中考数学全真模拟试题(含答案)

合集下载

上海市嘉定区重点中学2024届中考数学全真模拟试题含解析

上海市嘉定区重点中学2024届中考数学全真模拟试题含解析

上海市嘉定区重点中学2024届中考数学全真模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+ 2.2-的相反数是A .2-B .2C .12D .12- 3.若关于 x 的一元一次不等式组312(1)0x x x a -+⎧⎨-⎩无解,则 a 的取值范围是( ) A .a ≥3B .a >3C .a ≤3D .a <34.π这个数是( )A .整数B .分数C .有理数D .无理数 5.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .326.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个7.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)8.如图,若数轴上的点A ,B 分别与实数﹣1,1对应,用圆规在数轴上画点C ,则与点C 对应的实数是( )A .2B .3C .4D .59.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A .B .C .D .10.将抛物线2 21y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )A .()2212y x =---B .()2212y x =-+-C .()2214y x =--+D .()2214y x =-++二、填空题(共7小题,每小题3分,满分21分)11.化简:+3=_____.12.因式分解:34a a -=_______________________.13.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.14.已知边长为5的菱形ABCD中,对角线AC长为6,点E在对角线BD上且1tan3EAC∠=,则BE的长为__________.15.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加__________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)16.不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是_____.17.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg三、解答题(共7小题,满分69分)18.(10分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).19.(5分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC =∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.20.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名? 21.(10分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m 设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式;若菜园面积为384m 2,求x 的值;求菜园的最大面积.23.(12分)先化简,再求值:(1+211x -)÷2221x x x ++,其中2+1. 24.(14分)计算:033.14 3.1412cos45π⎫-+÷-⎪⎪⎝⎭ )()12009211-++-.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】解:过点B 作BE ⊥AD 于E .设BE=x .∵∠BCD=60°,tan ∠BCE BE CE=, 33CE x ∴=, 在直角△ABE 中,3x ,AC=50米, 33503x x -=, 解得253x =即小岛B 到公路l 的距离为253故选B.2、B【解题分析】根据相反数的性质可得结果.【题目详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【题目点拨】3、A【解题分析】先求出各不等式的解集,再与已知解集相比较求出a 的取值范围.【题目详解】由x﹣a>0 得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式组的解集是空集,∴a≥1.故选:A.【题目点拨】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、D【解题分析】由于圆周率π是一个无限不循环的小数,由此即可求解.【题目详解】解:实数π是一个无限不循环的小数.所以是无理数.故选D.【题目点拨】本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.5、D【解题分析】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.6、C【解题分析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.7、C【解题分析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.8、B【解题分析】由数轴上的点A、B 分别与实数﹣1,1对应,即可求得AB=2,再根据半径相等得到BC=2,由此即求得点C对应的实数.【题目详解】∵数轴上的点A,B 分别与实数﹣1,1 对应,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴与点C 对应的实数是:1+2=3.故选B.【题目点拨】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键.9、A【解题分析】根据左视图的概念得出各选项几何体的左视图即可判断.【题目详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A.【题目点拨】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.10、A【解题分析】根据二次函数的平移规律即可得出.【题目详解】解:221y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为()2212y x =---故答案为:A .【题目点拨】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.二、填空题(共7小题,每小题3分,满分21分)11、 【解题分析】试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3. 12、(2)(2)a a a +-【解题分析】先提公因式,再用平方差公式分解.