高等数学下知识点总结

合集下载

高数下册常用常见知识点

高数下册常用常见知识点

高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。

2.向量的线性运算:包括加减法和数乘。

3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。

4.利用坐标进行向量的运算:设向量a=(ax。

ay。

az),向量b=(bx。

by。

bz),则a±b=(ax±bx。

ay±by。

az±bz),λa=(λax。

λay。

λaz)。

5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。

二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。

2.向量积:包括向量积的概念、性质和计算公式等。

三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。

2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。

3.柱面:包括柱面的特点、方程和母线的概念等。

4.二次曲面:包括椭圆锥面的方程和图形等。

2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。

高等数学各项基础知识点总结

高等数学各项基础知识点总结

高等数学知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l =0,称f (x)是比g(x)高阶的无穷小,记以f (x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。

(2)l ≠0,称f (x)与g(x)是同阶无穷小。

(3)l =1,称f (x)与g(x)是等价无穷小,记以f (x)~g(x)2.常见的等价无穷小当x →0时sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x,1−cos x ~2/2^x ,x e −1~x ,)1ln(x +~x ,1)1(-+αx ~xα二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g (x )≤f (x )≤h (x )若A x h A x g ==)(lim ,)(lim ,则Ax f =)(lim 2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次233521211...()2!3!!sin ...(1)()3!5!(21)!n xn n n n x x x e x o x n x x x x x o x n ++=++++++=-+++-++)(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n n n x o nx x x x x +-++-=++)(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital)法则.∞∞型未定式定理2设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式1011lim ()()n n k k f f x dx n n →∞==∑⎰(如果存在)三.函数的间断点的分类)()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→函数的间断点分为两类:(1)第一类间断点设0x 是函数y =f (x )的间断点。

高等数学下册知识点

高等数学下册知识点

高等数学下册知识点第七章 空间解析几何与向量代数一、填空与选择1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM=。

2 已知点A (,,)012和点B =-(,,)110,则AB=。

3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 222ξηζ++= 。

4、设向量a 的方向角απβ=3,为锐角,γπβ=-4=,则a = 。

5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。

6、过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是130211:1--=-=-z y x L ,11122:2zy x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,⎩⎨⎧=-+=--03206:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2π.9、平面Ax By Cz D +++=0过x 轴,则( )(A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( )(A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( )(A )1 (B )±1 (C )-1 (D )1312、与xoy坐标平面垂直的平面的一般方程为 。

13、过点(,,)121与向量k j S k j i S--=--=21,32平行的平面方程为 。

14、平面0218419=++-z y x和0428419=++-z y x 之间的距离等于⎽⎽⎽⎽⎽⎽ 。

高等数学知识点总结

高等数学知识点总结

高等数学是大学理工科学生的一门基础课程,涉及到数学分析、线性代数、概率论和数学物理方法等内容。

本文将对高等数学的知识点进行总结,以供参考。

一、数学分析1.极限与连续极限是数学分析的基础概念,主要研究函数在某一点的邻域内的性质。

极限的性质包括保号性、保序性等。

连续性是极限的一种特殊情况,一个函数在某一点的极限等于该点的函数值,则称该函数在该点连续。

2.导数与微分导数研究函数在某一点的切线斜率,是函数变化率的具体体现。

导数的计算方法包括定义法、导数法则和高阶导数等。

微分是导数的一种应用,主要研究函数在某一点的微小变化。

3.积分与不定积分积分是导数的逆运算,研究函数在某一区间内的累积变化。

积分的计算方法包括牛顿-莱布尼茨公式、换元积分法和分部积分法等。

不定积分是积分的一种扩展,没有明确的积分界限,主要用于求解原函数。

级数是数学分析中的重要部分,研究函数的和式。

常见的级数包括幂级数、泰勒级数和傅里叶级数等。

级数的收敛性判断是级数研究的关键,常用的判断方法有比较判别法、比值判别法和根值判别法等。

5.多元函数微分学多元函数微分学研究多个变量之间的函数关系。

主要内容包括偏导数、全微分、方向导数和雅可比矩阵等。

重积分是研究函数在空间区域上的累积变化。

重积分的计算方法包括一重积分、二重积分和三重积分等。

7.常微分方程常微分方程是描述自然界和工程技术中具有变化规律的数学模型。

常微分方程的解法包括分离变量法、常数变易法和线性微分方程组等。

二、线性代数矩阵是线性代数的基本工具,用于描述线性方程组和线性变换。

矩阵的运算包括加法、减法、数乘和矩阵乘法等。

矩阵的行列式用于判断线性方程组的解的情况。

2.线性方程组线性方程组是实际问题中常见的数学模型。

线性方程组的解法包括高斯消元法、矩阵求逆法和克莱姆法则等。

3.向量空间与线性变换向量空间是具有加法和数乘运算的向量集合。

线性变换是从一个向量空间到另一个向量空间的线性映射。

4.特征值与特征向量特征值和特征向量是描述矩阵性质的重要概念。

自考高数知识点总结

自考高数知识点总结

自考高数知识点总结一、数列与数学归纳法1、数列的概念、通项公式和通项公式的应用;2、等差数列与等比数列的性质;3、数学归纳法的基本思想及其应用。

二、函数与极限1、函数的概念及其基本性质;2、基本初等函数的概念和性质;3、极限的概念及其性质;4、函数的极限性质及计算;5、无穷小与无穷大;6、函数的连续性及其应用。

三、导数与微分1、导数的概念及其几何意义;2、导数的计算及应用;3、高阶导数及其运算;4、隐函数及参数方程的导数;5、微分的概念、性质及其应用。

四、微分中值定理及应用1、罗尔中值定理及其几何意义;2、拉格朗日中值定理及其物理意义;3、柯西中值定理及其应用。

五、不定积分1、不定积分的概念及性质;2、不定积分的方法及应用;3、含参数的积分和含参数的积分的应用;4、变限积分及其应用。

六、定积分1、定积分的概念及其性质;2、定积分的计算方法;3、定积分的应用;4、牛顿—莱布尼兹公式及其应用。

七、定积分的应用1、平面图形的面积;2、旋转体的体积;3、物理应用题。

八、常微分方程1、常微分方程的基本概念;2、常微分方程的解法;3、一阶线性微分方程;4、常系数齐次线性微分方程;5、常系数非齐次线性微分方程。

九、无穷级数1、级数概念及其性质;2、正项级数的审敛法及应用;3、级数的常用审敛法及其应用;4、幂级数的概念及收敛域的判定;5、幂级数的常用审敛法及其应用。

总结:自考高等数学知识点包括数列与数学归纳法、函数与极限、导数与微分、微分中值定理及应用、不定积分、定积分、定积分的应用、常微分方程、无穷级数等内容。

其中,数列与数学归纳法主要涉及数列的概念、通项公式、等差数列和等比数列的性质,以及数学归纳法的基本思想和应用;函数与极限包括函数的概念、基本性质、极限的概念、性质、计算方法以及函数的连续性及其应用;导数与微分主要包括导数的概念、性质、计算方法及应用,微分的概念、性质及应用;微分中值定理及应用主要涉及罗尔中值定理、拉格朗日中值定理、柯西中值定理及其应用;不定积分主要包括不定积分的概念、性质、计算方法及应用,以及含参数的积分和变限积分;定积分主要涉及定积分的概念、性质、计算方法及应用,牛顿—莱布尼兹公式及其应用,定积分的应用主要涉及平面图形的面积、旋转体的体积和物理应用题;常微分方程主要包括常微分方程的基本概念、解法、一阶线性微分方程、常系数齐次线性微分方程、常系数非齐次线性微分方程;无穷级数主要包括级数概念、性质、审敛法及应用,幂级数的收敛域的判定和常用审敛法及其应用。

