中考数学模拟试题附标准答案
中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.(4分)计算:(﹣1)+2的结果是()A.﹣1 B.1 C.﹣3 D.32.(4分)某校开展形式多样的“阳光体育”活动.七(3)班同学积极响应.全班参与.晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示).由图可知参加人数最多的体育项目是()A.排球B.乒乓球C.篮球D.跳绳3.(4分)如图所示的物体有两个紧靠在一起的圆柱体组成.它的主视图是()A.B.C.D.4.(4分)已知点P(﹣1.4)在反比例函数的图象上.则k 的值是()A.B.C.4 D.﹣45.(4分)如图.在△ABC中.∠C=90°.AB=13.BC=5.则sin A的值是()A.B.C.D.6.(4分)如图.在矩形ABCD中.对角线AC.BD交于点O.已知∠AOB=60°.AC=16.则图中长度为8的线段有()A.2条B.4条C.5条D.6条7.(4分)为了支援地震灾区同学.某校开展捐书活动.九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示.则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2 C.0.3 D.0.48.(4分)已知线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离9.(4分)已知二次函数y=(x﹣1)2﹣1(0≤x≤3)的图象.如图所示.关于该函数在所给自变量取值范围内.下列说法正确的是()A.有最小值0.有最大值3 B.有最小值﹣1.有最大值0 C.有最小值﹣1.有最大值3 D.有最小值﹣1.无最大值10.(4分)如图.O是正方形ABCD的对角线BD上一点.⊙O与边AB.BC都相切.点E.F分别在AD.DC上.现将△DEF沿着EF对折.折痕EF与⊙O相切.此时点D恰好落在圆心O处.若DE=2.则正方形ABCD的边长是()A.3 B.4 C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:a2﹣1=.12.(5分)某校艺术节演出中.5位评委给某个节目打分如下:9分.9.3分.8.9分.8.7分.9.1分.则该节目的平均得分是分.13.(5分)如图.a∥b.∠1=40°.∠2=80°.则∠3=度.14.(5分)如图.AB是⊙O的直径.点C.D都在⊙O上.连接CA.CB.DC.DB.已知∠D=30°.BC=3.则AB的长是.15.(5分)汛期来临前.滨海区决定实施“海堤加固”工程.某工程队承包了该项目.计划每天加固60米.在施工前.得到气象部门的预报.近期有“台风”袭击滨海区.于是工程队改变计划.每天加固的海堤长度是原计划的1.5倍.这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米.则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).16.(5分)我国汉代数学家赵爽为了证明勾股定理.创制了一副“弦图”.后人称其为“赵爽弦图”(如图1).图2由弦图变化得到.它是由八个全等的直角三角形拼接而成.记图中正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.若S1+S2+S3=10.则S2的值是.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)化简:a(3+a)﹣3(a+2).18.(8分)如图.在等腰梯形ABCD中.AB∥CD.点M是AB的中点.求证:△ADM≌△BCM.19.(8分)七巧板是我们祖先的一项卓越创造.用它可以拼出多种图形.请你用七巧板中标号为①②③的三块板(如图1)经过平移、旋转拼成图形.(1)拼成矩形.在图2中画出示意图.(2)拼成等腰直角三角形.在图3中画出示意图.注意:相邻两块板之间无空隙.无重叠;示意图的顶点画在小方格顶点上.20.(8分)如图.AB是⊙O的直径.弦CD⊥AB于点E.过点B作⊙O 的切线.交AC的延长线于点F.已知OA=3.AE=2.(1)求CD的长;(2)求BF的长.21.(10分)一个不透明的布袋里装有3个球.其中2个红球.1个白球.它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球.记下颜色后放回.并搅均.再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋.搅均后.使摸出1个球是白球的概率为.求n的值.22.(10分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣2.4).过点A作AB⊥y轴.垂足为B.连接OA.(1)求△OAB的面积;(2)若抛物线y=﹣x2﹣2x+c经过点A.①求c的值;②将抛物线向下平移m个单位.使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界).求m的取值范围(直接写出答案即可).23.(12分)2011年5月20日是第22个中国学生营养日.某校社会实践小组在这天开展活动.调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息.解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%.求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.求其中所含碳水化合物质量的最大值.24.(14分)如图.在平面直角坐标系中.O是坐标原点.点A的坐标是(﹣4.0).点B的坐标是(0.b)(b>0).P是直线AB上的一个动点.作PC⊥x轴.垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上).连接PP′.P′A.P′C.设点P的横坐标为a.(1)当b=3时.①求直线AB的解析式;②若点P′的坐标是(﹣1.m).求m的值;(2)若点P在第一象限.记直线AB与P′C的交点为D.当P′D:DC=1:3时.求a的值;(3)是否同时存在a.b.使△P′CA为等腰直角三角形?若存在.请求出所有满足要求的a.b的值;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选.均不给分)1.【分析】异号两数相加.取绝对值较大加数的符号.再用较大绝对值减去较小绝对值.【解答】解:(﹣1)+2=+(2﹣1)=1.故选:B.【点评】此题主要考查了有理数的加法.做题的关键是掌握好有理数的加法法则.2.【分析】因为总人数是一样的.所占的百分比越大.参加人数就越多.从图上可看出篮球的百分比最大.故参加篮球的人数最多.【解答】解:∵篮球的百分比是35%.最大.∴参加篮球的人数最多.故选:C.【点评】本题对扇形图的识图能力.扇形统计图表现的是部分占整体的百分比.因为总数一样.所以百分比越大.人数就越多.3.【分析】找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【解答】解:主视图是从正面看.圆柱从正面看是长方形.两个圆柱.看到两个长方形.故选:A.【点评】此题主要考查了三视图的知识.主视图是从物体的正面看得到的视图.4.【分析】根据反比例函数图象上的点的坐标特征.将P(﹣1.4)代入反比例函数的解析式.然后解关于k的方程即可.【解答】解:∵点P(﹣1.4)在反比例函数的图象上. ∴点P(﹣1.4)满足反比例函数的解析式.∴4=.解得.k=﹣4.故选:D.【点评】此题比较简单.考查的是用待定系数法求反比例函数的解析式.是中学阶段的重点.解答此题时.借用了“反比例函数图象上的点的坐标特征”这一知识点.5.【分析】本题可以利用锐角三角函数的定义求解.sin A为∠A的对边比上斜边.求出即可.【解答】解:∵在△ABC中.∠C=90°.AB=13.BC=5.∴sin A===.故选:A.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中.锐角的正弦为对边比斜边.余弦为邻边比斜边.正切为对边比邻边.6.【分析】因为矩形的对角线相等且互相平分.所以AO=BO=CO =DO.已知∠AOB=60°.所以AB=AO.从而CD=AB=AO.从而可求出线段为8的线段.【解答】解:∵在矩形ABCD中.AC=16.∴AO=BO=CO=DO=×16=8.∵AO=BO.∠AOB=60°.∴AB=AO=8.∴CD=AB=8.∴共有6条线段为8.故选:D.【点评】本题考查矩形的性质.矩形的对角线相等且互相平分.以及等边三角形的判定与性质.7.【分析】频率=.从直方图可知在5.5~6.5组别的频数是8.总数是40可求出解.【解答】解:∵在5.5~6.5组别的频数是8.总数是40.∴=0.2.故选:B.【点评】本题考查频数分布直方图.从直方图上找出该组的频数.根据频率=.可求出解.8.【分析】针对两圆位置关系与圆心距d.两圆半径R.r的数量关系间的联系得出两圆位置关系.【解答】解:依题意.线段AB=7cm.现以点A为圆心.2cm为半径画⊙A;再以点B为圆心.3cm为半径画⊙B.∴R+r=3+2=5.d=7.所以两圆外离.故选:D.【点评】此题主要考查了圆与圆的位置关系.圆与圆的位置关系与数量关系间的联系.此类题为中考热点.需重点掌握.9.【分析】根据函数图象自变量取值范围得出对应y的值.即是函数的最值.【解答】解:根据图象可知此函数有最小值﹣1.有最大值3.故选:C.【点评】此题主要考查了根据函数图象判断函数的最值问题.结合图象得出最值是利用数形结合.此知识是部分考查的重点.10.【分析】延长FO交AB于点G.根据折叠对称可以知道OF⊥CD.所以OG⊥AB.即点G是切点.OD交EF于点H.点H是切点.结合图形可知OG=OH=HD=EH.等于⊙O的半径.先求出半径.然后求出正方形的边长.【解答】解:如图:延长FO交AB于点G.则点G是切点.OD交EF于点H.则点H是切点.∵ABCD是正方形.点O在对角线BD上.∴DF=DE.OF⊥DC.∴GF⊥DC.∴OG⊥AB.∴OG=OH=HD=HE=AE.且都等于圆的半径.在等腰直角三角形DEH中.DE=2.∴EH=DH==AE.∴AD=AE+DE=+2.故选:C.【点评】本题考查的是切线的性质.利用切线的性质.结合正方形的特点求出正方形的边长.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】符合平方差公式的特征.直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣1=(a+1)(a﹣1).故答案为:(a+1)(a﹣1).【点评】本题主要考查平方差公式分解因式.熟记公式是解题的关键.12.【分析】把5位评委的打分加起来然后除以5即可得到该节目的平均得分.【解答】解:==9.∴该节目的平均得分是9分.故答案为:9.【点评】本题考查的是平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数.它是反映数据集中趋势的一项指标.熟记公式是解决本题的关键.13.【分析】先根据两直线平行.同位角相等.求出∠2的同位角的度数.再利用三角形的外角的性质求得∠3的度数.【解答】解:如图.∵a∥b.∠2=80°.∴∠4=∠2=80°(两直线平行.同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.【点评】本题比较简单.考查的是平行线的性质及三角形外角的性质.特别注意三角形的一个外角等于与它不相邻的两个内角的和.14.【分析】利用直径所对的圆周角是直角得到直角三角形.然后利用同弧所对的圆周角相等.在解直角三角形即可.【解答】解:∵AB是⊙O的直径.∴∠ACB=90°.∵∠D=30°.∴∠A=∠D=30°.∵BC=3.∴AB=6.故答案为:6.【点评】本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力.有利于培养同学们的发散思维能力.15.【分析】首先由已知用a表示出原计划用的天数和实际用的天数再相减即是完成整个任务的实际时间比原计划时间少用的天数.【解答】解:由已知得:原计划用的天数为..实际用的天数为.=.则完成整个任务的实际时间比原计划时间少用的天数为.﹣=.故答案为:.【点评】此题考查的知识点是列代数式.解题的关键是根据题意先列出原计划用的天数和实际用的天数.16.【分析】根据图形的特征得出四边形MNKT的面积设为x.将其余八个全等的三角形面积一个设为y.从而用x.y表示出S1.S2.S3.得出答案即可.【解答】解:将四边形MTKN的面积设为x.将其余八个全等的三角形面积一个设为y.∵正方形ABCD.正方形EFGH.正方形MNKT的面积分别为S1.S2.S3.S1+S2+S3=10.∴得出S1=8y+x.S2=4y+x.S3=x.∴S1+S2+S3=3x+12y=10.故3x+12y=10.x+4y=.所以S2=x+4y=.故答案为:.【点评】此题主要考查了图形面积关系.根据已知得出用x.y表示出S1.S2.S3.再利用S1+S2+S3=10求出是解决问题的关键.三、解答题(本题有8小题.共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)本题涉及零指数幂、乘方、二次根式化简三个考点.针对每个考点分别进行计算.然后根据实数的运算法则求得计算结果.(2)根据乘法的分配律.去括号.合并同类项即可.【解答】解:(1)(﹣2)2+(﹣2011)0﹣.=4+1﹣2.=5﹣2;(2)a(3+a)﹣3(a+2).=3a+a2﹣3a﹣6.=a2﹣6.【点评】本题考查实数的综合运算能力.