【题目详解】解:()3244(2)(2)a a a a a a a -=-=+-【题目点拨】本题考查因式分解,掌握因式分解方法是关键.13、1【解题分析】∵点P (m ,﹣2)与点Q (3,n )关于原点对称,∴m=﹣3,n=2,则(m+n )2018=(﹣3+2)2018=1,故答案为1.14、3或1【解题分析】菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得AC⊥BD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可.【题目详解】解:当点E在对角线交点左侧时,如图1所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,BO=222253AB AO-=-=4,∵tan∠EAC=133OE OEOA==,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,当点E在对角线交点左侧时,如图2所示:∵菱形ABCD中,边长为1,对角线AC长为6,∴AC⊥BD,222253AB AO--,∵tan∠EAC=133OE OEOA==,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案为3或1.【题目点拨】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.15、BE=DF【解题分析】可以添加的条件有BE=DF等;证明:∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.∴∠AEF=∠CFE.∴AE∥CF;∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.16、3 7【解题分析】一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【题目详解】∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,∴从袋子中随机取出1个球,则它是黑球的概率是:3 7故答案为:3 7 .【题目点拨】本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.17、20【解题分析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg三、解答题(共7小题,满分69分)18、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解题分析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC 和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE 的面积最大,此时E 点坐标为(,),即当E 点坐标为(,)时,△CBE 的面积最大.考点:二次函数综合题.19、(1)详见解析;(2)1+2 【解题分析】(1)连接OD ,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC ,再求AC.【题目详解】(1)证明:连结OD .如图,CD 与O 相切于点D ,OD CD ,∴⊥ 2BDC 90∠∠∴+︒=,AB 是O 的直径,ADB 90∠∴︒=,即1290∠∠+︒=,1BDC ∠∠∴=,OA OD =,1A ∠∠∴=,BDC A ∠∠∴=;(2)解:在Rt ODC 中,C 45∠︒=,2212OC OD AC OA OC ∴==∴=+=+ .【题目点拨】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.20、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A 和B 两种支付方式的购买者共有928名.【解题分析】分析:(1)根据B 的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A 和D 的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A 种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A 和B 两种支付方式的购买者共有多少名.详解:(1)56÷28%=200, 即本次一共调查了200名购买者;(2)D 方式支付的有:200×20%=40(人),A 方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A 种支付方式所对应的圆心角为:360°×60200=108°, (3)1600×60+56200=928(名), 答:使用A 和B 两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21、(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解题分析】分析:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y 元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:9005001.55x x=⨯+, 解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y 元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%, 解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.22、(1)见详解;(2)x=18;(3) 416 m 2.【解题分析】(1)根据“垂直于墙的长度=2-÷总费用平行于墙的总费用垂直于可得函数解析式; (2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x 的函数解析式,配方成顶点式后利用二次函数的性质求解可得.【题目详解】(1)根据题意知,y =100002002150x -⨯=-23x +1003; (2)根据题意,得(-23x +1003)x =384, 解得x =18或x =32.∵墙的长度为24 m ,∴x =18.(3)设菜园的面积是S ,则S =(-23x +1003)x =-23x 2+1003x =-23 (x -25)2+12503. ∵-23<0,∴当x <25时,S 随x 的增大而增大. ∵x≤24,∴当x =24时,S 取得最大值,最大值为416.答:菜园的最大面积为416 m 2.【题目点拨】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.23、11x x +-, 【解题分析】运用公式化简,再代入求值.【题目详解】原式=2222211(1)()?11x x x x x -++-- =222(1)•(1)(1)x x x x x+-+ =11x x +- ,当+1时,原式1=+ 【题目点拨】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.24、π【解题分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【题目详解】原式()3.14 3.141π=--+÷ ()21-+-3.14 3.141π=-+11π=-π=.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.。