大学高数全册知识点整理

大学高数全册知识点整理

大学高等数学知识点整理一 . 数列函数 :1. 类型 :(1) 数列 : * ; *(2) 初等函数 :(3) 分段函数 : * ; * ;*(4) 复合 ( 含) 函数 :(5) 隐式 ( 方程 ):(6) 参式 ( 数一 , 二 ):(7) 变限积分函数 :(8) 级数和函数 ( 数一 , 三 ):2. 特征 ( 几何 ):(1) 单调性与有界性 ( 判别 ); ( 单调定号 )(2) 奇偶性与周期性 ( 应用 ).3. 反函数与直接函数 :二 . 极限性质 :1. 类型 : * ; * ( 含); * ( 含)2. 无穷小与无穷大 ( 注 : 无穷量 ):3. 未定型 :4. 性质 : * 有界性 , * 保号性 , * 归并性三 . 常用结论 :, , ,, , , ,,四 . 必备公式 :1. 等价无穷小 : 当时 ,; ; ;; ; ;;2. 泰勒公式 :(1) ;(2) ;(3) ;(4) ;(5) .五 . 常规方法 :前提 : (1) 准确判断( 其它如 : ); (2) 变量代换 ( 如 : )1. 抓大弃小,2. 无穷小与有界量乘积 ( ) ( 注 : )3. 处理 ( 其它如 : )4. 左右极限 ( 包括):(1) ; (2) ; ; (3) 分段函数 : , ,5. 无穷小等价替换 ( 因式中的无穷小 )( 注 : 非零因子 )6. 洛必达法则(1) 先” 处理”, 后法则 ( 最后方法 ); ( 注意对比 : 与)(2) 幂指型处理 : ( 如 : )(3) 含变限积分 ;(4) 不能用与不便用7. 泰勒公式 ( 皮亚诺余项 ): 处理和式中的无穷小8. 极限函数 : ( 分段函数 )六 . 非常手段1. 收敛准则 :(1)(2) 双边夹 : * , *(3) 单边挤 : * * *2. 导数定义 ( 洛必达 ?):3. 积分和 : ,4. 中值定理 :5. 级数和 ( 数一三 ):(1) 收敛, ( 如) (2) ,(3) 与同敛散七 . 常见应用 :1. 无穷小比较 ( 等价 , 阶 ): *(1)(2)2. 渐近线 ( 含斜 ):(1)(2) ,( )3. 连续性 : (1) 间断点判别 ( 个数 ); (2) 分段函数连续性 ( 附 : 极限函数 , 连续性 )八 . 上连续函数性质1. 连通性 : ( 注 : , “ 平均” 值 :)2. 介值定理 : ( 附 : 达布定理 )(1) 零点存在定理 : ( 根的个数 );(2) .第二讲 : 导数及应用 ( 一元 )( 含中值定理 )一 . 基本概念 :1. 差商与导数 : ;(1) ( 注 : 连续 ) )(2) 左右导 : ;(3) 可导与连续 ; ( 在处 , 连续不可导 ; 可导 )2. 微分与导数 :(1) 可微可导 ; (2) 比较与的大小比较 ( 图示 );二 . 求导准备 :1. 基本初等函数求导公式 ; ( 注 : )2. 法则 : (1) 四则运算 ; (2) 复合法则 ; (3) 反函数三 . 各类求导 ( 方法步骤 ):1. 定义导 : (1) 与; (2) 分段函数左右导 ; (3)( 注 : , 求 : 及的连续性 )2. 初等导 ( 公式加法则 ):(1) , 求 : ( 图形题 );(2) , 求 : ( 注 : )(3) , 求及 ( 待定系数 )3. 隐式 ( ) 导 :(1) 存在定理 ;(2) 微分法 ( 一阶微分的形式不变性 ).(3) 对数求导法 .4. 参式导 ( 数一 , 二 ) : , 求 :5. 高阶导公式 :; ;;注 : 与泰勒展式 :四 . 各类应用 :1. 斜率与切线 ( 法线 ); ( 区别 : 上点和过点的切线 )2. 物理 : ( 相对 ) 变化率速度 ;3. 曲率 ( 数一二 ): ( 曲率半径 , 曲率中心 , 曲率圆 )4. 边际与弹性 ( 数三 ) : ( 附 : 需求 , 收益 , 成本 , 利润 )五 . 单调性与极值 ( 必求导 )1. 判别 ( 驻点):(1) ; ;(2) 分段函数的单调性(3) 零点唯一 ; 驻点唯一 ( 必为极值 , 最值 ).2. 极值点 :(1) 表格 ( 变号 ); ( 由的特点 )(2) 二阶导 ( )注 (1) 与的匹配 ( 图形中包含的信息 );(2) 实例 : 由确定点“ ” 的特点 .(3) 闭域上最值 ( 应用例 : 与定积分几何应用相结合 , 求最优 )3. 不等式证明 ( )(1) 区别 : * 单变量与双变量 ? * 与?(2) 类型 : * ; ** ; *(3) 注意 : 单调性端点值极值凹凸性 . ( 如 : )4. 函数的零点个数 : 单调介值六 . 凹凸与拐点 ( 必求导 !):1. 表格 ; ( )2. 应用 : (1) 泰勒估计 ; (2) 单调 ; (3) 凹凸 .七 . 罗尔定理与辅助函数 : ( 注 : 最值点必为驻点 )1. 结论 :2. 辅助函数构造实例 :(1)(2)(3)(4) ;3. 有个零点有个零点4. 特例 : 证明的常规方法 : 令有个零点 ( 待定 )5. 注 : 含时 , 分家 !( 柯西定理 )6. 附 ( 达布定理 ): 在可导 , , , 使 :八 . 拉格朗日中值定理1. 结论 : ; ( )2. 估计 :九 . 泰勒公式 ( 连接之间的桥梁 )1. 结论 : ;2. 应用 : 在已知或值时进行积分估计十 . 积分中值定理 ( 附 : 广义 ): [ 注 : 有定积分 ( 不含变限 ) 条件时使用 ]第三讲 : 一元积分学一 . 基本概念 :1. 原函数:(1) ; (2) ; (3)注 (1) ( 连续不一定可导 );(2) ( 连续 )2. 不定积分性质 :(1) ;(2) ;二 . 不定积分常规方法1. 熟悉基本积分公式2. 基本方法 : 拆 ( 线性性 )3. 凑微法 ( 基础 ): 要求巧 , 简 , 活 ( )如 :4. 变量代换 :(1) 常用 ( 三角代换 , 根式代换 , 倒代换 ):(2) 作用与引伸 ( 化简 ):5. 分部积分 ( 巧用 ):(1) 含需求导的被积函数 ( 如);(2)“ 反对幂三指”:(3) 特别 : (* 已知的原函数为; * 已知)6. 特例 : (1) ; (2) 快速法 ; (3)三 . 定积分 :1. 概念性质 :(1) 积分和式 ( 可积的必要条件 : 有界 , 充分条件 : 连续 )(2) 几何意义 ( 面积 , 对称性 , 周期性 , 积分中值 )* ; *(3) 附 : , )(4) 定积分与变限积分 , 反常积分的区别联系与侧重2: 变限积分的处理 ( 重点 )(1) 可积连续 , 连续可导(2) ; ;(3) 由函数参与的求导 , 极限 , 极值 , 积分 ( 方程 ) 问题3. 公式 : ( 在上必须连续 !)注 : (1) 分段积分 , 对称性 ( 奇偶 ), 周期性(2) 有理式 , 三角式 , 根式(3) 含的方程 .4. 变量代换 :(1) ,(2) ( 如 : )(3) ,(4) ; ,(5) ,5. 分部积分(1) 准备时“ 凑常数”(2) 已知或时 , 求6. 附 : 三角函数系的正交性 :四 . 反常积分 :1. 类型 : (1) ( 连续 )(2) : ( 在处为无穷间断 )2. 敛散 ;3. 计算 : 积分法公式极限 ( 可换元与分部 )4. 特例 : (1) ; (2)五 . 应用 : ( 柱体侧面积除外 )1. 面积 ,(1) (2) ;(3) ; (4) 侧面积 :2. 体积 :(1) ; (2)(3) 与3. 弧长 :(1)(2)(3) :4. 物理 ( 数一 , 二 ) 功 , 引力 , 水压力 , 质心 ,5. 平均值 ( 中值定理 ):(1) ;(2) , ( 以为周期 : ) 第四讲 : 微分方程一 . 基本概念1. 常识 : 通解 , 初值问题与特解 ( 注 : 应用题中的隐含条件 )2. 变换方程 :(1) 令( 如欧拉方程 )(2) 令( 如伯努利方程 )3. 建立方程 ( 应用题 ) 的能力二 . 一阶方程 :1. 形式 : (1) ; (2) ; (3)2. 变量分离型 :(1) 解法 :(2)“ 偏” 微分方程 : ;3. 一阶线性 ( 重点 ):(1) 解法 ( 积分因子法 ):(2) 变化 : ;(3) 推广 : 伯努利 ( 数一 )4. 齐次方程 :(1) 解法 :(2) 特例 :5. 全微分方程 ( 数一 ): 且6. 一阶差分方程 ( 数三 ):三 . 二阶降阶方程1. :2. : 令3. : 令四 . 高阶线性方程 :1. 通解结构 :(1) 齐次解 :(2) 非齐次特解 :2. 常系数方程 :(1) 特征方程与特征根 :(2) 非齐次特解形式确定 : 待定系数 ; ( 附 : 的算子法 )(3) 由已知解反求方程 .3. 欧拉方程 ( 数一 ): , 令五 . 应用 ( 注意初始条件 ):1. 几何应用 ( 斜率 , 弧长 , 曲率 , 面积 , 体积 );注 : 切线和法线的截距2. 积分等式变方程 ( 含变限积分 );可设3. 导数定义立方程 :含双变量条件的方程4. 变化率 ( 速度 )5.6. 路径无关得方程 ( 数一 ):7. 级数与方程 :(1) 幂级数求和 ; (2) 方程的幂级数解法 :8. 弹性问题 ( 数三 )第五讲 : 多元微分与二重积分一 . 