整式的混合运算及零指数幂.是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握乘方、零指数幂、二次根式等考点的运算.18.【分析】由等腰梯形得到AD=BC.∠A=∠B.根据SAS即可判断△ADM≌△BCM.【解答】证明:在等腰梯形ABCD中.AB∥CD.∴AD=BC.∠A=∠B.∵点M是AB的中点.∴MA=MB.∴△ADM≌△BCM.【点评】本题主要考查对等腰梯形的性质.全等三角形的判定等知识点的理解和掌握.证出证三角形全等的三个条件是解此题的关键.19.【分析】(1)根据七巧板中有两个较小的等腰直角三角形.由一个小正方形进行拼凑即可;(2)根据七巧板中有两个较小的等腰直角三角形.且小正方形的边长与等腰三角形的腰长相等进行拼凑.【解答】解:参考图形如下(答案不唯一).【点评】本题考查的是作图与应用设计作图.熟知七巧板中各图形的特点是解答此题的关键.20.【分析】(1)连接OC.在△OCE中用勾股定理计算求出CE的长.然后得到CD的长.(2)根据切线的性质得AB⊥BF.然后用△ACE∽△AFB.可以求出BF的长.【解答】解:(1)如图.连接OC.∵AB是直径.弦CD⊥AB.∴CE=DE在直角△OCE中.OC2=OE2+CE232=(3﹣2)2+CE2得:CE=2.∴CD=4.(2)∵BF切⊙O于点B.∴∠ABF=90°=∠AEC.又∵∠CAE=∠F AB(公共角).∴△ACE∽△AFB∴=即:=∴BF=6.【点评】本题考查的是切线的性质.(1)利用垂径定理求出CD的长.(2)根据切线的性质.得到两相似三角形.然后利用三角形的性质计算求出BF的长.21.【分析】(1)由一个不透明的布袋里装有3个球.其中2个红球.1个白球.根据概率公式直接求解即可求得答案;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果.然后根据概率公式求出该事件的概率;(3)根据概率公式列方程.解方程即可求得n的值.【解答】解:(1)∵一个不透明的布袋里装有3个球.其中2个红球.1个白球.∴摸出1个球是白球的概率为;(2)画树状图、列表得:第二次白红1 红2 第一次白白.白白.红1白.红2红1红1.白红1.红1红1.红2红2红2.白红2.红1红2.红2∴一共有9种等可能的结果.两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为;(3)由题意得:.解得:n=4.经检验.n=4是所列方程的解.且符合题意.∴n=4.【点评】此题考查了概率公式与用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果.适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据点A的坐标是(﹣2.4).得出AB.BO的长度.即可得出△OAB的面积;(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标.根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.【解答】解:(1)∵点A的坐标是(﹣2.4).AB⊥y轴.∴AB=2.OB=4.∴△OAB的面积为:×AB×OB=×2×4=4.(2)①把点A的坐标(﹣2.4)代入y=﹣x2﹣2x+c中.﹣(﹣2)2﹣2×(﹣2)+c=4.∴c=4.②∵y=﹣x2﹣2x+4=﹣(x+1)2+5.∴抛物线顶点D的坐标是(﹣1.5).过点D作DE⊥AB于点E交AO于点F.AB的中点E的坐标是(﹣1.4).OA的中点F的坐标是(﹣1.2). ∴m的取值范围是:1<m<3.【点评】此题主要考查了二次函数的综合应用以及二次函数顶点坐标求法.二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.23.【分析】(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比;(2)根据这份快餐总质量为400克.列出方程求解即可;(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%.列出不等式求解即可.【解答】解:(1)400×5%=20克.答:这份快餐中所含脂肪质量为20克;(2)设400克快餐所含矿物质的质量为x克.由题意得:x+4x+20+400×40%=400.∴x=44.∴4x=176.答:所含蛋白质质量为176克;(3)设所含矿物质的质量为y克.则所含蛋白质质量为4y克.所含碳水化合物的质量为(380﹣5y)克.∴4y+(380﹣5y)≤400×85%.∴y≥40.∴﹣5y≤﹣200.∴380﹣5y≤380﹣200.即380﹣5y≤180.∴所含碳水化合物质量的最大值为180克.【点评】本题由课本例题改编而成(原题为浙教版七年级下P96例题).这使学生对试题有“亲切感”.而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点.给出两个量的和的范围.求其中一个量的最值.隐含着函数最值思想.本题切入点较多.方法灵活.解题方式多样化.可用不等式解题.也可用极端原理求解.不同的解答反映出思维的不同层次.24.【分析】(1)①利用待定系数法即可求得函数的解析式;②把(﹣1.m)代入函数解析式即可求得m的值;(2)可以证明△PP′D∽△ACD.根据相似三角形的对应边的比相等.即可求解;(3)分P在第一.二.三象限.三种情况进行讨论.利用相似三角形的性质即可求解.【解答】解:(1)①设直线AB的解析式为y=kx+3.把x=﹣4.y=0代入得:﹣4k+3=0.∴k=.∴直线的解析式是:y=x+3.②P′(﹣1.m).∴点P的坐标是(1.m).∵点P在直线AB上.∴m=×1+3=;(2)∵PP′∥AC.△PP′D∽△ACD.∴=.即=.∴a=;(3)以下分三种情况讨论.①当点P在第一象限时.1)若∠AP′C=90°.P′A=P′C(如图1)过点P′作P′H⊥x轴于点H.∴PP′=CH=AH=P′H=AC.∴2a=(a+4)∴a=∵P′H=PC=AC.△ACP∽△AOB∴==.即=.∴b=22)若∠P′AC=90°.(如图2).则四边形P′ACP是矩形.则PP′=AC.若△P´CA为等腰直角三角形.则:P′A=CA.∴2a=a+4∴a=4∵P′A=PC=AC.△ACP∽△AOB∴==1.即=1∴b=43)若∠P′CA=90°.则点P′.P都在第一象限内.这与条件矛盾.∴△P′CA不可能是以C为直角顶点的等腰直角三角形.②当点P在第二象限时.∠P′CA为钝角(如图3).此时△P′CA 不可能是等腰直角三角形;③当P在第三象限时.∠P′AC为钝角(如图4).此时△P′CA不可能是等腰直角三角形.所有满足条件的a.b的值为:..【点评】本题主要考查了梯形的性质.相似三角形的判定和性质以及一次函数的综合应用.要注意的是(3)中.要根据P点的不同位置进行分类求解.。
中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选、均不给分)1.(4分)给出四个数..其中为无理数的是()A.﹣1B.0C.0.5D.2.(4分)数据35.38.37.36.37.36.37.35的众数是()A.35B.36C.37D.383.(4分)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型.它的主视图是()A.B.C.D.4.(4分)一次函数y=﹣2x+4的图象与y轴的交点坐标是()A.(0.4)B.(4.0)C.(2.0)D.(0.2)5.(4分)把a2﹣4a多项式分解因式.结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣46.(4分)小林家今年1﹣5月份的用电量情况如图所示.由图可知.相邻两个月中.用电量变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.(4分)已知⊙O1与⊙O2外切.O1O2=8cm.⊙O1的半径为5cm.则⊙O2的半径是()A.13cm B.8cm C.6cm D.3cm 8.(4分)下列选项中.可以用来证明命题“若a2>1.则a>1”是假命题的反例是()A.a=﹣2B.a=﹣1C.a=1D.a=2 9.(4分)楠溪江某景点门票价格:成人票每张70元.儿童票每张35元.小明买20张门票共花了1225元.设其中有x张成人票.y张儿童票.根据题意.下列方程组正确的是()A.B.C.D.10.(4分)如图.在△ABC中.∠C=90°.M是AB的中点.动点P从点A出发.沿AC方向匀速运动到终点C.动点Q从点C出发.沿CB方向匀速运动到终点B.已知P.Q两点同时出发.并同时到达终点.连接MP.MQ.PQ.在整个运动过程中.△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少二、填空题(本题有6小题.每小题5分.共30分)11.(5分)化简:2(a+1)﹣a=.12.(5分)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合.则这个旋转角的最小度数是度.13.(5分)若代数式的值为零.则x=.14.(5分)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况.随机抽取了100份试卷的成绩(满分为120分.成绩为整数).绘制成如图所示的统计图.由图可知.成绩不低于90分的共有人.15.(5分)某校艺术班同学.每人都会弹钢琴或古筝.其中会弹钢琴的人数会比会弹古筝的人数多10人.两种都会的有7人.设会弹古筝的有m人.则该班同学共有人(用含有m的代数式表示)16.(5分)如图.已知动点A在函数的图象上.AB⊥x轴于点B.AC⊥y轴于点C.延长CA至点D.使AD=AB.延长BA至点E.使AE=AC.直线DE分别交x.y轴分别于点P.Q.当QE:DP=4:9时.图中阴影部分的面积等于.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:;(2)解方程:x2﹣2x=5.18.(8分)如图.在方格纸中.△PQR的三个顶点及A、B、C、D、E 五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.(1)在图甲中画出一个三角形与△PQR全等;(2)在图乙中画出一个三角形与△PQR面积相等但不全等19.(8分)如图.△ABC中.∠B=90°.AB=6cm.BC=8cm.将△ABC 沿射线BC方向平移10cm.得到△DEF.A.B.C的对应点分别是D.E.F.连接AD.求证:四边形ACFD是菱形.20.(9分)一个不透明的袋中装有红、黄、白三种颜色球共100个.它们除颜色外都相同.其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后.求从剩余的球中摸出一个球是红球的概率.21.(9分)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况.发现其正北方向的B处有人发出求救信号.他立即沿AB方向径直前往救援.同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海.径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处.再向B处游去.若CD=40米.B在C的北偏东35°方向.甲、乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:sin55°≈0.82.cos55°≈0.57.tan55°≈1.43)22.(10分)如图.△ABC中.∠ACB=90°.D是边AB上一点.且∠A =2∠DCB.E是BC边上的一点.以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1.BE=EO.求BD的长.23.(12分)温州享有“中国笔都”之称.其产品畅销全球.某制笔企业欲将n件产品运往A.B.C三地销售.要求运往C地的件数是运往A地件数的2倍.各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时.①根据信息填表:A地B地C地合计产品件数(件)x2x200运费(元)30x②若运往B地的件数不多于运往C地的件数.总运费不超过4000元.则有哪几种运输方案?(2)若总运费为5800元.求n的最小值.24.(14分)如图.经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1.m)作直线PM⊥x轴于点M.交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB.CP.(1)当m=3时.求点A的坐标及BC的长;(2)当m>1时.连接CA.问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC.问是否存在m.使得点E落在坐标轴上?若存在.求出所有满足要求的m的值.并定出相对应的点E 坐标;若不存在.请说明理由.参考答案与试题解析一、选择题(本题有10小题.每小题4分.共40分.每小题只有一个选项是正确的.不选、多选、错选、均不给分)1.【分析】根据无理数的三种形式.①开方开不尽的数.②无限不循环小数.③含有π的数.结合选项即可作出判断.【解答】解:结合所给的数可得.无理数有:.【点评】此题考查了无理数的定义.关键要掌握无理数的三种形式.要求我们熟练记忆.2.【分析】众数指一组数据中出现次数最多的数据.根据众数的定义就可以求解.【解答】解:因为37出现的次数最多.所以众数是37;故选:C.