黑龙江省重点中学2024届中考数学全真模拟试题含解析

黑龙江省重点中学2024届中考数学全真模拟试题含解析

黑龙江省重点中学2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米2.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78 910 A .14,9B .9,9C .9,8D .8,93.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年5.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >6.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是()A.甲B.乙C.甲乙同样稳定D.无法确定7.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )A.1010123x x=-B.1010202x x=-C.1010123x x=+D.1010202x x=+8.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的个数有()A.1 B.2 C.3 D.410.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种二、填空题(共7小题,每小题3分,满分21分)11.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.12.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____. 13.已知平面直角坐标系中的点A (2,﹣4)与点B 关于原点中心对称,则点B 的坐标为_____ 14.若关于x 的方程x 2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.15.如图,矩形OABC 的边OA ,OC 分别在x 轴,y 轴上,点B 在第一象限,点D 在边BC 上,且∠AOD =30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,点B′和B 分别对应).若AB =2,反比例函数y =kx(k≠0)的图象恰好经过A′,B ,则k 的值为_____.16.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .17.已知抛物线y =-x 2+mx +2-m ,在自变量x 的值满足-1≤x≤2的情况下.若对应的函数值y 的最大值为6,则m 的值为__________.三、解答题(共7小题,满分69分)18.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.19.(5分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A 与D为对应点.20.(8分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.(1)图1中3条弧的弧长的和为,图2中4条弧的弧长的和为;(2)求图m中n条弧的弧长的和(用n表示).21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.22.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.23.(12分)如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.24.(14分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,213,22P ⎛⎫ ⎪ ⎪⎝⎭,()30,2P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】此题考查的是解直角三角形 如图:AC=4,AC ⊥BC ,∵梯子的倾斜角(梯子与地面的夹角)不能>60°. ∴∠ABC≤60°,最大角为60°.即梯子的长至少为米,故选C.2、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.3、D【解题分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4、B【解题分析】根据半衰期的定义,函数图象的横坐标,可得答案.【题目详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年, 故选B . 【题目点拨】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键. 5、C 【解题分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论. 【题目详解】解:∵关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,∴ 20(6)490k k ≠⎧⎨=--⨯>⎩, 解得:k<1且k≠1. 故选:C . 【题目点拨】本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键. 6、A 【解题分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【题目详解】∵S 甲2=1.4,S 乙2=2.5, ∴S 甲2<S 乙2,∴甲、乙两名同学成绩更稳定的是甲; 故选A . 【题目点拨】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 7、C 【解题分析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,1010123x x=+.故选C.考点:由实际问题抽象出分式方程.8、D【解题分析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4,CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9、C【解题分析】①图中有3个等腰直角三角形,故结论错误;②根据ASA证明即可,结论正确;③利用面积法证明即可,结论正确;④利用三角形的中线的性质即可证明,结论正确. 【题目详解】∵CE ⊥AB ,∠ACE=45°, ∴△ACE 是等腰直角三角形, ∵AF=CF , ∴EF=AF=CF ,∴△AEF ,△EFC 都是等腰直角三角形, ∴图中共有3个等腰直角三角形,故①错误,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC , ∴∠EAH=∠BCE ,∵AE=EC ,∠AEH=∠CEB=90°, ∴△AHE ≌△CBE ,故②正确,∵S △ABC =12BC•AD=12AB•CE ,AE ,AE=CE ,∴CE 2,故③正确, ∵AB=AC ,AD ⊥BC , ∴BD=DC , ∴S △ABC =2S △ADC , ∵AF=FC , ∴S △ADC =2S △ADF , ∴S △ABC =4S △ADF . 故选C . 【题目点拨】本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题. 10、B 【解题分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【题目详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【题目点拨】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题(共7小题,每小题3分,满分21分)11、a1+1ab+b1=(a+b)1【解题分析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.12、4 3【解题分析】试题分析:1204=2180rππ⨯,解得r=43.考点:弧长的计算.13、(﹣2,4)【解题分析】根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.【题目详解】解:∵点A (2,-4)与点B关于原点中心对称,∴点B的坐标为:(-2,4).故答案为:(-2,4).【题目点拨】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.14、30°【解题分析】试题解析:∵关于x 的方程2sin 0x α+=有两个相等的实数根, ∴()2241sin 0,α=--⨯⨯= 解得:1sin 2α=, ∴锐角α的度数为30°;故答案为30°.15 【解题分析】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=2m ,∴A′(12m ), ∵反比例函数k y x=(k≠0)的图象恰好经过点A′,B ,∴12 ,∴,∴故答案为316、10.5【解题分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.17、m=8或【解题分析】求出抛物线的对称轴分三种情况进行讨论即可.【题目详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.三、解答题(共7小题,满分69分)18、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.【解题分析】(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;(2)根据平均数、众数、中位数的定义计算可得.【题目详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2.故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1.【题目点拨】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.19、(1)见解析(2)见解析【解题分析】(1)根据旋转变换的定义和性质求解可得;(2)根据位似变换的定义和性质求解可得.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△DEF 即为所求.【题目点拨】本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.20、 (1)π, 2π;(2)(n ﹣2)π.【解题分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【题目详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【题目点拨】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.21、(1)证明见解析;(1)2【解题分析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF =∠AFD ,然后根据对顶角相等可得∠BFE =∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC =90°,∴∠1+∠BEF =∠1+∠AFD =90°,∴∠BEF =∠AFD .∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.22、(1)PD是⊙O的切线.证明见解析.(2)1.【解题分析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.23、(1)证明见解析;(2)15 2【解题分析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC ⊥OA , ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD , ∴∠2+∠5=90°,∵OA=OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.(2)作DF ⊥AB 于F ,连接OE ,∵DB=DE , ∴EF=12BE=3,在 RT △DEF 中,EF=3,DE=BD=5,EF=3 , ∴DF=22534-=∴sin ∠DEF=DF DE = 45 , ∵∠AOE=∠DEF , ∴在RT △AOE 中,sin ∠AOE=45AE AO = , ∵AE=6, ∴AO=152. 【题目点拨】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.24、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)1222m ≤≤或2122m -≤≤-;(3)33233n ≤≤-. 【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线3y x =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴122m ≤≤212m ≤≤-. (3)∵33M ⎛⎫- ⎪ ⎪⎝⎭、N (0,1), ∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°, ∴233QM =. ∵33OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =33OM =, ∴32OQ =∴232Q ⎫⎪⎪⎭. 332n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.。