二元微分学概念1. 极限 , 连续 , 单变量连续 , 偏导 , 全微分 , 偏导连续 ( 必要条件与充分条件 ),(1)(2)(3) ( 判别可微性 )注 : 点处的偏导数与全微分的极限定义 :2. 特例 :(1) : 点处可导不连续 ;(2) : 点处连续可导不可微 ;二 . 偏导数与全微分的计算 :1. 显函数一 , 二阶偏导 :注 : (1) 型 ; (2) ; (3) 含变限积分2. 复合函数的一 , 二阶偏导 ( 重点 ):熟练掌握记号的准确使用3. 隐函数 ( 由方程或方程组确定 ):(1) 形式 : * ; * ( 存在定理 )(2) 微分法 ( 熟练掌握一阶微分的形式不变性 ): ( 要求 : 二阶导 )(3) 注 : 与的及时代入(4) 会变换方程 .三 . 二元极值 ( 定义 ?);1. 二元极值 ( 显式或隐式 ):(1) 必要条件 ( 驻点 );(2) 充分条件 ( 判别 )2. 条件极值 ( 拉格朗日乘数法 ) ( 注 : 应用 )(1) 目标函数与约束条件 : , ( 或 : 多条件 )(2) 求解步骤 : , 求驻点即可 .3. 有界闭域上最值 ( 重点 ).(1)(2) 实例 : 距离问题四 . 二重积分计算 :1. 概念与性质(“ 积” 前工作 ):(1) ,(2) 对称性 ( 熟练掌握 ): * 域轴对称 ; * 奇偶对称 ; * 字母轮换对称 ; * 重心坐标 ;(3)“ 分块” 积分 : * ; * 分片定义 ; * 奇偶2. 计算 ( 化二次积分 ):(1) 直角坐标与极坐标选择 ( 转换 ): 以“ ” 为主 ;(2) 交换积分次序 ( 熟练掌握 ).3. 极坐标使用 ( 转换 ):附 : ; ;双纽线4. 特例 :(1) 单变量 : 或(2) 利用重心求积分 : 要求 : 题型, 且已知的面积与重心5. 无界域上的反常二重积分 ( 数三 )五 : 一类积分的应用 ( ):1. “ 尺寸”: (1) ; (2) 曲面面积 ( 除柱体侧面 );2. 质量 , 重心 ( 形心 ), 转动惯量 ;3. 为三重积分 , 格林公式 , 曲面投影作准备 .第六讲 : 无穷级数 ( 数一 , 三 )一 . 级数概念1. 定义 : (1) , (2) ; (3) ( 如)注 : (1) ; (2) ( 或); (3)“ 伸缩” 级数 : 收敛收敛 .2. 性质 : (1) 收敛的必要条件 : ;(2) 加括号后发散 , 则原级数必发散 ( 交错级数的讨论 );(3) ;二 . 正项级数1. 正项级数 : (1) 定义 : ; (2) 特征 : ; (3) 收敛( 有界 )2. 标准级数 : (1) , (2) , (3)3. 审敛方法 : ( 注 : , )(1) 比较法 ( 原理 ): ( 估计 ), 如;(2) 比值与根值 : * * ( 应用 : 幂级数收敛半径计算 )三 . 交错级数 ( 含一般项 ): ( )1. “ 审” 前考察 : (1) (2) ; (3) 绝对 ( 条件 ) 收敛 ?注 : 若, 则发散2. 标准级数 : (1) ; (2) ; (3)3. 莱布尼兹审敛法 ( 收敛 ?)(1) 前提 : 发散 ; (2) 条件 : ; (3) 结论 : 条件收敛 .4. 补充方法 :(1) 加括号后发散 , 则原级数必发散 ; (2) .5. 注意事项 : 对比; ; ; 之间的敛散关系四 . 幂级数 :1. 常见形式 :(1) , (2) , (3)2. 阿贝尔定理 :(1) 结论 : 敛; 散(2) 注 : 当条件收敛时3. 收敛半径 , 区间 , 收敛域 ( 求和前的准备 )注 (1) 与同收敛半径(2) 与之间的转换4. 幂级数展开法 :(1) 前提 : 熟记公式 ( 双向 , 标明敛域 );;(2) 分解 : ( 注 : 中心移动 ) ( 特别 : )(3) 考察导函数 :(4) 考察原函数 :5. 幂级数求和法 ( 注 : * 先求收敛域 , * 变量替换 ):(1)(2) ,( 注意首项变化 )(3) ,(4) 的微分方程(5) 应用 : .6. 方程的幂级数解法7. 经济应用 ( 数三 ):(1) 复利 : ; (2) 现值 :五 . 傅里叶级数 ( 数一 ): ( )1. 傅氏级数 ( 三角级数 ):2. 充分条件 ( 收敛定理 ):(1) 由( 和函数 )(2)3. 系数公式 :4. 题型 : ( 注 : )(1) 且( 分段表示 )(2) 或(3) 正弦或余弦*(4) ( )*5.6. 附产品 :第七讲 : 向量 , 偏导应用与方向导 ( 数一 )一 . 向量基本运算1. ; ( 平行)2. ; ( 单位向量 ( 方向余弦 ) )3. ; ( 投影 : ; 垂直 : ; 夹角 : )4. ; ( 法向 : ; 面积 : )二 . 平面与直线1. 平面(1) 特征 ( 基本量 ):(2) 方程 ( 点法式 ):(3) 其它 : * 截距式; * 三点式2. 直线(1) 特征 ( 基本量 ):(2) 方程 ( 点向式 ):(3) 一般方程 ( 交面式 ):(4) 其它 : * 二点式 ; * 参数式 ;( 附 : 线段的参数表示 :)3. 实用方法 :(1) 平面束方程 :(2) 距离公式 : 如点到平面的距离(3) 对称问题 ;(4) 投影问题 .三 . 曲面与空间曲线 ( 准备 )1. 曲面(1) 形式: 或; ( 注 : 柱面)(2) 法向( 或) 2. 曲线(1) 形式, 或;(2) 切向 : ( 或)3. 应用(1) 交线 , 投影柱面与投影曲线 ;(2) 旋转面计算 : 参式曲线绕坐标轴旋转 ;(3) 锥面计算 .四 . 常用二次曲面1. 圆柱面 :2. 球面 :变形 : , ,,3. 锥面 :变形 : ,4. 抛物面 : ,变形 : ,5. 双曲面 :6. 马鞍面 : , 或五 . 偏导几何应用1. 曲面(1) 法向 : , 注 :(2) 切平面与法线 :2. 曲线(1) 切向 :(2) 切线与法平面3. 综合 : ,六 . 方向导与梯度 ( 重点 )1. 方向导 ( 方向斜率 ):(1) 定义 ( 条件 ):(2) 计算 ( 充分条件 : 可微 ):附 :(3) 附 :2. 梯度 ( 取得最大斜率值的方向 ) :(1) 计算 :;(2) 结论;取为最大变化率方向 ;为最大方向导数值 .第八讲 : 三重积分与线面积分 ( 数一 )一 . 三重积分 ( )1. 域的特征 ( 不涉及复杂空间域 ):(1) 对称性 ( 重点 ): 含 : 关于坐标面 ; 关于变量 ; 关于重心(2) 投影法 :(3) 截面法 :(4) 其它 : 长方体 , 四面体 , 椭球2. 的特征 :(1) 单变量, (2) , (3) , (4)3. 选择最适合方法 :(1)“ 积” 前 : * ; * 利用对称性 ( 重点 )(2) 截面法 ( 旋转体 ): ( 细腰或中空 , , )(3) 投影法 ( 直柱体 ):(4) 球坐标 ( 球或锥体 ): ,(5) 重心法 ( ):4. 应用问题 :(1) 同第一类积分 : 质量 , 质心 , 转动惯量 , 引力(2) 公式二 . 第一类线积分 ( )1. “ 积” 前准备 :(1) ; (2) 对称性 ; (3) 代入“ ” 表达式2. 计算公式 :3. 补充说明 :(1) 重心法 : ;(2) 与第二类互换 :4. 应用范围(1) 第一类积分(2) 柱体侧面积三 . 第一类面积分 ( )1. “ 积” 前工作 ( 重点 ):(1) ; ( 代入)(2) 对称性 ( 如 : 字母轮换 , 重心 )(3) 分片2. 计算公式 :(1)(2) 与第二类互换 :四 : 第二类曲线积分 (1): ( 其中有向 )1. 直接计算 : ,常见 (1) 水平线与垂直线 ; (2)2. Green 公式 :(1) ;(2) : * 换路径 ; * 围路径(3) ( 但内有奇点 ) ( 变形 )3. 推广 ( 路径无关性 ):(1) ( 微分方程 ) ( 道路变形原理 )(2) 与路径无关 ( 待定 ): 微分方程 .4. 应用功 ( 环流量 ): ( 有向, , ) 五 . 第二类曲面积分 :1. 定义 : , 或( 其中含侧 )2. 计算 :(1) 定向投影 ( 单项 ): , 其中( 特别 : 水平面 ); 注 : 垂直侧面 , 双层分隔(2) 合一投影 ( 多项 , 单层 ):(3) 化第一类 ( 不投影 ):3. 公式及其应用 :(1) 散度计算 :(2) 公式 : 封闭外侧 , 内无奇点(3) 注 : * 补充“ 盖” 平面 : ; * 封闭曲面变形( 含奇点 )4. 通量与积分 :( 有向, , )六 : 第二类曲线积分 (2):1. 参数式曲线: 直接计算 ( 代入 )注 (1) 当时 , 可任选路径 ; (2) 功 ( 环流量 ):2. Stokes 公式 : ( 要求 : 为交面式 ( 有向 ), 所张曲面含侧 )(1) 旋度计算 :(2) 交面式 ( 一般含平面 ) 封闭曲线 : 同侧法向或;(3)Stokes 公式 ( 选择 ):( ) 化为; ( ) 化为; ( ) 化为高数重点知识总结1、基本初等函数:反函数 (y=arctanx) ,对数函数 (y=lnx) ,幂函数 (y=x) ,指数函数 ( ) ,三角函数 (y=sinx) ,常数函数 (y=c)2、分段函数不是初等函数。