【点评】主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据.它反映了一组数据的多数水平.一组数据的众数可能不是唯一的.3.【分析】根据主视图的定义.得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体.进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长.得出此时摆放.圆柱主视图是正方形.得出圆柱以及立方体的摆放的主视图为两列.左边一个正方形.右边两个正方形.故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.4.【分析】在解析式中令x=0.即可求得与y轴的交点的纵坐标.【解答】解:令x=0.得y=﹣2×0+4=4.则函数与y轴的交点坐标是(0.4).【点评】本题考查了一次函数与坐标轴的交点坐标的求法.是一个基础题.掌握y轴上点的横坐标为0是解题的关键.5.【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4).故选:A.【点评】此题主要考查了提公因式法分解因式.关键是掌握找公因式的方法:当各项系数都是整数时.公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母.而且各字母的指数取次数最低的;取相同的多项式.多项式的次数取最低的.6.【分析】根据折线图的数据.分别求出相邻两个月的用电量的变化值.比较即可得解.【解答】解:1月至2月.125﹣110=15千瓦时.2月至3月.125﹣95=30千瓦时.3月至4月.100﹣95=5千瓦时.4月至5月.100﹣90=10千瓦时.所以.相邻两个月中.用电量变化最大的是2月至3月.故选:B.【点评】本题考查折线统计图的运用.折线统计图表示的是事物的变化情况.根据图中信息求出相邻两个月的用电变化量是解题的关键.7.【分析】根据两圆外切时.圆心距=两圆半径的和求解.【解答】解:根据两圆外切.圆心距等于两圆半径之和.得该圆的半径是8﹣5=3(cm).故选:D.【点评】本题考查了圆与圆的位置关系.注意:两圆外切.圆心距等于两圆半径之和.8.【分析】根据要证明一个结论不成立.可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1.则a>1”是假命题的反例可以是:a=﹣2.∵(﹣2)2>1.但是a=﹣2<1.∴A正确;故选:A.【点评】此题主要考查了利用举例法证明一个命题错误.要说明数学命题的错误.只需举出一个反例即可这是数学中常用的一种方法.9.【分析】根据“小明买20张门票”可得方程:x+y=20;根据“成人票每张70元.儿童票每张35元.共花了1225元”可得方程:70x+35y=1225.把两个方程组合即可.【解答】解:设其中有x张成人票.y张儿童票.根据题意得..故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组.关键是弄清题意.把已知量和未知量联系起来.找出题目中的相等关系.10.【分析】连接CM.根据点M是AB的中点可得△ACM和△BCM 的面积相等.又P.Q两点同时出发.并同时到达终点.所以点P到达AC的中点时.点Q到达BC的中点.然后把开始时、结束时、与中点时的△MPQ的面积与△ABC的面积相比即可进行判断.【解答】解:如图所示.连接CM.∵M是AB的中点.∴S△ACM=S△BCM=S△ABC.开始时.S△MPQ=S△ACM=S△ABC.点P到达AC的中点时.点Q到达BC的中点时.S△MPQ=S△ABC.结束时.S△MPQ=S△BCM=S△ABC.所以.△MPQ的面积大小变化情况是:先减小后增大.故选:C.【点评】本题考查了动点问题的函数图象.根据题意找出关键的开始时.中点时.结束时三个时间点的三角形的面积与△ABC的面积的关系是解题的关键.二、填空题(本题有6小题.每小题5分.共30分)11.【分析】首先把括号外的2乘到括号内.去括号.然后合并同类项即可.【解答】解:原式=2a+2﹣a=a+2.故答案是:a+2.【点评】考查了整式的加减.解决此类题目的关键是熟记去括号法则.熟练运用合并同类项的法则.这是各地中考的常考点.12.【分析】观察图形可得.图形有四个形状相同的部分组成.从而能计算出旋转角度.【解答】解:图形可看作由一个基本图形每次旋转90°.旋转4次所组成.故最小旋转角为90°.故答案为:90.【点评】本题考查了观察图形.确定最小旋转角度数的方法.需要熟练掌握.13.【分析】由题意得=0.解分式方程即可得出答案.【解答】解:由题意得.=0.解得:x=3.经检验的x=3是原方程的根.故答案为:3.【点评】此题考查了分式值为0的条件.属于基础题.注意分式方程需要检验.14.【分析】根据频数分布直方图估计出89.5~109.5.109.5~129.5两个分数段的学生人数.然后相加即可.【解答】解:如图所示.89.5~109.5段的学生人数有24人.109.5~129.5段的学生人数有3人.所以.成绩不低于90分的共有24+3=27人.故答案为:27.【点评】本题考查了读频数分布直方图的能力.根据图形估计出两个分数段的学生人数是解题的关键.15.【分析】根据会弹钢琴的人数比会弹古筝的人数多10人.表示出会弹钢琴的人数为:(m+10)人.再利用两种都会的有7人得出该班同学共有:(m+m+10﹣7)人.整理得出答案即可.【解答】解:∵设会弹古筝的有m人.则会弹钢琴的人数为:m+10.∴该班同学共有:m+m+10﹣7=2m+3.故答案为:(2m+3).【点评】此题主要考查了列代数式.根据已知表示出会弹钢琴的人数与会弹古筝的人数是解题关键.16.【分析】过点D作DG⊥x轴于点G.过点E作EF⊥y轴于点F.令A(t.).则AD=AB=DG=.AE=AC=EF=t.则图中阴影部分的面积=△ACE的面积+△ABD的面积=t2+×.因此只需求出t2的值即可.先在直角△ADE中.由勾股定理.得出DE=.再由△EFQ∽△DAE.求出QE=.△ADE∽△GPD.求出DP =:.然后根据QE:DP=4:9.即可得出t2=.【解答】解:解法一:过点D作DG⊥x轴于点G.过点E作EF⊥y 轴于点F.令A(t.).则AD=AB=DG=.AE=AC=EF=t.在直角△ADE中.由勾股定理.得DE====.∵△EFQ∽△DAE.∴QE:DE=EF:AD.∴QE=.∵△ADE∽△GPD.∴DE:PD=AE:DG.∴DP=.又∵QE:DP=4:9.∴:=4:9.解得t2=.∴图中阴影部分的面积=AC2+AB2=t2+×=+3=;解法二:∵QE:DP=4:9.∴EF:PG=4:9.设EF=4t.则PG=9t.∴A(4t.).由AC=AEAD=AB.∴AE=4t.AD=.DG=.GP=9t.∵△ADE∽△GPD.∴AE:DG=AD:GP.4t:=:9t.即t2=.图中阴影部分的面积=4t×4t+××=.故答案为:.【点评】本题考查了反比例函数的性质.勾股定理.相似三角形的判定与性质.三角形的面积等知识.综合性较强.有一定难度.根据QE:DP=4:9.得出t2的值是解题的关键.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.【分析】(1)首先计算乘方.进行开方运算.然后合并同类二次根式即可求解;(2)方程两边同时加上1.左边即可化成完全平方式的形式.然后进行开方运算.转化成两个一元一次方程.即可求解.【解答】解:(1)(﹣3)2+(﹣3)×2﹣=9﹣6﹣2=3﹣2;(2)配方得(x﹣1)2=6∴x﹣1=±∴x1=1+.x2=1﹣.【点评】本题考查了实数的混合运算以及利用配方法解一元二次方程.正确进行配方是关键.18.【分析】(1)过A作AE∥PQ.过E作EB∥PR.再顺次连接A、E、B.此题答案不唯一.符合要求即可;(2)△PQR面积是:×QR×PQ=6.连接BA.BA长为3.再连接AD、BD.三角形的面积也是6.但是两个三角形不全等.【解答】解:(1)如图所示:;(2)如图所示:.【点评】此题主要考查了作图.关键是掌握全等三角形的定义:能够完全重合的两个三角形叫做全等三角形;三角形面积的计算公式:S=×底×高.19.【分析】根据平移的性质可得CF=AD=10cm.DF=AC.再在Rt △ABC中利用勾股定理求出AC的长为10.就可以根据四条边都相等的四边形是菱形得到结论.【解答】证明:由平移变换的性质得:CF=AD=10cm.DF=AC.∵∠B=90°.AB=6cm.BC=8cm.∴AC===10.∴AC=DF=AD=CF=10cm.∴四边形ACFD是菱形.【点评】此题主要考查了平移的性质.菱形的判定.关键是掌握平移的性质:各组对应点的线段平行且相等;菱形的判定:四条边都相等的四边形是菱形.20.【分析】(1)根据红、黄、白三种颜色球共有的个数乘以红球的概率即可;(2)设白球有x个.得出黄球有(2x﹣5)个.根据题意列出方程.求出白球的个数.再除以总的球数即可;(3)先求出取走10个球后.还剩的球数.再根据红球的个数.除以还剩的球数即可.【解答】解:(1)根据题意得:100×.答:红球有30个.(2)设白球有x个.则黄球有(2x﹣5)个.根据题意得x+2x﹣5=100﹣30解得x=25.所以摸出一个球是白球的概率P==;(3)因为取走10个球后.还剩90个球.其中红球的个数没有变化.所以从剩余的球中摸出一个球是红球的概率=;【点评】此题考查了概率公式:如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.21.【分析】在直角△CDB中.利用三角函数即可求得BC.BD的长.则求得甲、乙的时间.比较二者之间的大小即可.【解答】解:由题意得∠BCD=55°.∠BDC=90°∵tan∠BCD=∴BD=CD•tan∠BCD=40×tan55°≈57.2cos∠BCD=∴BC=70.2∴t甲==38.6秒.t乙=(秒).∴t甲>t乙.答:乙先到达B处.【点评】本题考查了解直角三角形的应用.理解直角三角形中的边角关系是关键.22.【分析】(1)连接OD.如图1所示.由OD=OC.根据等边对等角得到一对角相等.再由∠DOB为△COD的外角.利用三角形的外角等于与它不相邻的两个内角之和.等量代换可得出∠DOB=2∠DCB.又∠A=2∠DCB.可得出∠A=∠DOB.又∠ACB=90°.可得出直角三角形ABC中两锐角互余.等量代换可得出∠B与∠ODB互余.即OD垂直于BD.确定出AB为圆O的切线.得证;(2)法1:过O作OM垂直于CD.根据垂径定理得到M为DC的中点.由BD垂直于OD.得到三角形BDO为直角三角形.再由BE=OE=OD.得到OD等于OB的一半.可得出∠B=30°.进而确定出∠DOB=60°.又OD=OC.利用等边对等角得到一对角相等.再由∠DOB为三角形DOC的外角.利用外角的性质及等量代换可得出∠DCB=30°.在三角形CMO中.根据30°角所对的直角边等于斜边的一半得到OC=2OM.由弦心距OM的长求出OC的长.进而确定出OD及OB的长.利用勾股定理即可求出BD的长;法2:过O作OM垂直于CD.连接ED.由垂径定理得到M为CD的中点.又O为EC的中点.得到OM为三角形EDC的中位线.利用三角形中位线定理得到OM等于ED的一半.由弦心距OM的长求出ED的长.再由BE=OE.得到ED为直角三角形DBO斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半.由DE的长求出OB 的长.再由OD及OB的长.利用勾股定理即可求出BD的长.【解答】(1)证明:连接OD.如图1所示:∵OD=OC.∴∠DCB=∠ODC.又∠DOB为△COD的外角.∴∠DOB=∠DCB+∠ODC=2∠DCB.又∵∠A=2∠DCB.∴∠A=∠DOB.∵∠ACB=90°.∴∠A+∠B=90°.∴∠DOB+∠B=90°.∴∠BDO=90°.∴OD⊥AB.又∵D在⊙O上.∴AB是⊙O的切线;(2)解法一:过点O作OM⊥CD于点M.如图1.∵OD=OE=BE=BO.∠BDO=90°.∴∠B=30°.∴∠DOB=60°.∵OD=OC.∴∠DCB=∠ODC.又∵∠DOB为△ODC的外角.∴∠DOB=∠DCB+∠ODC=2∠DCB.∴∠DCB=30°.∵在Rt△OCM中.∠DCB=30°.OM=1.∴OC=2OM=2.∴OD=2.BO=BE+OE=2OE=4.∴在Rt△BDO中.根据勾股定理得:BD=2;解法二:过点O作OM⊥CD于点M.连接DE.如图2.∵OM⊥CD.∴CM=DM.又O为EC的中点.∴OM为△DCE的中位线.且OM=1.∴DE=2OM=2.∵在Rt△OCM中.∠DCB=30°.OM=1.∴OC=2OM=2.∵Rt△BDO中.OE=BE.∴DE=BO.∴BO=BE+OE=2OE=4.∴OD=OE=2.在Rt△BDO中.根据勾股定理得BD=2.【点评】此题考查了切线的性质.垂径定理.勾股定理.含30°直角三角形的性质.三角形的中位线定理.三角形的外角性质.以及直角三角形斜边上的中线性质.熟练掌握定理及性质是解本题的关键.23.【分析】(1)①运往B地的产品件数=总件数n﹣运往A地的产品件数﹣运往B地的产品件数;运费=相应件数×一件产品的运费;②根据运往B地的件数不多于运往C地的件数.总运费不超过4000元列出不等式组.求得正整数解的个数即可;(2)总运费=A产品的运费+B产品的运费+C产品的运费.进而根据函数的增减性及(1)中②得到的x的取值求得n的最小值即可.【解答】解:(1)①根据信息填表A地B地C地合计产品件数200﹣3x(件)运费1600﹣24x50x56x+1600②由题意.得.解得40≤x≤42.∵x为正整数.∴x=40或41或42.∴有三种方案.分别是(i)A地40件.B地80件.C地80件;(ii)A地41件.B地77件.C地82件;(iii)A地42件.B地74件.C地84件;(2)由题意.得30x+8(n﹣3x)+50x=5800.整理.得n=725﹣7x.