2023年中考数学全真模拟卷(含答案)四

2023年中考数学全真模拟卷(含答案)四

2023年中考数学全真模拟卷第四模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

每小题给出的四个选项中只有一个....选项是最符合题意的)1.13-的相反数是()A .3B .-3C .13D .13-2.2015年9月14日,通过位于美国的两个LIGO 探测器,人类第一次探测到了引力波的存在,这次引力波的信号显著性极其大,探测结果只有三百五十万分之一的误差.三百五十万分之一约为0.0000002857.将0.0000002857用科学记数法表示应为()A .72.85710-⨯B .62085710-⨯C .60.285710-⨯D .82.85710-⨯3.在▱ABCD 中,AC AD ⊥,30B ∠=︒,2AC =,则▱ABCD 的周长是()A .4+B .8C .8+D .164.木箱里装有仅颜色不同的8张红色和若干张蓝色卡片,随机从木箱里摸出1张卡片记下颜色后再放回,经过多次的重复试验,发现摸到蓝色卡片的频率稳定在0.6附近,则估计木箱中蓝色卡片有()A .18张B .16张C .14张D .12张5.下列计算正确的是()A .325x x x +=B .()236x x =C .()336x x =D .236a a a ⋅=6.已知一次函数的图象与直线2y x =-平行,且与函数43y x =-的图象交y 轴于同一点,则这个一次函数的解析式是()A .23y x =--B .23y x =-+C .23y x =-D .23y x =+7.一副直角三角板按如图所示的方式摆放,其中点C 在FD 的延长线上,且AB ∥FC ,则∠CBD 的度数为()A .15°B .20°C .25°D .30°8.如图,是某几何体的三视图,根据三视图,描述物体的形状是正确的是()A .圆柱体B .长方体C .圆台D .半圆柱和长方体组成的组合体9.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED △,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,6AF =,4BF =,ADG △的面积为8,则点F 到BC 的距离为()A B C D 10.若二次函数223y ax ax a =-+-(a 是不为0的常数)的图象与x 轴交于A ,B 两点.下列结论:①0a >;②当1x >-时,y 随x 的增大而增大;③无论a 取任何不为0的数,该函数的图象必经过定点()1,3-;④若线段AB 上有且只有5个横坐标为整数的点,则a 的取值范围是1334a <<.其中正确的结论是()A .①②B .②④C .①③D .③④二、填空题(本大题共7小题,每小题4分,共28分)11.函数y =________.12.一组数据3,4,6,8,x 的平均数是6,则这组数据的中位数是________.13.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP.由作法得△OCP ≌△ODP 的根据是_________.14.如图,AB ∥CD ,直线l 平分∠AOE ,∠1=40°,则∠2=_____度.15.我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有________客房间.16.如图,点(4,)B m 在双曲线20(0)y x x=>上,点D 的双曲线6(0)y x x =->上,点A 在y 轴的正半轴上,若A 、B 、C 、D 构成的四边形为正方形,则对角线AC 的长是_____.17.如图,点F 在平行四边形ABCD 的边AD 上,延长BF 交CD 的延长线于点E ,交AC 于点O ,若19AOB COE S S ∆∆=,则AF DF =__________.三、解答题(本大题共3小题,每小题6分,共18分)18.有理数a ,b ,c在数轴上的位置如图所示.(1)a b -______0(填“>”“<”“=”);(2)试化简下式:a b b c a c ---+-.19.如图,点A ,B ,C ,D 在同一直线上,//AE DF ,//CE BF ,AE FD =.求证:AB CD =20.某中学为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1500名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种).调查结果统计如下:球类名称人数乒乓球42羽毛球a 排球15篮球33足球b解答下列问题:(1)这次抽样调查中的样本是________;(2)统计表中,a=________,b=________;(3)试估计上述1500名学生中最喜欢乒乓球运动的人数.四、解答题(本大题共3小题,每小题8分,共24分)21.如图,在145⨯的网格中,每个小正方形的边长都为1.网格线的交点称为格点,以格点为顶点的三角形称为格点三角形.已知直线l 及格点A ,B ,连接AB .(1)请根据以下要求依次画图:①在直线l 的左边画出一个格点ABC ∆(点C 不在直线l 上),且满足格点ABC ∆是直角三角形;②画出ABC ∆关于直线l 的轴对称A B C '''∆.(2)满足(1)的A B C '''∆面积的最大值为多少?22.如图,AB 是⊙O 的直径,点C 是⊙O 上一点(点C 不与点A ,B 重合),点E 是 BC 的中点,连接OE 交弦BC 于点D ,过点B 的直线与OE 的延长线交于点P ,连接AC ,CE ,BE ,∠EBP =∠ECB .(1)求证:BP 是⊙O 的切线;(2)若CE =2,∠EBP =30°,求阴影部分的面积.23.为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:普通板栗(件)精品板栗(件)总金额(元)甲购买情况23350乙购买情况41300(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a 件(10003000a ≤≤),则4000件板栗的销售总利润为w 元.问普通板栗和精品板栗各加工多少件,所获总利润最多?最多总利润是多少?五、解答题(本大题共2小题,每小题10分,共20分)24.如图,在等边三角形ABC 右侧作射线CP ,∠ACP=α(0°<α<60°),点A 关于射线CP 的对称点为点D ,BD 交CP 于点E ,连接AD ,AE .(1)依题意补全图形;(2)求∠DBC 的大小(用含α的代数式表示);(3)直接写出∠AEB 的度数;(4)用等式表示线段AE ,BD ,CE 之间的数量关系,并证明.25.已知:如图,在平面直角坐标系xOy 中,二次函数2()40y ax bx a =++≠与x 轴交于点A 、B ,点A 的坐标为(4,0),点B 的坐标为(2,0)-.(1)求该二次函数的表达式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当CQE ∆的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得ODF ∆是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2023年中考数学全真模拟卷答案第四模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