《高等数学》各章知识点总结——第9章

《高等数学》各章知识点总结——第9章

《高等数学》各章知识点总结——第9章第9章是《高等数学》中的微分方程章节。

微分方程是研究函数与其导数之间的关系的一门数学学科,是应用数学的基础。

本章主要介绍了常微分方程的基本概念和解法,包括一阶和二阶常微分方程的解法、线性常微分方程、齐次线性常微分方程和非齐次线性常微分方程等。

本章的主要内容如下:1.一阶常微分方程的解法:-可分离变量法:将方程两边进行变量分离,然后分别对两边积分得到解。

-齐次方程法:通过对方程的两边同时除以y的幂次,转化为可分离变量的形式。

- 线性方程法:将方程整理为dy/dx + P(x)y = Q(x)的形式,然后通过积分因子法求解。

2.二阶常微分方程的解法:- 齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = 0的形式,然后通过特征方程求解。

- 非齐次线性方程法:将方程整理为d²y/dx² + P(x)dy/dx + Q(x)y = f(x)的形式,然后通过待定系数法求解。

3.线性常微分方程:-线性方程的定义和性质:线性方程是指非齐次线性方程,具有叠加和齐次性质。

-齐次线性方程的通解:通过特征方程求解齐次线性方程,得到通解。

-非齐次线性方程的通解:通过齐次线性方程的通解和非齐次线性方程的一个特解求得非齐次线性方程的通解。

4.齐次线性微分方程:-齐次线性方程的定义和性质:齐次线性方程是指非齐次线性方程中f(x)为零的情况。

-齐次线性方程的解法:通过特征方程求解齐次线性方程,得到通解。

5.非齐次线性微分方程:-非齐次线性方程的定义和性质:非齐次线性方程是指非齐次线性方程中f(x)不为零的情况。

-非齐次线性方程的解法:通过待定系数法求解非齐次线性方程。

6.可降次的非齐次线性微分方程:-可降次的非齐次线性方程的定义和性质:可降次的非齐次线性方程是指非齐次线性方程中f(x)可以表示为x的多项式乘以y(x)的幂函数的形式。

高数下册知识点

高数下册知识点

高等数学下册(同济大学第七版)知识点高等数学下册知识点下册预备知识第八章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角。

(二) 数量积,向量积1、 数量积:θcos b a b a=⋅1)2a a a =⋅高等数学(下)知识点 2)⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a z y x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面1)椭圆锥面:22222zbyax=+2)椭球面:1222222=++czbyax旋转椭球面:1222222=++czayax3)单叶双曲面:1222222=-+czbyax4)双叶双曲面:1222222=--czbyax5)椭圆抛物面:zbyax=+22226)双曲抛物面(马鞍面):zbyax=-22227)椭圆柱面:12222=+byax8)双曲柱面:12222=-byax9)抛物柱面:ay x=2(四)空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F 2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax 截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第九章 多元函数微分法及其应用(一) 基本概念(了解)1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。

《高等数学》各章知识点总结——第6章

《高等数学》各章知识点总结——第6章

《高等数学》各章知识点总结——第6章第6章《向量代数与空间解析几何》是高等数学中的重点章节之一,主要讲述了向量及其运算、空间直线与平面方程、空间曲线及其切线等内容。