∵n﹣3x≥0.∴725﹣7x﹣3x≥0.∴﹣10x≥﹣725.∴x≤72.5.又∵x≥0.∴0≤x≤72.5且x为正整数.∵n随x的增大而减少.∴当x=72时.n有最小值为221.【点评】考查一次函数的应用;得到总运费的关系式是解决本题的关键;注意结合自变量的取值得到n的最小值.24.【分析】(1)把m=3.代入抛物线的解析式.令y=0解方程.得到的非0解即为和x轴交点的横坐标.再求出抛物线的对称轴方程.进而求出BC的长;(2)过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH =90°.利用已知条件证明△ACH∽△PCB.根据相似的性质得到:.再用含有m的代数式表示出BC.CH.BP.代入比例式即可求出m的值;(3)存在.本题要分当m>1时.BC=2(m﹣1).PM=m.BP=m﹣1和当0<m<1时.BC=2(1﹣m).PM=m.BP=1﹣m.两种情况分别讨论.再求出满足题意的m值和相对应的点E坐标.【解答】解:(1)当m=3时.y=﹣x2+6x令y=0得﹣x2+6x=0∴x1=0.x2=6.∴A(6.0)当x=1时.y=5∴B(1.5)∵抛物线y=﹣x2+6x的对称轴为直线x=3又∵B.C关于对称轴对称∴BC=4.(2)连接AC.过点C作CH⊥x轴于点H(如图1)由已知得∠ACP=∠BCH=90°∴∠ACH=∠PCB又∵∠AHC=∠PBC=90°∴△ACH∽△PCB.∴.∵抛物线y=﹣x2+2mx的对称轴为直线x=m.其中m>1.又∵B.C关于对称轴对称.∴BC=2(m﹣1).∵B(1.2m﹣1).P(1.m).∴BP=m﹣1.又∵A(2m.0).C(2m﹣1.2m﹣1).∴H(2m﹣1.0).∴AH=1.CH=2m﹣1.∴.∴m=.(3)∵B.C不重合.∴m≠1.(I)当m>1时.BC=2(m﹣1).PM=m.BP=m﹣1.(i)若点E在x轴上(如图1).∵∠CPE=90°.∴∠MPE+∠BPC=∠MPE+∠MEP=90°.PC=EP.在△BPC和△MEP中..∴△BPC≌△MEP.∴BC=PM.∴2(m﹣1)=m.∴m=2.此时点E的坐标是(2.0);(ii)若点E在y轴上(如图2).过点P作PN⊥y轴于点N.易证△BPC≌△NPE.∴BP=NP=OM=1.∴m﹣1=1.∴m=2.此时点E的坐标是(0.4);(II)当0<m<1时.BC=2(1﹣m).PM=m.BP=1﹣m.(i)若点E在x轴上(如图3).易证△BPC≌△MEP.∴BC=PM.∴2(1﹣m)=m.∴m=.此时点E的坐标是(.0);(ii)若点E在y轴上(如图4).过点P作PN⊥y轴于点N.易证△BPC≌△NPE.∴BP=NP=OM=1.∴1﹣m=1.∴m=0(舍去).综上所述.当m=2时.点E的坐标是(2.0)或(0.4).当m=时.点E的坐标是(.0).【点评】此题主要考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和相似三角形的性质以及全等三角形的性质和全等三角形的判定、需注意的是(3)题在不确E点的情况下需要分类讨论.以免漏解.题目的综合性强.难度也很大.有利于提高学生的综合解题能力.是一道不错的题目.。
中考数学模拟试题(含答案和解析)

中考数学模拟试题(含答案和解析)一、选择题本题有10小题.每小题4分.共40分.1.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣12.直六棱柱如图所示.它的俯视图是()A.B.C.D.3.第七次全国人口普查结果显示.我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为()A.218×106B.21.8×107C.2.18×108D.0.218×109 4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人.则初中生有()A.45人B.75人C.120人D.300人5.解方程﹣2(2x+1)=x.以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=xD.﹣4x﹣2=x6.如图.图形甲与图形乙是位似图形.O是位似中心.点A.B的对应点分别为点A′.则A′B′的长为()A.8B.9C.10D.157.某地居民生活用水收费标准:每月用水量不超过17立方米.每立方米a元;超过部分每立方米(a+1.2).则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元8.图1是第七届国际数学教育大会(ICME)会徽.在其主体图案中选择两个相邻的直角三角形.∠AOB=α.则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+1 9.如图.点A.B在反比例函数y=(k>0.x>0).AC⊥x轴于点C.BD ⊥x轴于点D.连结AE.若OE=1.OC=.AC=AE.则k的值为()A.2B.C.D.210.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.过点D作DF的垂线交小正方形对角线EF的延长线于点G.连结CG.延长BE交CG于点H.若AE=2BE.则()A.B.C.D.二、填空题(本题有6小题.每小题5分.共30分)11.(5分)分解因式:2m2﹣18=.12.(5分)一个不透明的袋中装有21个只有颜色不同的球.其中5个红球.7个白球.13.(5分)若扇形的圆心角为30°.半径为17.则扇形的弧长为.14.(5分)不等式组的解集为.15.(5分)如图.⊙O与△OAB的边AB相切.切点为B.将△OAB绕点B按顺时针方向旋转得到△O′A′B.边A′B交线段AO于点C.若∠A′=25°.则∠OCB=度.16.(5分)图1是邻边长为2和6的矩形.它由三个小正方形组成.将其剪拼成不重叠、无缝隙的大正方形(如图2);记图1中小正方形的中心为点A.B.C.图2中的对应点为点A′.B′.则当点A′.B′.圆的最小面积为.三、解答题(本题有8小题.共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)(1)计算:4×(﹣3)+|﹣8|﹣.(2)化简:(a﹣5)2+a(2a+8).18.(8分)如图.BE是△ABC的角平分线.在AB上取点D(1)求证:DE∥BC;(2)若∠A=65°.∠AED=45°.求∠EBC的度数.19.(8分)某校将学生体质健康测试成绩分为A.B.C.D四个等级.依次记为4分.2分.1分.为了解学生整体体质健康状况(1)以下是两位同学关于抽样方案的对话:小红:“我想随机抽取七年级男、女生各60人的成绩.”小明:“我想随机抽取七、八、九年级男生各40人的成绩.”根据如图学校信息.请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩.请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如图统计图.请求出这组数据的平均数、中位数和众数.20.(8分)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案.它由7个图形组成.请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中.使点P为它的一个顶点.并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形.将它的各边长扩大到原来的倍.画在图3中.21.(10分)已知抛物线y=ax2﹣2ax﹣8(a≠0)经过点(﹣2.0).(1)求抛物线的函数表达式和顶点坐标.(2)直线l交抛物线于点A(﹣4.m).B(n.7).n为正数.若点P 在抛物线上且在直线l下方(不与点A.B重合).分别求出点P横坐标与纵坐标的取值范围.22.(10分)如图.在▱ABCD中.E.F是对角线BD上的两点(点E在点F左侧)(1)求证:四边形AECF是平行四边形;(2)当AB=5.tan∠ABE=.∠CBE=∠EAF时23.(12分)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍.用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元.且生产的营养品当日全部售出.若A的数量不低于B的数量.则A为多少包时24.(14分)如图.在平面直角坐标系中.⊙M经过原点O(2.0).B(0.8).连结AB.直线CM分别交⊙M于点D.E(点D在左侧).交x轴于点C(17.0)(1)求⊙M的半径和直线CM的函数表达式;(2)求点D.E的坐标;(3)点P在线段AC上.连结PE.当∠AEP与△OBD的一个内角相等时.求所有满足条件的OP的长.参考答案与试题解析一、选择题本题有10小题.每小题4分.共40分.1.计算(﹣2)2的结果是()A.4B.﹣4C.1D.﹣1【分析】(﹣2)²表示2个(﹣2)相乘,根据幂的意义计算即可.【解答】解:(﹣2)²=(﹣2)×(﹣6)=4,故选:A.2.直六棱柱如图所示.它的俯视图是()A.B.C.D.【分析】根据简单几何体的三视图进行判断即可.【解答】解:从上面看这个几何体.看到的图形是一个正六边形.故选:C.3.第七次全国人口普查结果显示.我国具有大学文化程度的人口超218000000人.数据218000000用科学记数法表示为()A.218×106B.21.8×107C.2.18×108D.0.218×109【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n 为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时.n是正数;当原数的绝对值<1时.n是负数.【解答】解:将218000000用科学记数法表示为2.18×108.故选:C.4.如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人.则初中生有()A.45人B.75人C.120人D.300人【分析】利用大学生的人数以及所占的百分比可得总人数.用总人数乘以初中生所占的百分比即可求解.【解答】解:参观温州数学名人馆的学生人数共有60÷20%=300(人).初中生有300×40%=120(人).故选:C.5.解方程﹣2(2x+1)=x.以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=xD.﹣4x﹣2=x【分析】可以根据乘法分配律先将2乘进去.再去括号.【解答】解:根据乘法分配律得:﹣(4x+2)=x.去括号得:﹣3x﹣2=x.故选:D.6.如图.图形甲与图形乙是位似图形.O是位似中心.点A.B的对应点分别为点A′.则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式.代入计算即可.【解答】解:∵图形甲与图形乙是位似图形.位似比为2:3.∴=.即=.解得.A′B′=9.故选:B.7.某地居民生活用水收费标准:每月用水量不超过17立方米.每立方米a元;超过部分每立方米(a+1.2).则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元【分析】应缴水费=17立方米的水费+(20﹣17)立方米的水费。
中考数学模拟考试卷(附带有答案解析)

中考数学模拟考试卷(附带有答案解析)(满分:120分考试时间:120分钟)一选择题(本大题共8小题共24分)1.下列各组数中相加等于0的是()A. −(−1)与1B. (−1)2与1C. |−1|与1D. −12与12.自从扫描隧道显微镜发明后世界上便诞生了一门新科学这就是纳米技术.1纳米=0.000000001米则25纳米用科学记数法应表示为()A. 2.5×10−8米B. 25×10−8米C. 25×10−9米D. 2.5×10−9米3.下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率则这5种疫苗有效率的中位数是()疫苗名称克尔来福阿斯利康莫德纳辉瑞卫星V有效率79%76%95%95%92%A. 79%B. 92%C. 95%D. 76%4.如图是由4个完全相同的正方体组成的几何体它的左视图是()A. B. C. D.5.一个零件的形状如图所示AB//DE AD//BC∠CBD=60°∠BDE=40°则∠A的度数是()A. 70°B. 80°C. 90°D. 100°6.如图点B C D在⊙O上若∠BCD=130°则∠BOD的度数是()A. 50°B. 60°C. 80°D. 100°7.若a=√10则实数a在数轴上对应的点的大致位置是A. B.C. D.8.百位数字是十位数字是个位数字是则这个三位数是()A. B. C. D.二填空题(本大题共8小题共24分)9.分解因式:3mn2−12m2n=______.10.已知一组数据83m2的众数为3则这组数据的平均数是______.11.圆锥母线长为6底面半径为2则该圆锥的侧面积为______(结果用带π的数的形式表示).12.如图D E分别是△ABC边AB AC上的点DE//BC AD=5BD=3BC=4则DE长为______ .13.如图△ABC的面积为1第一次操作:分别延长AB BC CA至点A1B1C1使A1B=AB B1C=2BC C1A=2CA顺次连接A1B1C1得到△A1B1C1.第二次操作:分别延长A1B1B1C1C1A1至点A2B2C2使A2B1=A1B1B2C1=2B1C1C2A1=2C1A1顺次连接A2B2C2得到△A2B2C2按此规律要是得到的三角形的面积为38416需要经过______ 次操作.14.P是反比例函数y=k的图象上一点过P点分别向x轴y轴作垂线所得的图中阴影部分的面积为6x则这个反比例函数的解析式为______ .15.