数学中考全真模拟测试卷(附答案)

数学中考全真模拟测试卷(附答案)
1.﹣3的绝对值是( )
A.﹣3B.3C.- D.
2.小友家阳台上有一个如图所示的移动台阶,它的主视图是( )
A. B. C. D.
3.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.已知正比例函数y=mx的图象过第一、三象限,则m的取值范围是( )
A.m<0B.m≤0C.m≥0D.m>0
5.计算(﹣2x2y3)•3xy2结果正确的是( )
A. ﹣6x2y6B. ﹣6x3y5C. ﹣5x3y5D. ﹣24x7y5
【答案】B
【解析】
【分析】根据单项式乘单项式法则直接计算即可.
【详解】解:(﹣2x2y3)•3xy2=﹣6x2+1y3+2=﹣6x3y5,
故选B.
【点睛】本题是对整式乘法的考查,熟练掌握单项式与单项式相乘的运算法则是解决本题的关键.
【详解】解:由图知,6张卡片中有2张是数字3,
∴从中任取一张是数字3的概率是 .
故选B.
【点睛】本题考查了概率公式.概率=所求情况数与总情况数之比.
8.广西北部湾某中学为了使学生能够更好地进行体育活动,决定修建一个长方体形状的游泳池,其底面周长为100 m,设游泳池的底面长方形的长为xm,要使游泳池的底面面积为400 m2,则可列方程为( )
【解析】
【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.
【详解】A、不是轴对称图形,也不是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、既是轴对称图形,又是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误,

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

原创2023学年中考数学全真模拟试题(含解析)

原创2023学年中考数学全真模拟试题(含解析)