以下是该章节的知识点总结:一、向量及其运算1.向量的定义:具有大小和方向的量,用有向线段表示。

2.向量的运算:(1)向量的加法:满足交换律和结合律。

(2)向量的数乘:向量乘以一个实数。

(3)向量的数量积:等于两个向量的模的乘积与它们的夹角的余弦值的乘积。

(4)向量的向量积:等于两个向量模的乘积与它们夹角的正弦的乘积。

(5)向量的混合积:等于三个向量的向量积与第三个向量的数量积。

二、空间直线及其方程1.空间直线的定义:两点确定一条直线。

2.空间直线的方程:(1) 参数方程:x = x0 + at, y = y0 + bt, z = z0 + ct(2)对称方程:(x-x0)/a=(y-y0)/b=(z-z0)/c(3)一般方程:Ax+By+Cz+D=0三、空间平面及其方程1.空间平面的定义:三点共面确定一个平面。

2.空间平面的方程:(1)一般方程:Ax+By+Cz+D=0(2)点法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0(3)法线方程:(x-x0)/l=(y-y0)/m=(z-z0)/n四、空间曲线及其切线1.切线的定义:曲线上特定点的切线是通过该点且与曲线相切的直线。

2.参数方程表示的曲线的切线方程:(1)曲线上一点的切线方程:x=x0+h,y=y0+k,z=z0+l(2)曲线的切线方程:(x-x0)/h=(y-y0)/k=(z-z0)/l以上是《高等数学》第6章《向量代数与空间解析几何》的主要知识点总结。

通过学习这些知识点,我们可以了解并掌握向量的定义和运算、空间直线和平面的方程、曲线的切线方程等内容,为后续的学习打下坚实的基础。

高等数学(下)知识点总结

高等数学(下)知识点总结

高等数学(下)知识点总结1、二次曲面1)椭圆锥面:2)椭球面:旋转椭球面:3)单叶双曲面:双叶双曲面:4)椭圆抛物面:双曲抛物面(马鞍面):5)椭圆柱面:双曲柱面:6)抛物柱面:(二)平面及其方程1、点法式方程:法向量:,过点2、一般式方程:截距式方程:3、两平面的夹角:,,;4、点到平面的距离:(三)空间直线及其方程1、一般式方程:2、对称式(点向式)方程:方向向量:,过点3、两直线的夹角:,,;4、直线与平面的夹角:直线与它在平面上的投影的夹角,;第九章多元函数微分法及其应用1、连续:2、偏导数:;3、方向导数:其中为的方向角。

4、梯度:,则。

5、全微分:设,则(一)性质1、函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:偏导数存在函数可微函数连续偏导数连续充分条件必要条件定义122342、微分法1)复合函数求导:链式法则若,则,(二)应用1)求函数的极值解方程组求出所有驻点,对于每一个驻点,令,,,① 若,,函数有极小值,若,,函数有极大值;② 若,函数没有极值;③ 若,不定。

2、几何应用1)曲线的切线与法平面曲线,则上一点(对应参数为)处的切线方程为:法平面方程为:2)曲面的切平面与法线曲面,则上一点处的切平面方程为:法线方程为:第章重积分(一)二重积分:几何意义:曲顶柱体的体积1、定义:2、计算:1)直角坐标,,2)极坐标,(二)三重积分1、定义:2、计算:1)直角坐标-----------“先一后二”-----------“先二后一”2)柱面坐标,3)球面坐标(三)应用曲面的面积:第一章曲线积分与曲面积分(一)对弧长的曲线积分1、定义:2、计算:设在曲线弧上有定义且连续,的参数方程为,其中在上具有一阶连续导数,且,则(二)对坐标的曲线积分1、定义:设 L 为面内从 A 到B 的一条有向光滑弧,函数,在 L 上有界,定义,、向量形式:2、计算:设在有向光滑弧上有定义且连续, 的参数方程为,其中在上具有一阶连续导数,且,则3、两类曲线积分之间的关系:设平面有向曲线弧为,上点处的切向量的方向角为:,,,则、(三)格林公式1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数在D 上具有连续一阶偏导数, 则有2、为一个单连通区域,函数在上具有连续一阶偏导数,则曲线积分在内与路径无关(四)对面积的曲面积分1、定义:设为光滑曲面,函数是定义在上的一个有界函数,定义2、计算:—“一投二代三定号”,,在上具有一阶连续偏导数,在上连续,则,为上侧取“ + ”,为下侧取“级数:(二)函数项级数1、定义:函数项级数,收敛域,收敛半径,和函数;2、幂级数:3、收敛半径的求法:,则收敛半径4、泰勒级数展开步骤:(直接展开法)1)求出;2)求出;3)写出;4)验证是否成立。

高等数学知识点大全

高等数学知识点大全

高等数学知识点大全高考高等数学知识点篇一极限1、知识范围(1)数列极限的概念数列、数列极限的定义(2)数列极限的性质性、有界性、四则运算法则、夹通定理、单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义、左、右极限及其与极限的关系趋于无穷时函数的极限、函数极限的几何意义(4)函数极限的性质性、四则运算法则、夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的阶(6)两个重要极限2、要求(1)理解极限的概念,会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