如图抛物线y=ax2+bx+c与x轴交于点A(−1,0)顶点坐标(1,n)与y轴的交点在(0,2)(0,3)之间(包含端点)则下列结论:①3a+b>0②−1≤a≤−23③对于任意实数m a+b≥am2+bm总成立④关于x的方程ax2+bx+c=n−1有两个不相等的实数根.其中正确结论为______.(只填序号)16.∠A=32°则∠A的补角等于______ °.三计算题(本大题共1小题共8分)17.如图AC是我市某大楼的高在地面上B点处测得楼顶A的仰角为45°沿.现打算从大楼顶端A点悬挂一BC方向前进18米到达D点测得tan∠ADC=53幅庆祝建国60周年的大型标语若标语底端距地面15m请你计算标语AE的长度应为多少?四解答题(本大题共10小题共58分)18.小明将一块含45°角的直角三角板按如图①所示的方式放置其中直角顶点A落在直线l上.由B C两点分别向直线l作垂线垂足分别为D E.(1)试猜想△ACE与______ 全等并说明理由.(2)小明改变三角板的位置如图②所示上述结论还成立吗?请说明理由.19.九(1)班同学为了解2020年某小区家庭月均用水情况随机调查了该小区部分家庭并将调查数据进行整理:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)这里采用的调查方式是______ (填“普查”或“抽样调查”)样本容量是______(2)填空:m=______ n=______ 若将月均用水量的频数绘成扇形统计图则月均用水量“15<x≤20”的圆心角的度数是______(3)若该小区有1000户家庭求该小区月均用水量超过10t的家庭大约有多少户?20.某学校甲乙两名同学去爱国主义教育基地参观该基地与学校相距2400米.甲从学校步行去基地出发5分钟后乙再出发乙从学校骑自行车到基地.乙骑行到一半时发现有东西忘带立即返回拿好东西之后再从学校出发.在骑行过程中乙的速度保持不变最后甲乙两人同时到达基地.已知乙骑行的总时间是甲步行时间的23.设甲步行的时间为x(分)图中线段OA表示甲离开学校的路程y(米)与x(分)的函数关系的图象.图中折线B−C−D表示乙离开学校的路程y(米)与x(分)函数关系的部分图象.根据图中所给的信息解答下列问题:(1)甲步行的速度为______ 米/分乙骑行的速度为______ 米/分(2)请求出甲出发多少时间后甲乙两人第二次相遇(3)请补全乙离开学校的路程y(米)与x(分)的函数关系图象.(4)若s(米)表示甲乙两人之间的距离当15≤x≤30时直接写出s(米)关于x(分)的函数关系式.21.先化简再求代数式x2−4x2−4x+4÷x+2x+1−xx−2的值其中x=2+√2.22.一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行已知高铁列车比动车组列车平均速度每小时快99千米且高铁列车比动车组列车全程运行时间少3小时求这辆高铁列车全程运行的时间和平均速度.23.在一个不透明的布袋里有3个标有123的小球它们的形状大小完全相同小明从布袋中随机取出一个小球记下数字为x小红在剩下的2个小球中随机取出一个小球记下数字为y这样确定了点Q的坐标(x,y).(1)画树状图或列表写出点Q所有可能的坐标(2)小明和小红约定做一个游戏其规则为:若x y满足xy>4则小明胜若x y满足xy<4则小红胜这个游戏公平吗?说明理由.24.如图在所给的方格纸中每个小正方形的边长都是1点A B C位于格点处请按要求画出格点四边形.(1)在图1中画出格点P使AC=CP且以点A B C P为顶点的四边形面积为3(2)在图2中画出一个以点A B C P为顶点的格点四边形使AP2+CP2=15.25. 如图 抛物线y =ax 2+bx +2经过点A(−1,0) B(4,0) 交y 轴于点C(1)求抛物线的解析式(用一般式表示)(2)若点E 在抛物线上 且△BCE 是以BC 为底的等腰三角形 求点E 的横坐标.26. (1)计算:|√2−√3|+2√2 (2)计算:√0.04+√−83−√14+√0.49(3)解方程组:{m −n =22m +3n =14(4)解不等式:x 2−5x+73>1−3x−54(5)根据题意填空∵∠B =∠BCD(已知)∴AB//CD(______)∵∠BCD=∠CGF(已知)∴______//______(______)27.如图在△ABC中tanB=1∠C=45°AD=6AD⊥BC于点D动点E从点D出发沿2DB向点B以每秒1个单位长度的速度运动.将线段DE绕点D顺时针旋转90°得到线段DF过点F作FG//AC交射线DC于点G以EG FG为邻边▱EGFP▱EGFP与△ABC重叠部分面积为S.当点E与点B重合时停止运动设点E的运动时间为t秒(t>0).(1)求BC的长.(2)当点P落到AB边上时求t的值.(3)当点F在线段AD上时求S与t之间的函数关系式.(4)▱EGFP的边PE被AB分成1:3两部分时直接写出t的值.参考答案和解析1.【答案】D【解析】解:A−(−1)+1=2B(−1)2+1=2C|−1|+1=2D−12+1=0.故选:D.根据相反数的定义求解即可.本题考查了有理数的乘方实数的性质只有符号不同的数互为相反数.2.【答案】A【解析】解:25纳米用科学记数法应表示为25×10−9=2.5×10−8(米).故选:A.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】解:从小到大排列此数据为:76%79%92%95%95%其中92%处在第3位为中位数.故选:B.找中位数要把数据按从小到大的顺序排列位于最中间的一个数(或两个数的平均数)为中位数.本题考查了中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后最中间的那个数(最中间两个数的平均数)叫做这组数据的中位数如果中位数的概念掌握得不好不把数据按要求重新排列就会错误地将这组数据最中间的那个数当作中位数.4.【答案】B【解析】解:从左边看是竖着叠放的2个正方形故选:B.细心观察图中几何体中正方体摆放的位置根据左视图是从左面看到的图形判定则可.本题考查了由三视图判断几何体和简单组合体的三视图解题的关键是掌握几何体的三视图及空间想象能力.5.【答案】B【解析】解:∵AB//DE AD//BC∴∠ABD=∠BDE∠ADB=∠CBD∵∠CBD=60°∠BDE=40°∴∠ADB=60°∠ABD=40°∴∠A=180°−∠ADB−∠ABD=80°故选:B.根据平行线的性质可以得到∠ADB=60°和∠ABD的度数再根据三角形内角和即可得到∠A的度数.本题考查平行线的性质三角形内角和解答本题的关键是明确题意利用数形结合的思想解答.6.【答案】D【解析】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单解题的关键是注意数形结合思想的应用注意辅助线的作法.首先圆上取一点A连接AB AD根据圆的内接四边形的性质即可得∠BAD+∠BCD=180°即可求得∠BAD的度数再根据圆周角定理即可求得答案.【解答】解:如图圆上取一点A连接AB AD∵点A B C D在⊙O上∠BCD=130°∴∠BAD=50°∴∠BOD=100°故选:D.7.【答案】C【解析】本题考查了实数与数轴的对应关系以及估算无理数大小的能力.本题利用实数与数轴的关系解答首先估计√10的大小进而找到其在数轴的位置即可得答案.【解答】解:a=√10有3<a<4可得其在点3与4之间并且靠近3分析选项可得C符合.故选C.8.【答案】D【解析】三位数的表示方法:三位数=百位数字×100+十位数字×10+个位数字.由题意得这个三位数为100a+10b+c.故答案是:D.9.【答案】3mn(n−4m)【解析】解:3mn2−12m2n=3mn(n−4m).故答案为:3mn(n−4m).直接提取公因式3mn进而分解因式得出答案.此题主要考查了提取公因式法分解因式正确找出公因式是解题关键.10.【答案】4【解析】解:∵一组数据83m2的众数为3∴m=3=4∴这组数据的平均数:8+3+3+24故答案为:4.直接利用众数的定义得出m的值进而求出平均数此题考查了平均数和众数解题的关键是正确理解各概念的含义.11.【答案】12π【解析】解:圆锥的侧面积=2π×2×6÷2=12π故答案为:12π.圆锥的侧面积=底面周长×母线长÷2把相应数值代入即可求解.本题考查了圆锥的计算解题的关键是牢记圆锥的侧面积的计算方法.12.【答案】52【解析】解:∵DE//BC∴ADAB=DEBC∴58=DE4∴DE=5 2故答案为:52.根据平行线分线段成比例定理列出比例式求解即可得到答案.此题考查了平行线分线段成比例定理的运用利用平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例是解答此题的关键.13.【答案】4【解析】解:连接A1C B1A BC1S△AA1C=2S△ABC=2∴S△A1BC=1S△A1B1C=2S△CC1B1=6S△AA1C1=2S△AA1C=4所以S△A1B1C1=6+4+4=14同理得S△A2B2C2=14×14=361S△A3B3C3=196×14=6859从中可以得出一个规律延长各边后得到的三角形是原三角形的14倍所以延长第n次后得到△A nB nC n则其面积S n=14n⋅S1=14n=38416解得:n=4.故答案是:4.连接A1C B1A BC1找出延长各边后得到的三角形是原三角形的14倍的规律利用规律求延长第n 次后的面积为38416求出n即可.本题考查了三角形的面积.注意找到规律:S n=14n S1是解此题的关键.14.【答案】y=−6x的图象上一点过P点分别向x轴【解析】解:∵P是反比例函数y=kxy轴作垂线所得的图中阴影部分的面积为6∴|k|=6又∵函数图象位于二四象限k<0∴k=−6∴该反比例函数的表达式为y=−6.x故答案为y=−6.x由于图中阴影部分的面积为|k|=6且函数图象位于二四象限k<0则该反比例函数的表达式即可求出.本题考查反比例函数系数k的几何意义过双曲线上的任意一点分别向两条坐标轴作垂线与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点同学们应高度关注.15.【答案】②③④【解析】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时抛物线向上开口当a<0时抛物线向下开口一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时对称轴在y轴左侧当a与b异号时对称轴在y轴右侧.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2−4ac>0时抛物线与x轴有2个交点△=b2−4ac=0时抛物线与x轴有1个交点△=b2−4ac<0时抛物线与x轴没有交点.利用抛物线开口方向得到a<0再由抛物线的对称轴方程得到b=−2a则3a+b=a于是可对①进行判断利用2≤c≤3和c=−3a可对②进行判断利用二次函数的性质可对③进行判断根据抛物线y=ax2+bx+c与直线y=n−1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下∴a<0=1即b=−2a而抛物线的对称轴为直线x=−b2a∴3a+b=3a−2a=a<0所以①错误把点A(−1,0)带入解析式可得a−b+c=0所以c=−3a∵2≤c≤3∴2≤−3a≤3∴−1≤a≤−23所以②正确∵抛物线的顶点坐标(1,n)∴x=1时二次函数值有最大值n=a+b+c∴a+b+c≥am2+bm+c即a+b≥am2+bm所以③正确∵抛物线的顶点坐标(1,n)∴抛物线y=ax2+bx+c与直线y=n−1有两个交点∴关于x的方程ax2+bx+c=n−1有两个不相等的实数根所以④正确.故答案为②③④.16.【答案】148【解析】解:∵∠A=32°∴∠A的补角=180°−32°=148°.故答案为:148.根据互为补角的两个角的和等于180°列式计算即可得解.本题考查了补角的定义是基础题熟记概念是解题的关键.17.【答案】解:在Rt△ABC中∠ACB=90°∠ABC=45°∴Rt△ABC是等腰直角三角形AC=BC.在Rt△ADC中∠ACD=90°tan∠ADC=ACDC =53∴DC=35AC.∵BC−DC=BD即AC−35AC=18∴AC=45.则AE=AC−EC=45−15=30.答:标语AE的长度应为30米.【解析】首先分析图形 根据题意构造直角三角形.本题涉及到两个直角三角形 即△ABC 和△ADC.根据已知角的正切函数 可求得BC 与AC CD 与AC 之间的关系式 利用公共边列方程求AC 后 AE 即可解答.本题要求学生借助仰角关系构造直角三角形 并结合图形利用三角函数解直角三角形.18.【答案】△BAD【解析】解:(1)△BAD .理由:∵含45°角的直角三角板ABC 为等腰直角三角形∴AC =BA ∠CAB =90°又∵∠CAE +∠CAB +∠BAD =180°∴∠CAE +∠BAD =90°.∵CE 是直线l 的垂线∴∠AEC =90°∴∠ACE +∠CAE =90°∴∠ACE =∠BAD .∵CE BD 分别垂直于直线l∴∠AEC =∠ADB =90°在△ACE 和△BAD 中{∠ACE =∠BAD∠AEC =∠ADB AC =BA∴△ACE ≌△BAD(AAS).故答案为△BAD .(2)成立.证明:∵∠CAE +∠BAD =∠BAD +∠ABD =90°∴∠CAE =∠ABD在△ACE 和△BAD 中{∠CAE =∠ABD∠AEC =∠ADB AC =AB∴△ACE ≌△BAD(AAS).(1)由直角三角形的性质得出∠ACE =∠BAD 根据AAS 可证明△ACE ≌△BAD(2)方法同(1).根据AAS 可证明△ACE ≌△BAD .本题考查全等三角形的判定与性质余角的性质关键是根据AAS证明三角形全等.19.