一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答一律得0分.1.(3分)(2023•胡文原创)4的相反数是()A.4B.﹣4 C.D.考点:相反数分析:根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选B.点评:主要考查相反数的性质.相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)(2023•胡文原创)在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形考点:三角形内角和定理分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解答:解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.3.(3分)(2023•胡文原创)如图是由六个完全相同的正方体堆成的物体,则这一物体的正视图是()A.B.C.D.考点:简单组合体的三视图分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得左边一列有2个正方形,右边一列有一个正方形.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)(2023•胡文原创)把不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组分析:根据不等式组取解集的方法找出不等式组的解集,表示在数轴上即可.解答:解:,由②得:x<3,则不等式组的解集为﹣2≤x<3,表示在数轴上,如图所示:.故选A.点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2023•胡文原创)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:选手甲乙丙丁方差(环2)0.035 0.016 0.022 0.025则这四个人种成绩发挥最稳定的是()A.甲B.乙C.丙D.丁考点:方差分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S甲2,=0.035,S乙2=0.016,S,丙2=0.022,S,丁2=0.025,∴S乙2最小,∴这四个人种成绩发挥最稳定的是乙;故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(2023•胡文原创)已知⊙O1与⊙O2相交,它们的半径分别是4,7,则圆心距O1O2可能是()A.2B.3C.6D.12考点:圆与圆的位置关系分析:本题直接告诉了两圆的半径及两圆相交,求圆心距范围内的可能取值,根据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,则R﹣r <P<R+r.(P表示圆心距,R,r分别表示两圆的半径).解答:解:两圆半径差为3,半径和为11,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,3<O1O2<11.符合条件的数只有C.故选C.点评:本题考查了由数量关系及两圆位置关系确定圆心距范围内的数的方法.7.(3分)(2023•胡文原创)为了更好保护水资源,造福人类,某工厂计划建一个容积V(m3)一定的污水处理池,池的底面积S(m2)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是()A.B.C.D.考点:反比例函数的应用;反比例函数的图象分析:先根据V=Sh得出S关于h的函数解析式,再根据反比例函数的性质解答,注意深度h的取值范围.解答:解:∵V=Sh(V为不等于0的常数),∴S=(h≠0),S是h的反比例函数.依据反比例函数的图象和性质可知,图象为反比例函数在第一象限内的部分.故选C.点评:本题主要考查了反比例函数的应用和反比例函数的图象性质,要掌握它的性质才能灵活解题.反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答.8.(4分)(2023•胡文原创)的立方根是.考点:立方根分析:根据立方根的定义即可得出答案.解答:解:的立方根是;故答案为:.点评:此题考查了立方根,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.9.(4分)(2023•胡文原创)分解因式:1﹣x2= (1+x)(1﹣x).考点:因式分解-运用公式法专题:因式分解.分析:分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.解答:解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).点评:本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.10.(4分)(2023•胡文原创)地球绕太阳每小时转动经过的路程约为110000千米,将110000用科学记数法表示为 1.1×105.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:110000=1.1×105,故答案为:1.1×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(2023•胡文原创)如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ= 35 °.考点:角平分线的性质分析:根据到角的两边距离相等的点在角的平分线上判断OQ是∠AOB的平分线,然后根据角平分线的定义解答即可.解答:解:∵QC⊥OA于C,QD⊥OB于D,QC=QD,∴OQ是∠AOB的平分线,∵∠AOB=70°,∴∠AOQ=∠A0B=×70°=35°.故答案为:35.点本题考查了角平分线的判定以及角平分线的定义,根据到角的两边距离相评:等的点在角的平分线上判断OQ是∠AOB的平分线是解题的关键.12.(4分)(2023•胡文原创)九边形的外角和为360 °.考点:多边形内角与外角分析:任意多边形的外角和都是360°.解答:解:任意多边形的外角和都是360°,故九边形的外角和为360°.点评:本题主要考查多边形的外角和定理,任意多边形的外角和都是360°.13.