篇二高考数学解答题部分主要考查七大主干知识:第一,函数与导数。

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计。

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。

是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

大一下高等数学知识点讲解

大一下高等数学知识点讲解

大一下高等数学知识点讲解大一下学期是大多数理工科专业学生进入大学后所要学习的第二门数学课程,即高等数学。

高等数学是大一下学期的一门重要学科,它奠定了学生后续学习与研究数学的基础。

本文将对大一下学期高等数学课程中一些重要的知识点进行讲解。

一、极限与连续极限与连续是高等数学的基石,也是后续学习微分学与积分学等课程的基础。

在大一下学期,学生将接触到极限的定义、性质和计算方法。

通过学习极限,我们可以研究函数的趋势与变化,从而探索函数的性质和解决问题。

二、导数与微分导数与微分是高等数学中的一个重要概念,它描述了一个函数在某一点处的变化率。

导数具有局部性质,可以帮助我们研究函数的特征与性质。

在大一下学期,学生将学习导数的定义、导数的基本计算法则以及常见的函数的导数。

通过对导数的研究,我们可以求解函数的极值、拐点以及函数的图像特征。

三、定积分与不定积分定积分与不定积分是高等数学中的两个重要概念,它们描述了一个函数在一个区间上的总变化量。

定积分可以帮助我们求解曲线下的面积、弧长以及求解一些几何问题。

不定积分则是定积分的逆运算,它可以帮助我们求解函数的原函数。

在大一下学期,学生将学习定积分的定义、计算方法以及不定积分的基本计算法则。

四、微分方程微分方程是高等数学中的一个重要分支,它研究的是函数与其导数之间的关系。

微分方程在物理学、工程学以及其他学科中有着广泛的应用。

在大一下学期,学生将学习一阶和二阶常微分方程的解法、初值问题以及一些特殊的微分方程。

五、级数与幂级数级数与幂级数是高等数学中的两个重要概念,它们可以用来描述一些无穷求和的过程。

级数与幂级数有着广泛的应用,在物理学、工程学以及统计学中都有重要的作用。

在大一下学期,学生将学习级数的概念、级数的收敛性以及收敛级数的求和。

幂级数作为级数的一种特殊形式,也会得到详细的讲解。

通过对以上几个知识点的学习,学生将建立起系统的数学知识体系。

这些知识不仅是理解理工科专业其他课程的基础,也是培养学生逻辑思维和解决实际问题能力的重要工具。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结高等数学知识点总结1一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3.参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则 >=()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0<x<兀 p="" 兀<<12. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为m,最小值为m则m(b-a)<= <=m(b-a)3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法高等数学知识点总结2a.function函数(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)(2)幂函数(一次函数、二次函数,多项式函数和有理函数)(3)指数和对数(指数和对数的公式运算以及函数性质)(4)三角函数和反三角函数(运算公式和函数性质)(5)复合函数,反函数(6)参数函数,极坐标函数,分段函数(7)函数图像平移和变换b.limit and continuity极限和连续(1)极限的定义和左右极限(2)极限的运算法则和有理函数求极限(3)两个重要的极限(4)极限的应用-求渐近线(5)连续的定义(6)三类不连续点(移点、跳点和无穷点)(7)最值定理、介值定理和零值定理c.derivative导数(1)导数的定义、几何意义和单侧导数(2)极限、连续和可导的关系(3)导数的求导法则(共21个)(4)复合函数求导(5)高阶导数(6)隐函数求导数和高阶导数(7)反函数求导数(8)参数函数求导数和极坐标求导数d.application of derivative导数的应用(1)微分中值定理(d-mvt)(2)几何应用-切线和法线和相对变化率(3)物理应用-求速度和加速度(一维和二维运动)(4)求极值、最值,函数的增减性和凹凸性(5)洛比达法则求极限(6)微分和线性估计,四种估计求近似值(7)欧拉法则求近似值e.indefinite integral不定积分(1)不定积分和导数的关系(2)不定积分的公式(18个)(3)u换元法求不定积分(4)分部积分法求不定积分(5)待定系数法求不定积分f.definite integral 定积分(1)riemann sum(左、右、中和梯形)和定积分的定义和几何意义(2)牛顿-莱布尼茨公式和定积分的.性质(3)accumulation function求导数(4)反常函数求积分h.application of integral定积分的应用(1)积分中值定理(i-mvt)(2)定积分求面积、极坐标求面积(3)定积分求体积,横截面体积(4)求弧长(5)定积分的物理应用i.differential equation微分方程(1)可分离变量的微分方程和逻辑斯特微分方程(2)斜率场j.infinite series无穷级数(1)无穷级数的定义和数列的级数(2)三个审敛法-比值、积分、比较审敛法(3)四种级数-调和级数、几何级数、p级数和交错级数(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数(5)级数的运算和拉格朗日余项、拉格朗日误差注意:(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。

高等数学下册知识点归纳3篇

高等数学下册知识点归纳3篇

高等数学下册知识点归纳高等数学下册知识点归纳高等数学下册作为大学数学课程中的重要一环,其课程内容涵盖了微积分以及线性代数等多个重要领域,相信对于每个学习高等数学的学生来说,都必须要掌握其相应的知识点。

本文将从微积分和线性代数两个方面,对高等数学下册的知识点进行归纳总结,以供大家参考学习。

一、微积分1.导数与微分导数是微积分的核心概念之一,可以帮助我们研究函数的斜率、速度、加速度以及最值等问题。

在学习导数时,需要了解导数的定义与性质、基本初等函数的导数公式、高阶导数、隐函数的导数、参数方程的导数以及向量值函数的导数等内容。

而微分则是求导数的方法之一,其重要性在于可以将函数的微小变化与函数值联系起来,从而更好地理解函数的变化规律。

在学习微分时,需要认识微分的定义及其性质、微分的基本公式、微分中值定理以及微分中的应用。

2.积分与定积分积分是微分的逆运算,其运用十分广泛,可以帮助我们求出函数的面积、体积、重心、质心以及积累效应等问题。

在学习积分时,需要了解积分的定义、基本计算公式、换元积分法、分部积分法、定积分的性质以及定积分的应用等内容。

而定积分则是积分的一种形式,旨在求解有限区间内的面积与体积等问题。

在学习定积分时,需要掌握定积分的本质及其性质、定积分的计算方法、定积分的应用以及牛顿-莱布尼茨公式等重点内容。

3.微积分基本定理微积分基本定理包括牛顿-莱布尼茨公式和积分中值定理。

在牛顿-莱布尼茨公式中,当函数f在[a,b]上连续可导时,积分f(x)dx在[a,b]上的值等于F(b)-F(a),其中F(x)是f(x)的一个原函数。

而在积分中值定理中,则指存在一个c∈[a,b],使得f(c)×(b-a)=∫abf(x)dx。

这两个定理是微积分的核心,为高等数学学习提供了基础。

二、线性代数1.向量空间与线性变换向量空间和线性变换是线性代数中的重要概念,向量空间是指一些向量的集合,满足一定的条件和性质;线性变换是指两个向量空间之间的映射,满足一定的线性性质。

同济版高等数学_下_知识点整理

同济版高等数学_下_知识点整理

dx Fy
x Fz y Fz
9、空间曲线的切线与法平面:设空间曲线 的参数方程为
x (t), y (t), t [, ]
z (t),
M (x0 , y0 , z0 ) 为曲线上一点
假定上式的三个函数都在[, ]上可导,且三个导数不同时为零
则向量 T f '(t0 ) ('(t0 ), '(t0 ),'(t0 )) 为曲线 在点 M 处的一个切向量,曲
ax
az
bx bz
j + (1)13
ax bx
ay
by k = (aybz azby )i (azbx axbz ) j (axby aybx )k
注: a b b a
3、二次曲面
(1)
x2 椭圆锥面:
y2
z2 ;
a2 b2
x2 y2
x2 y2
(2) 椭圆抛物面: z ; (旋转抛物面:
A12 B12 C12 A22 B22 C22
特殊: 两平面互相垂直 A1A2 B1B2 C1C2 0
两平面互相平行或重合 A1 B1 C1 A2 B2 C2
6、点 P(x0, y0, z0 ) 到 平 面 Ax By Cz D 0 的 距 离 公 式 :
d Ax0 By0 Cz0 D A2 B2 C 2
的形式给出,则 在点 M 处的切线方
G(x, y, z) 0,
程为: x x0 y y0 z z0
Fy Fz
Fz Fx
Fx Fy
Gy Gz M Gz Gx M Gx Gy M
法平面方程为:
Fy Fz Gy Gz
M
(x
x0 )
Fz Fx Gz Gx

同济高等数学下册第八章知识点精讲

同济高等数学下册第八章知识点精讲

总之:
运算律 : 结合律 分配律
可见
因此
机动 目录 上页 下页 返回 结束
设 a 为非零向量 , 则
a∥b
( 为唯一实数)
证: “ ”. 设 a∥b , 取 =±
, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且
再证数 的唯一性 . 设又有 b= a , 则
机动 目录 上页 下页 返回 结束
求三
机动 目录 上页 下页 返回 结束
导出刚体上
一点 M 的线速度 的表示式 .
解: 在轴 l 上引进一个角速度向量 使

方向与旋转方向符合右手法则 , 在 l 上任取一点 O, 作
向径
它与 的夹角为 , 则
点 M离开转轴的距离

符合右手法则
机动 目录 上页 下页 返回 结束
1. 定义 已知三向量
机动 目录 上页 下页 返回 结束
两平面法向量的夹角(常指锐角)称为两平面的夹角. 设平面∏1的法向量为
平面∏2的法向量为
则两平面夹角 的余弦为

机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
和 垂直于平面∏: x + y + z = 0, 求其方程 .
解: 设所求平面的法向量为 方程为
• 坐标轴

• 坐标面

• 卦限(八个) Ⅶ
y轴(纵轴)
x轴(横轴) Ⅷ
Ⅵ Ⅴ
机动 目录 上页 下页 返回 结束
点M
有序数组
向径
(称为点 M 的坐标) 特殊点的坐标 :
原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ;