【答案】抽样调查50120.0872°【解析】解:(1)由题意可得本次调查采用的调查方式是抽样调查样本容量是6÷0.12=50故答案为:抽样调查50=0.08(2)m=50×0.24=12n=450月均用水量“15<x≤20”的圆心角的度数是:360°×0.20=72°故答案为:120.0872°(3)1000×(0.32+0.20+0.08+0.04)=1000×0.64=640(户)答:该小区月均用水量超过10t的家庭大约有640户.(1)根据题意可以得到本次调查采用的调查方式再根据“0<x≤5”的频数和频率可以计算出样本容量(2)根据(1)中的结果和频数分布表中的数据可以计算出m n的值根据月均用水量“15<x≤20”的频率计算出月均用水量“15<x≤20”的圆心角度数(3)根据频数分布表中的数据可以计算出该小区月均用水量超过10t的的频率即可得该小区月均用水量超过10t的家庭大约有多少户.本题考查频数分布表扇形统计图用样本估计总体解答本题的关键是明确题意掌握频数÷频率=数据总数的计算方法.20.【答案】80240【解析】解:(1)由题意得:甲步行的速度为:2400÷30=80(米/分)=240(米/分)乙骑行的速度为:1200÷15−52故答案为:80240(2)由题意可得:C(10,1200)D(15,0)A(30,2400)设线段CD的解析式为:y=kx+b则{10k +b =120015k +b =0解得{k =−240b =3600∴线段CD 的解析式为:y =−240x +3600 线段OA 的解析式为:y =80x 根据题意得:−240x +3600=80x解得:x =454 ∴甲出发454分后 甲 乙两人第二次相遇(3)由题意得:甲步行时间为30分∴乙骑行的总时间为30×23=20(分)∴乙拿东西的时间为30−20−5=5(分)补全乙离开学校的路程y(米)与x(分)的函数关系图象如图(4)∵E(20,0) A(30,2400)设线段EA 的解析式为:y =mx +n{20m +n =030m +n =2400解得{m =240n =−4800∴线段EA 的解析式为:y =240x −4800∴当15≤x ≤20时 s =80x当20<x ≤30时 s =80x −(240x −4800)=−160x +4800∴s ={80x(15≤x ≤20)−160x +4800(20<x ≤30). (1)根据题意结合图象解答即可(2)根据题意得出点C D A 的坐标 进而得出线段CD 与线段OA 的解析式 联立成方程组解答即可(3)根据乙骑行的总时间是甲步行时间的23求出乙骑行的总时间.从而可得拿东西的时间 即可补全乙离开学校的路程y(米)与x(分)的函数关系图象(4)根据线段OA与线段EA的解析式解答即可.本题考查一次函数的应用解题的关键是明确题意认真分析图中的数量关系找出所求问题需要的条件利用数形结合的思想解答问题.21.【答案】解:x2−4x2−4x+4÷x+2x+1−xx−2=(x+2)(x−2)(x−2)2⋅x+1x+2−xx−2=x+1x−2−xx−2=1x−2当x=2+√2时原式=2+√2−2=√22.【解析】根据分式的除法和减法可以化简题目中的式子然后将x的值代入即可解答本题.本题考查分式的化简求值解答本题的关键是明确分式化简求值的计算方法.22.【答案】解:设动车组列车的平均速度为x千米/小时则高铁列车的平均速度为(x+99)千米/小时根据题意得:1320x −1320x+99=3解得:x1=165x2=−264(不合题意舍去)经检验x=165是原方程的解∴x+99=2641320÷(x+99)=5.答:这辆高铁列车全程运行的时间为5小时平均速度为264千米/小时.【解析】本题考查了分式方程的应用找准等量关系正确列出分式方程是解题的关键.设动车组列车的平均速度为x千米/小时则高铁列车的平均速度为(x+99)千米/小时根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时即可得出关于x的分式方程解之经检验后即可得出结论.23.【答案】解:(1)画树状图为:所以点Q所有坐标为(1,2)(1,3)(2,1)(2,3)(3,1)(3,2)(2)不公平由树状图知共有6种等可能结果其中xy>4的有2种结果xy<4的有4种结果∴小明获胜的概率为26=13小红胜的概率为46=23∵13≠23∴此游戏不公平.【解析】(1)先利用树状图展示所有6种等可能的结果数即可得出点Q所有可能的坐标(2)找到所列6种等可能结果中xy>4和xy<4的结果数再利用概率公式求出两人获胜的概率比较大小即可得出答案.本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n再从中选出符合事件A或B的结果数目m求出概率.24.【答案】解:(1)如图1中四边形即为所求(答案不唯一).(2)如图2中四边形即为所求(答案不唯一).【解析】(1)根据要求利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计三角形的面积等知识解题的关键是熟练掌握基本知识属于中考常考题型.25.【答案】解:(1)∵抛物线y =ax 2+bx +2经过点A(−1,0) B(4,0)∴{16a +4b +2=0a −b +2=0 解得{a =−12b =32∴抛物线解析式为y =−12x 2+32x +2①(2)由抛物线的表达式知 点C(0,2)设BC 的中点为H(2,1) 过点H 作BC 的中垂线交x 轴于点F 交抛物线于点E 则点E 为所求点在Rt △BOC 中 tan ∠CBO =OC OB =12 则tan ∠HFB =2故设直线EF 的表达式为y =2x +t将点H 的坐标代入上式得:1=2×2+t 解得t =−3故直线EF 的表达式为y =2x −3②联立①②并解得{x =−1+√412y =√41−4或{x =−1−√412y =−√41−4故点E 的坐标为(−1+√412,√41−4)或(−1−√412,−√41−4).【解析】(1)用待定系数法即可求解(2)设BC 的中点为H(2,1) 过点H 作BC 的中垂线交x 轴于点F 交抛物线于点E 则点E 为所求点 进而求解.本题是二次函数综合题 主要考查了一次函数的性质 解直角三角形 等腰三角形的性质等 有一定的综合性 但难度不大.26.【答案】内错角相等 两直线平行 EF CD 同位角相等 两直线平行【解析】解:(1)原式=√3−√2+2√2=√3+√2(2)原式=0.2−2−12+0.7=0.9−2.5=−1.6(3){m −n =2①2m +3n =14② ①×3+② 得:5m =20解得:m =4将m =4代入① 得:4−n =2解得:n =2∴{m =4n =2(4)去分母 得:6x −4(5x +7)>12−3(3x −5)去括号 得:6x −20x −28>12−9x +15移项 得:6x −20x +9x >12+15+28合并同类项 得:−5x >55系数化为1 得:x <−11(5)∵∠B =∠BCD(已知)∴AB//CD(内错角相等 两直线平行)∵∠BCD =∠CGF(已知)∴EF//CD(同位角相等 两直线平行)故答案为:内错角相等 两直线平行 EF CD 同位角相等 两直线平行.(1)根据绝对值性质去绝对值符号 再合并可得(2)先计算平方根 立方根 再计算加减可得(3)加减消元法求解可得(4)根据解不等式的基本步骤依次进行即可(5)根据平行线的判定和性质可得.本题主要考查解方程组 不等式 绝对值性质 平方根和立方根及平行线的判定和性质 掌握基本的运算和性质是解题的关键.27.【答案】解:(1)如图1中∵AD⊥BC∴∠ADB=∠ADC=90°∵∠C=45°∴∠DAC=∠C=45°∴AD=DC=6∵tanB=AD BD=12∴BD=12∴BC=BD+CD=18.(2)如图2中当点P落在AB上时则有6−t2t =12解得t=3.(3)当0<t≤3时如图1中重叠部分是平行四边形PFEG S=2t⋅t=2t2.当3<t≤6如图3中重叠部分是五边形MNFGE过点M作MH⊥PN于H则有PH=MH NH= 2MH∴MH =13PN =13[2t −2(6−t)]=13(4t −12) ∴S =S 平行四边形PFEG −S △MPN =2t 2−12×13(4t −12)2=−23t 2+16t −24.(4)如图4中 由题意PM :ME =1:3或PM :ME =3:1∵PN//BE∴PN BE =PM ME ∴4t−1212−t =13或4t−1212−t =3解得t =4813或487。
2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
中考数学模拟考试卷(附含答案解析)

中考数学模拟考试卷(附含答案解析)(满分:120分;考试时间:120分钟)第Ⅰ卷(选择题)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来每小题选对得3分,选错、不选或选出的答案超过一个均记零分。
1.﹣|﹣2021|等于()A.﹣2021B.2021C.﹣D.2.下列计算正确的是()A.2a+3b=5ab B.(﹣a2)3=a6C.a3•a2=a5D.(a+b)2=a2+b23.如图,直线a∥b,点A在直线b上,∠BAC=108°,∠BAC的两边与直线a分别交于B、C两点.若∠1=42°,则∠2的大小为()A.30°B.38°C.52°D.72°4.如图,在△ABC中,∠A=60°,∠B=45°.若边AC的垂直平分线DE交边AB于点D,交边AC 于点E,连接CD,则∠DCB=()A.15°B.20°C.25°D.30°5.一个不透明的盒子中装有2个红球,1个白球和1个黄球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到黄球是不可能事件C.摸到白球与摸到黄球的可能性相等D.摸到红球比摸到黄球的可能性小6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A.2B.3C.4D.57.如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x 轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间8.植树节这天有20名同学共种了52棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y人,根据题意,下列方程组正确的是()A.B.C.D.9.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°;②BD=;③S平行四边形ABCD=AB •AC;④OE=AD;⑤S△APO=中,正确的个数是()A.2B.3C.4D.5第Ⅱ卷(非选择题共90分)二、填空题:本大题共8小题,其中11-14题,每小题3分,15-18题,每小题4分,共28分,只要求填写最后结果。
中考数学模拟测试卷带答案

中考数学模拟测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A .B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( )A .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x +=(k 为常数)的图象上123y y y 、、的大小关系为( ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 .11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 米(结果保留根号).三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)第5题图 第6题图 第8题图第10题图 第11题图 第12题图14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长?15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( B )B . B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( B )B .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( A )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上123y y y 、、的大小关系为( C ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( A )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( D ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( A )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( D )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= 1- .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 31 .第5题图 第6题图 第8题图11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 23 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 ()153 1.5 米(结果保留根号). 