,T n=|a1|+|a2|+…+|a n|=﹣(a1+a2+…+a n)=﹣S n=﹣2n2+19n﹣1.
n≥6时,T n=﹣(a1+a2+…+a5)+a6+…+a n
=﹣2S5+S n
=2n2﹣19n+89.
∴T n=.
【点评】本题考查了等差数列的通项公式及其前n项和公式、不等式的解法、绝对值数列求和问题,考查了分类讨论方法推理能力与计算能力,属于中档题.
23.【答案】
【解析】解:(1)∵EP与⊙O相切于点A,∴∠ACB=∠PAB=25°,
又BC是⊙O的直径,∴∠ABC=65°,
∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°,
∴∠D=115°.
证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB,∠D=∠PBA,
∴△ADC ∽△PBA
,∴,
又DA=BA ,∴DA 2
=DC •BP .
24.【答案】(1) 22
143
x y +=;(2)证明见解析. 【解析】
试题分析: (1)由题中条件要得两个等式,再由椭圆中c b a ,,的等式关系可得b a ,的值,求得椭圆的方程;(2)可设直线P Q 的方程,联立椭圆方程,由根与系数的关系得122634m y y m -+=
+,12
29
34
y y m -=+,得直线PA l ,直线QA l ,求得点 M 、N 坐标,利用0=⋅FN FM 得FM FN ⊥.
试题解析: (1)由题意得222221
91,41
,2,a b c a a b c ⎧+=⎪⎪
⎪=⎨⎪
⎪=+⎪⎩
解得2,a b =⎧⎪⎨=⎪⎩
∴椭圆C 的方程为22
143
x y +=.
又111x my =+,221x my =+, ∴112(4,
)1y M my -,222(4,)1y N my -,则112(3,)1y FM my =-,2
22(3,)1
y FN my =-,
1212212121222499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++22
2
223634999069
13434
m m m m m -+=+=-=---+++ ∴FM FN ⊥
考点:椭圆的性质;向量垂直的充要条件.。

相关文档
最新文档