高等数学下知识点总结6篇

高等数学下知识点总结6篇

高等数学下知识点总结6篇高等数学下知识点总结6篇借鉴经验和教训,对自己的工作和生活进行反思和总结,从而不断进步。

深入学习,专攻某一领域有利于个人成长和职业发展。

下面就让小编给大家带来高等数学下知识点总结,希望大家喜欢!高等数学下知识点总结1第一,函数与导数。

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用。

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。

是高考的重点和难点。

第五,概率和统计。

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。

是高考的难点,运算量大,一般含参数。

高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。

以不变应万变。

对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。

对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,所有数学考试最终落在解题上。

考纲对数学思维能力、运算能力、空间想象能力以及实践能力和创新意识都提出了十分明确的考查要求,而解题训练是提高能力的必要途径,所以高考复习必须把解题训练落到实处。

训练的内容必须根据考纲的要求精心选题,始终紧扣基础知识,多进行解题的回顾、总结,概括提炼基本思想、基本方法,形成对通性通法的认识,真正做到解一题,会一类。

(完整版)大学全册高等数学知识点(全)

(完整版)大学全册高等数学知识点(全)

(完整版)大学全册高等数学知识点(全)高等数学是一门非常重要的学科,它是数学中最具有挑战性和深度的一门课程。

它的内容包括微积分、线性代数、微分方程和复变函数等专题,这些都是现代科学和技术的核心。

在本文中,我们将会详细介绍高等数学的知识点,以供学习和参考。

微积分微积分被称为数学的两个支柱之一,它是数学的一门核心课程。

微积分最早是由牛顿和莱布尼茨创立的,作为数学中求导和积分的基本工具,微积分与其他领域如物理、工程学和经济学等紧密相关。

微分学和积分学是微积分中最重要的两个分支。

微分学涉及单变量函数的导数和导数的应用,具体包括切线和曲线的斜率、极值和曲线的凹凸性等概念。

积分学则涉及单变量函数的定积分和不定积分,并且与微分学有紧密的联系,例如牛顿-莱布尼茨公式。

多元微积分也是微积分中的一个重要分支。

它包括了多元函数的求导和偏导数,以及多重积分的概念和应用。

多元积分常用于描述物理量在空间中的分布和相互作用关系,如在物理力学、统计学、流体力学和电磁学等领域中。

线性代数线性代数是一种数学分支,涉及线性方程组的解法,向量、矩阵和线性变换的概念及其应用。

线性代数在现代科学和技术中十分普遍,如应用在数学、物理、计算机科学、统计学、工程学等领域。

线性方程组求解是线性代数中的基础概念之一。

矩阵和行列式则是线性方程组求解的核心工具,它们用于表达系数、求解和判断方程组的解。

向量和矩阵在应用中常被用于表示和处理各种数据,如图像、音频、文本等。

除了矩阵和行列式,还有很重要的概念是对称矩阵、特征值和特征向量。

它们与线性变换及其特征相关联,在应用中常被用于描述各种对象的特征或性质。

微分方程微分方程是数学的一个重要分支,它涉及多元函数的微分和积分,具体解释为量的变化随时间或空间的变化规律。

微分方程在物理、生物、经济、工程学等领域中有广泛的应用。

微分方程可分为常微分方程和偏微分方程。

常微分方程只涉及单一自变量的函数和导数,可以分为一阶和二阶微分方程等不同的类型。

陕西专升本高数知识点归纳

陕西专升本高数知识点归纳

陕西专升本高数知识点归纳在陕西专升本的高等数学考试中,知识点的归纳和掌握对于考生来说至关重要。

以下是对高等数学重要知识点的归纳总结:一、函数与极限- 函数的概念:定义域、值域、奇偶性、单调性、周期性。

- 极限的定义:数列极限、函数极限、无穷小量和无穷大量的概念。

- 极限的性质:唯一性、有界性、保号性等。

- 极限的运算法则:加、减、乘、除、复合函数的极限。

二、导数与微分- 导数的定义:导数的几何意义、物理意义。

- 导数的运算法则:和、差、积、商、链式法则。

- 高阶导数:一阶导数、二阶导数及其应用。

- 微分的概念:微分的几何意义、微分中值定理。

三、积分学- 不定积分:基本积分公式、换元积分法、分部积分法。

- 定积分:定积分的定义、几何意义、定积分的性质、定积分的计算方法。

- 广义积分:无穷限广义积分、无界函数广义积分。

- 积分的应用:面积、体积、弧长、功、质心等。

四、级数- 级数的基本概念:收敛、发散、级数的和。

- 正项级数的判别法:比较判别法、比值判别法、根值判别法。

- 幂级数:幂级数的收敛半径、泰勒级数、麦克劳林级数。

- 函数项级数:一致收敛性、魏尔斯特拉斯判别法。

五、多元函数微分学- 多元函数的极限与连续性。

- 偏导数与全微分:一阶偏导数、二阶偏导数、全微分的定义与性质。

- 多元函数的极值问题:拉格朗日乘数法。

六、多元函数积分学- 二重积分与三重积分:计算方法、几何意义。

- 曲线积分与曲面积分:第一类曲线积分、第二类曲线积分、第一类曲面积分、第二类曲面积分。

七、常微分方程- 一阶微分方程:可分离变量方程、一阶线性微分方程、伯努利方程。

- 高阶微分方程:特征方程法、降阶法、常系数线性微分方程。

八、线性代数基础- 矩阵运算:矩阵的加法、乘法、转置、求逆。

- 向量空间:基、维数、线性组合、线性相关与无关。

- 线性变换:特征值、特征向量、对角化。

九、解析几何- 空间直线与平面:方程形式、几何性质。

- 空间曲面:旋转曲面、二次曲面。

大一下高等数学知识点

大一下高等数学知识点

高等数学A2知识点【注意】不考试的知识点:带*号的(除球面坐标系、比值审敛法),二次曲面,斯托克斯公式,函数的幂级数展开式的应用,一般周期函数的傅立叶级数,物理应用部分,一、概念与定义1、数量积、向量积及坐标表示(向量的位置关系);2、柱面,旋转曲面的方程形式及常见曲面画图,平面,直线的方程及其位置关系,平面束;曲面、曲线、实体在坐标平面上的投影3、偏导数定义及判定一点可导的定义方法;4、偏导、连续、全微分的关系,方向导数与梯度;5、极值、条件极值,最值和驻点.及拉格朗日乘数法;6、七类积分的关系,格林公式、高斯公式;7、级数的定义,等比级数的和,级数收敛的必要条件,常见级数的敛散性及判定方法。

二、计算1、求极限(1)二元函数求极限:代入法、两类特殊极限、无穷小性质等(2)极限不存在的判断:取不同的路径2、求偏导数或全微分(1)定义——在某一点可导,常见于分段函数(2)一个变量为常数,按一元函数求导法则计算,对于指定点的偏导可以先代入一个变量再求;(3)多元复合函数求导——链式法则;(4)隐函数(方程与方程组)求导及其高阶导数——不要记公式,理解方法;(5)抽象函数求导及其高阶导数——注意符号;(6)求(指定点)全微分或判断是否可微——用定义0 z z x z yρ→∆-∆-∆=3、求重积分(画图)(1)二重积分—坐标系以及区域类型的选择【由区域和被积函数特点定】,积分次序的交换;(2)三重积分—坐标系以及区域类型的选择【由区域和被积函数特点定】;(3)对称性区域上奇、偶函数的积分以及对1积分时的计算。

4、求曲线、面积分(画图)“一代、二换、三定限”(1)代入参数方程或()z f x y=;不同的积分换的公式不同;,(2)定限或定区域的时候注意方向性【第二类】及定限规则(3)格林公式、高斯公式的应用——验证条件并灵活使用;(4)对称性区域上奇、偶函数的积分以及对1积分时的计算。