三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)1)由题意知60CAB ∠=︒,BC=4 ...................................................1分 ∴43tan603BC AB ==︒.................................................................3分 (2)43AB =30ACB ∠=︒ 90ABC ∠=︒ ⊙832AC AB = ...........................................................................................................................................................5分60BAC ∠=︒ 30ACB ∠=︒ 60DCE ∠=︒∴=90ACD ∠︒ 60DAC ∠=︒ ..........................................................................................................................................6分 ∴83tan6038DC AC =⋅︒== ...................................................................................................................................8分 在Rt CDE △中3sin60843DE CD =⋅︒==........................................................................................................10分 14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.第10题图 第11题图 第12题图(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;{}(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长? 1)解:设水温下降过程中,y 与x 的函数关系式为k y x=(k ≠0),...........................................1分 由题意得,点(4,100)在反比例函数k y x =的图象上 ∴4100k =..............................................................................................................................2分 解得:400k =∴水温下降过程中,y 与x 的函数关系式是400y x=;.....................................................3分 解:设在加热过程中,y 与x 的函数关系式为y=kx+b(k ≠0).......................................................................4分 把(0,20),(4,100)带入y=kx+b(k ≠0)得20=b, 100=4k+b.....................................................................................................................................................5分 解得:k=20,b=20..................................................................................................................................................6分 ∴y=20x+20当y=40时1x =.............................................................................................................................................7分在降温过程中,水温为40℃时40040x=..................................................................................................8分 解得:10x =...................................................................................................................................................9分1019-=........................................................................................................................................................10分∴一个加热周期内水温不低于40℃的时间为9min .15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.(1)证明:如图所示,连接OD ,.........................................................1分∵AD 平分∠CAB∴∠OAD =∠EAD ...........................................................................................................................................................2分 ∵OD =OA∴∠ODA =∠OAD ............................................................................................................................................................3分 ∴∠ODA =∠EAD .∴OD ∥AE .........................................................................................................................................................................4分 ∵AE PE ⊥∴OD PE ⊥∵D 在⊙O 上∴EP 与⊙O 相切...........................................................................................................................................................5分 (2)证明:OD PE ⊥∵∴90ODB BDP ∠+∠=︒.............................................................................................................................................6分 ∵AB 是⊙O 的直径⊙90ADB ∠=︒............................................................................................................................................................7分 即90ODB ODA ∠+∠=︒∴=ODA BDP ∠∠......................................................................................................................................................8分 ∵OD =OA∴∠ODA =∠OAD .⊙=OAD BDP ∠∠.....................................................................................................................................................9分 又∵APD DPB ∠=∠∴APD DPB ∆∆∽.....................................................................................................................................................10分 ∴AD AP BD DP=............................................................................................................................................................11分 ∴AD ·DP =BD ·AP ...................................................................................................................................................12分 解:作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB =90°∵AB =6,AD =2∴BD 22-AB AD 2 132OD AB ==.................................................................................................................15分 ∵12AB •DG =12AD •BD∴DG 423分 ∵AD 平分∠CAB ,AE ⊥DE ,DG ⊥AB∴DE =DG 423∴AE 22AD DE -163............................................................................................................................................17分 ∵OD ∥AE∴△ODP ∽△AEP .........................................................................................................................................................18分 ∴DP EP =OD AE ,即DP DE DP OD AE += ∴4213363DPDP =........................................................................................................................................................19分 ∴2721DP =分。
中考模拟数学试题及答案

中考模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 以下哪个方程是一元一次方程?A. 2x + 3 = 0B. x^2 - 4 = 0C. 3x - 2y = 5D. x/2 + 3 = 0答案:A4. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 以下哪个选项是整式的乘法?A. (x + 2)(x - 2)B. x^2 + 2x + 1C. x/(x + 1)D. x^2 - 4x + 4答案:A7. 一个圆的半径为3,那么这个圆的面积是:A. 9πB. 18πD. 36π答案:C8. 如果一个角的补角是120°,那么这个角是:A. 60°B. 30°C. 90°D. 120°答案:B9. 以下哪个选项是不等式?A. x + 2 = 3B. 2x - 3 > 0C. 4x^2 - 9 = 0D. 3x + 2y = 510. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 1/xD. y = √x答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。
答案:±512. 一个角的余角是30°,那么这个角是______。
答案:60°13. 一个数的平方是16,这个数是______。
答案:±414. 一个等腰直角三角形的斜边长为5,那么这个三角形的面积是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学全真模拟试题24考生注意:1.本卷共8页,三大题共26小题,满分150分.考试形式为闭卷,考试时间为120分钟.一、填空题(每题3分,共30分)2.分解因式:x 2-1=________.3.如图1,直线a ∥b ,则∠ACB =_______.4.抛物线y =-4(x +2)2+5的对称轴是______.5.如图2,菱形的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.6.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别.随机从口袋中任取一只球,取到黄球的概率是_____.7.如图3,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30°,则⊙O 的直径等于______cm.(图2) A2850 aC b B (图1)8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1数段的学生有_____人.9.正n 边形的内角和等于1080°,那么这个正n 边形的边数n =_____. 10.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图4),则这串珠子被盒子遮住的部分有____颗. 二、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请把正确选项的字母选入该题括号内.每小题4分,共24分)11.下列调查,比较容易用普查方式的是( )(A )了解贵阳市居民年人均收入(B )了解贵阳市初中生体育中考的成绩 (C )了解贵阳市中小学生的近视率 (D )了解某一天离开贵阳市的人口流量 12.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( ) (A )小明的影子比小强的影子长 (B )小明的影长比小强的影子短 (C )小明的影子和小强的影子一样长 (D )无法判断谁的影子长 13.棱长是1cm 的小立方体组成如图5所示的几何体,那么这个几何体的表面积是( )(A )36cm 2(B )33cm 2(C )30cm 2(D )27cm 214.已知一次函的图象(如图6),当x <0时,y ) (A )y >0 (B )y <0 (C )-2<y <0 (D )y <-2(图(图(图(图15.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) (A )平均数或中位数 (B )方差或极差 (C )众数或频率 (D )频数或众数16.已知抛物线21(4)33y x =--的部分图象(如图7),图象再次与x 轴相交时的坐标是( )(A )(5,0) (B )(6,0) (C )(7,0)(D )(8,0)三、解答题: 17.先化简,再求值:231()11x x x x x x---+,其中2x =. 18.(本题满分10分)下面两幅统计图(如图8、图9),反映了某市甲、乙两所中学学生参加课外活动的情况.请你通过图中信息回答下面的问题.(1)通过对图8的分认为正确的结论;(3分)(2)通过对图9的分析,写出一条你认为正确的结论;(3分)(3)2003年甲、乙两所中学参加科技活动的学生人数共有多少?(4分)(图甲校乙校甲、乙两校参加课外活动的学生人数统计图(1997~2003年)(图图19.(本题满分12分)如图10,一次函数y ax b =+的图象与反比例函数ky x=的图象交于M 、N 两点.(1)求反比例函数和一次函数的解析式;(8分)(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.(4分)20.(本题满分9分)由一些大小相同的小正方体组成的简(1)请你画出这个几何体的一种左视图;(5分)(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.(4分)21.(本题满分6分)质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等.(1)请采用计算器模拟实验的方法,帮质检员抽取被检产品;(3分)(2)如果没有计算器,你能用什么方法抽取被检产品?(3分) N (图10) (图11)22.(本题满分8分)某影碟出租店开设两种租碟方式:一种是零星租碟,每张收费1元;另一种是会员卡租碟,办卡费每月12元,租碟费每张0.4元 . 小彬经常来该店租碟,若每月租碟数量为x 张.(1)写出零星租碟方式应付金额y 1(元)与租碟数量x (张)之间的函数关系式;(2分)(2)写出会员卡租碟方式应付金额y 2(元 )与租碟数量x (张)之间的函数关系式;(2分)(3)小彬选取哪种租碟方式更合算?(4分) 23.(本题满分8分)同一底上的两底角相等的梯形是等腰梯形吗?如果是,请给出证明(要求画出图形,写出已知、求证、证明);如果不是,请给出反例(只需画图说明).24.(本题满分9分)某居民小区有一朝向为正南方向的居民楼(如图12),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么?(5分) (2)若要使超市采光不受影响,两楼应相距多少米?(4分) (结果保留整数,参考数据:531065sin 32,cos32,tan 321001258≈≈≈)(图12)C Bx (元)与量y 是销售价x 的一次(1)求出日销售量y (件)与销售价x (元)的函数关系式;(6分)(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?(6分)26.(本题满分14分)如图13,四边形ABCD 中,AC =6,BD =8且AC ⊥BD 顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1;再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2……如此进行下去得到四边形A n B n C n D n .(1)证明:四边形A 1B 1C 1D 1是矩形;(6分)(2)写出四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2的面积;(2分) (3)写出四边形A n B n C n D n 的面积;(2分) (4)求四边形A 5B 5C 5D 5的周长.(4分)参考解答及评分标准评卷教师注意:如果学生用其它方法,只要正确、合理,酌情给分. 一、 填空题(每小题3分,共30分)C(图13)1. 115.410⨯;2. (1)(1)x x +-;3. 78;4. 2x =-;5. 2.5;6. 11147. 3.6; 8. 5; 9. 8; 10. 27. 二、 选择题(每小题4分,共24分)11.B 12.D 13.A 14.D 15.B 16.C 三、 解答题 17.原式=3(1)(1)x x +--……………………………………………………………………(4分)=24x +……(5分)当2x =时,原式=2)4+=……………(8分)18.(1)1997年至2003年甲校学生参加课外活动的人数比乙校增长的快……………………(3分)(学生给出其它答案,只要正确、合理均给3分)(2)甲校学生参加文体活动的人数比参加科技活动的人数多;……………………………(6分)(学生给出其它答案,只要正确、合理均给3分)(3)200038%110560%1423⨯+⨯=……………………………………………………(9分)答:2003年两所中学的学生参加科技活动的总人数是1423人.…………………………(10分)19.(1)将N (-1,-4)代入ky x=中 得k =4……………………………………………(2分)反比例函数的解析式为4y x=………………………………………………………………(3分) 将M (2,m )代入解析式4y x=中 得m =2…………………………………………(4分)将M (2,2),N (-1,-4)代入y ax b =+中224a b a b +=⎧⎨-+=-⎩ 解得a =2b =-2……………………………………………………(7分)一次函数的解析式为22y x =-……………………………………………………………(8分)(2)由图象可知:当x <-1或0<x <2时反比例函数的值大于一次函数的值.………(12分)20.(1)左视图有以下5种情形(只要画对一种即给5分):(2)8,9,10,11.n =…………………………………………………………………………(9分)21.(1)利用计算器模拟产生随机数与这批产品编号相对应,产生10个号码即可. ………(3分)(2)利用摸球游戏或抽签等.…………………………………………………………………(6分)22.(1)1y x = (2分) (2)20.412y x =+………………………………………(4分)(3) 当x >20时,选择会员卡方式合算当x =20时,两种方式一样 当x<20时,选择零星租碟方式合算…………………………………………………(8分) 23.是等腰梯形……………………………………………………………………………………(1分)已知:梯形ABCD ,AD ∥BC 且∠B =∠C (或∠A =∠D )………………………………(2分)求证:梯形ABCD是等腰梯形……………………………………………………………(3分)证明一:过点A 作AE ∥DC ,交BC 于E …………………………(4分)∵AD ∥BC AE ∥DC∴四边形AECD 是平行四边形,∴∠AEB =∠C ,AE=DC …………………………………………………(5分)∵∠B =∠C ∴∠AEB =∠B ………………………………………………………………………(6分)∴AB =AE ……………………………………………………………………………(7分)∴AB=DC ∴梯形ABCD是等腰梯A BCD EA BCD E F形………………………………………………………(8分)证明二:过A 、D 两点分别作AE ⊥BC ,DF ⊥BC 垂足为E 、F∵AE ⊥BC 、DF ⊥BC ∴AE ∥DF 且∠AEB =∠DFC ∵AD ∥BC∴四边形AEFD 是平行四边形 ∴AE=DF∵∠AEB =∠DFC ∠B =∠C ∴△AEB ≌△DFC ∴AB =DC ∴梯形ABCD 是等腰梯形证明三:延长BA 、CD 交于E 点∵∠B =∠C ∴BE=CE∴AD ∥BC ∴∠EAD =∠B ,∠EDA =∠C ∴∠EAD =∠EDA ∴AE=DE ∴AB=DC ∴梯形ABCD 是等腰梯形24.(1)如图设CE=x 米,则AF =(20-x )米……………(1分)tan 32,AFEF即20-x =15tan 32,11x ≈………(4分) ∵11>6, ∴居民住房的采光有影响.(5分) (2)如图:sin 32,AB BF 820325BF =⨯=…(8分) 两楼应相距32米…………………………………………(9分) 25. (1)设此一次函数解析式为.y kx b =+…………………(1分)则15252020k b k b +=⎧⎨+=⎩,解得:k =-1,b =40,……………………(5分)A BCD E32EDAF BC32FDA 20B C15 E即:一次函数解析式为40y x =-+………………………(6分)(2)设每件产品的销售价应定为x 元,所获销售利润为w 元…………………………(7分)w =2(10)(40)50400x x x x --=-+-=2(25)225x --+………………………………………………………………………(10分)产品的销售价应定为25元,此时每日获得最大销售利润为225元……………………(12分)26(1)证明∵点A 1,D 1分别是AB 、AD 的中点,∴A 1D 1是△ABD 的中位线………………(1分)∴A 1D 1∥BD ,1112A D BD =,同理:B 1C 1∥BD ,1112B C BD =……………………(2分)∴11A D ∥11B C ,11A D =11B C , ∴四边形1111A B C D 是平行四边形………………(4分)∵AC ⊥BD ,AC ∥A 1B 1,BD ∥11A D ,∴A 1B 1⊥11A D 即∠B 1A 1D 1=90°………(5分)∴四边形1111A B C D 是矩形…………………………………………………………………(6分)(2)四边形1111A B C D 的面积为12;四边形2222A B C D 的面积为6;…………………(8分)(3)四边形n n n n A B C D 的面积为1242n ⨯;……………………………………………(10分)(4)方法一:由(1)得矩形1111A B C D 的长为4,宽为3; ∵矩形5555A B C D ∽矩形1111A B C D ;∴可设矩形5555A B C D 的长为4x ,宽为3x ,则 514324,2x x =⨯…………………………………………………………………………(12分)解得14x =;∴341,34x x ==;…………………………………………………………(13分)∴矩形5555A B C D 的周长=372(1)42+=.………………………………………………(14分)方法二:矩形5555A B C D 的面积/矩形1111A B C D 的面积=(矩形5555A B C D 的周长)2/(矩形1111A B C D 的周长)2 即34∶12 =(矩形5555A B C D 的周长)2∶142∴矩形5555A B C D 的周长72=。