5、无穷级数(1)数项级数审敛;(2)幂级数收敛域与和函数,函数展开成幂级数;(3)傅立叶级数的收敛情况——Dirichlet定理的结论三、应用1、偏导数的几何应用——空间曲线的切线和法平面、空间曲面的切平面和法线、方向导数与梯度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(下)知识点主要公式总结第八章 空间解析几何与向量代数 1、二次曲面1)椭圆锥面:22222z b y a x =+ 2)椭球面:1222222=++cz b y a x 旋转椭球面:1222222=++c z a y a x 3)单叶双曲面:1222222=-+cz b y a x 双叶双曲面:1222222=--c z b y a x 4)椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z by a x =-2222 5)椭圆柱面:12222=+b y a x 双曲柱面:12222=-by a x6)抛物柱面:ay x =2 (二) 平面及其方程 1、点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =,过点),,(000z y x2、一般式方程:0=+++D Cz By Ax截距式方程:1=++czb y a x 3、两平面的夹角:),,(1111C B A n =,),,(2222C B A n =,⇔∏⊥∏21 0212121=++C C B B A A ;⇔∏∏21//212121C C B B A A ==4、点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:(三) 空间直线及其方程1、一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A2、对称式(点向式)方程:pz z n y y m x x 000-=-=-方向向量:),,(p n m s =,过点),,(000z y x3、两直线的夹角:),,(1111p n m s =,),,(2222p n m s =,⇔⊥21L L 0212121=++p p n n m m ;⇔21//L L212121p p n n m m ==4、直线与平面的夹角:直线与它在平面上的投影的夹角,⇔∏//L 0=++Cp Bn Am ;⇔∏⊥L pC nB mA ==第九章 多元函数微分法及其应用 1、 连续:),(),(lim00),(),(00y x f y x f y x y x =→2、偏导数:xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim),(0000000 ;y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(00000003、方向导数:βαcos cos yfx f l f ∂∂+∂∂=∂∂其中βα,为l的方向角。

4、梯度:),(y x f z =,则j y x f i y x f y x gradf y x),(),(),(000000+=。

5、全微分:设),(y x f z =,则d d d z z z x y x y∂∂=+∂∂ (一) 性质 1、函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:2、 微分法1) 复合函数求导:链式法则若(,),(,),(,)z f u v u u x y v v x y ===,则z z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z v y u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ (二) 应用1)求函数),(y x f z =的极值 解方程组 ⎪⎩⎪⎨⎧==0y x f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值; ② 若02<-B AC ,函数没有极值;③ 若02=-B AC ,不定。

2、 几何应用1)曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M (对应参数为0t )处的切线方程为:)()()(000000t z z z t y y y t x x x '-='-='-法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x充分条件曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第十章 重积分(一) 二重积分 :几何意义:曲顶柱体的体积1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 计算: 1)直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,21()()(,)d d d (,)d bx ax Df x y x y x f x y y φφ=⎰⎰⎰⎰⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ, 21()()(,)d d d (,)d d y c y D f x y x y y f x y x ϕϕ=⎰⎰⎰⎰2) 极坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=βθαθρρθρθρ)()(),(21D ,21()()(,)d d (cos ,sin )d Df x y x y d f βρθαρθθρθρθρρ=⎰⎰⎰⎰(二) 三重积分1、 定义: ∑⎰⎰⎰=→Ω∆=nk kk k kv f v z y x f 1),,(limd ),,(ζηξλ2、 计算:1)直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z z z y x f y x v z y x f ),(),(21d ),,(d d d ),,( -------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bay x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一”2)柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3)球面坐标(三) 应用 曲面D y x y x f z S ∈=),(,),(:的面积:第十一章 曲线积分与曲面积分1、 定义:01(,)d lim (,)ni i i Li f x y s f s λξη→==⋅∆∑⎰2、计算:设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)(),(),(βαψϕ≤≤⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(二) 对坐标的曲线积分 1、定义:设 L 为xoy 面内从 A 到B 的一条有向光滑弧,函数),(y x P ,),(y x Q 在 L 上有界,定义∑⎰=→∆=nk kk k Lx P x y x P 1),(lim d ),(ηξλ,∑⎰=→∆=nk kk kLy Q y y x Q 1),(lim d ),(ηξλ.向量形式:⎰⎰+=⋅LLy y x Q x y x P r F d ),(d ),(d2、计算:设),(,),(y x Q y x P 在有向光滑弧L 上有定义且连续, L 的参数方程为):(),(),(βαψϕ→⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则 3、两类曲线积分之间的关系:设平面有向曲线弧为⎪⎩⎪⎨⎧==)()( t y t x L ψϕ:,L 上点),(y x 处的切向量的方向角为:βα,,)()()(cos 22t t t ψϕϕα'+''=,)()()(cos 22t t t ψϕψβ'+''=,则d d (cos cos )d LLP x Q y P Q s αβ+=+⎰⎰.(三) 格林公式 1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),(y x Q y x P 在D 上具有连续一阶偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂LD y Q x P y x y P x Q d d d d2、G 为一个单连通区域,函数),(,),(y x Q y x P 在G 上具有连续一阶偏导数,则y Px Q ∂∂=∂∂ ⇔曲线积分 d d LP x Q y +⎰在G 内与路径无关1、 定义:设∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,定义 i i i i ni S f S z y x f ∆=∑⎰⎰=→∑),,(lim d ),,(1ζηξλ2、计算:———“一单二投三代入”),(:y x z z =∑,xy D y x ∈),(,则(五) 对坐标的曲面积分 1、 定义:设∑为有向光滑曲面,函数),,(),,,(),,,(z y x R z y x Q z y x P 是定义在∑上的有界函数,定义1(,,)d d lim (,,)()ni i i i xy i R x y z x y R S λξηζ∑→==∆∑⎰⎰同理,1(,,)d d lim (,,)()ni i i i yz i P x y z y z P S λξηζ∑→==∆∑⎰⎰;01(,,)d d lim (,,)()ni i i i zx i Q x y z z x R S λξηζ∑→==∆∑⎰⎰2、 性质:1)21∑+∑=∑,则计算:——“一投二代三定号”),(:y x z z =∑,xy D y x ∈),(,),(y x z z =在xy D 上具有一阶连续偏导数,),,(z y x R 在∑上连续,则(,,)d d [,,(,)]d d x yD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰,∑为上侧取“ + ”, ∑为下侧取“ - ”. 3、 两类曲面积分之间的关系:其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角。

(六) 高斯公式 1、高斯公式:设空间闭区域Ω由分片光滑的闭曲面∑所围成, ∑的方向取外侧, 函数,,P Q R 在Ω上有连续的一阶偏导数, 则有 或()⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂S R Q P z y x z R y Q x P d cos cos cos d d d γβα2、通量与散度通量:向量场),,(R Q P A =通过曲面∑指定侧的通量为:⎰⎰∑++=Φy x R x z Q z y P d d d d d d散度:zRy Q x P A div ∂∂+∂∂+∂∂=(七) 斯托克斯公式 1、斯托克斯公式:设光滑曲面 ? 的边界 ?是分段光滑曲线, ? 的侧与 ? 的正向符合右手法则,),,(),,,(),,,(z y x R z y x Q z y x P 在包含? 在内的一个空间域内具有连续一阶偏导数, 则有为便于记忆, 斯托克斯公式还可写作: 2、环流量与旋度环流量:向量场),,(R Q P A =沿着有向闭曲线?的环流量为⎰Γ++z R y Q x P d d d旋度:⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R A rot , ,第十二章 无穷级数 (一) 常数项级数 1、定义:1)无穷级数:+++++=∑∞=n n nu u u u u3211部分和:n nk k nu u u u u S ++++==∑= 3211,正项级数:∑∞=1n nu,0≥nu交错级数:∑∞=-1)1(n n nu ,0≥n u2)级数收敛:若SS nn =∞→lim 存在,则称级数∑∞=1n nu收敛,否则称级数∑∞=1n nu发散3)条件收敛:∑∞=1n nu收敛,而∑∞=1n nu发散;绝对收敛:∑∞=1n nu收敛。

相关文档
最新文档