(4分)(2023•胡文原创)计算:+= 1 .考点:分式的加减法专题:计算题.分析:把分母不变.分子相加减即可.解答:解:原式= ==1.故答案为:1.点评:本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.14.(4分)(2023•胡文原创)方程组的解是.考点:解二元一次方程组分析:运用加减消元法解方程组.解答:解:(1)+(2),得2x=4,x=2.代入(1),得2+y=3,y=1.故原方程组的解为.点评:这类题目的解题关键是掌握方程组解法中的加减消元法和代入消元法.15.(4分)(2023•胡文原创)如图,顺次连结四边形ABCD四边的中点E、F、G、H,则四边形EFGH的形状一定是平行四边形.考点:中点四边形分析:顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.解答:解:如图,连接AC ,∵E、F、G 、H分别是四边形ABCD边的中点,∴HG∥AC,HG=AC,EF∥AC ,EF=AC;∴EF=HG且EF∥HG;∴四边形EFGH是平行四边形.故答案是:平行四边形.点评:本题考查了平行四边形的判断及三角形的中位线定理的应用,三角形的中位线平行于第三边,并且等于第三边的一半.16.(4分)(2023•胡文原创)如图,菱形ABCD的周长为8,对角线AC和BD 相交于点O,AC:BD=1:2,则AO:BO= 1:2 ,菱形ABCD的面积S= 16 .考点:菱形的性质分析:由菱形的性质可知:对角线互相平分且垂直又因为AC:BD=1:2,所以AO:BO=1:2,再根据菱形的面积为两对角线乘积的一半计算即可.解答:解:∵四边形ABCD是菱形,∴AO=CO,BO=DO ,∴AC=2AO,BD=2BO,∴AO:BO=1:2;∵菱形ABCD的周长为8,∴AB=2,∵AO:BO=1:2,∴AO=2,BO=4,∴菱形ABCD的面积S==16,故答案为:点评:本题考查了菱形性质和勾股定理,注意:菱形的对角线互相垂直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一半.17.(4分)(2023•胡文原创)有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 3 ,依次继续下去…,第2023次输出的结果是 3 .考点:代数式求值专题:图表型.分析:由输入x为7是奇数,得到输出的结果为x+5,将偶数12代入x代入计算得到结果为6,将偶数6代入x计算得到第3次的输出结果,依此类推得到一般性规律,即可得到第2023次的结果.解答:解:根据题意得:开始输入x 的值是7,可发现第1次输出的结果是7+5=12;第2次输出的结果是×12=6;第3次输出的结果是×6=3;第4次输出的结果为3+5=8;第5次输出的结果为×8=4;第6次输出的结果为×4=2;第7次输出的结果为×2=1;第8次输出的结果为1+5=6;归纳总结得到输出的结果从第2次开始以6,3,8,4,2,1循环,∵(2023﹣1)÷6=335…2,则第2023次输出的结果为3.故答案为:3;3点评:此题考查了代数式求值,弄清题中的规律是解本题的关键.三、解答题(共89分):在答题卡上相应题目的答题区域内作答.18.(9分)(2023•胡文原创)计算:(4﹣π)0+|﹣2|﹣16×4﹣1+÷.考点:实数的运算;零指数幂;负整数指数幂分析:分别进行零指数幂、绝对值、负整数指数幂、二次根式的化简等运算,然后按照实数的运算法则计算即可.解答:解:原式=1+2﹣4+2÷=1.点评:本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂、二次根式的化简等知识点,属于基础题.19.(9分)(2023•胡文原创)先化简,再求值:(x﹣1)2+x(x+2),其中x=.考点:整式的混合运算—化简求值分析:原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=x2﹣2x+1+x2+2x=2x2+1,当x=时,原式=4+1=5.点评:此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,多项式除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(9分)(2023•胡文原创)如图,已知AD是△ABC的中线,分别过点B、C 作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.考点:全等三角形的判定与性质.专题:证明题.分析:根据中线的定义可得BD=CD,然后利用“角角边”证明△BDE和△CDF全等,根据全等三角形对应边相等即可得证.解答:证明:∵AD是△ABC的中线,∴BD=CD,∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BDE和△CDF中,,∴△BDE≌△CDF(AAS),∴BE=CF.点评:本题考查了全等三角形的判定与性质,利用三角形全等证明边相等是常用的方法之一,要熟练掌握并灵活运用.21.(9分)(2023•胡文原创)四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.考点:列表法与树状图法;反比例函数图象上点的坐标特征;概率公式专题:计算题.分析:(1)求出四张卡片中抽出一张为3的概率即可;(2)列表得出所有等可能的情况数,得出点的坐标,判断在反比例图象上的情况数,即可求出所求的概率.解答:解:(1)根据题意得:随机地从盒子里抽取一张,抽到数字3的概率为;(2)列表如下:1 2 3 41 ﹣﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣﹣所有等可能的情况数有12种,其中在反比例图象上的点有2种,则P==.点评:此题考查了列表法与树状图法,反比例图象上点的坐标特征,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)(2023•胡文原创)已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.考点:二次函数图象上点的坐标特征;二次函数图象与几何变换分析:(1)将点(1,﹣2)代入y=a(x﹣3)2+2,运用待定系数法即可求出a 的值;(2)先求得抛物线的对称轴为x=3,再判断A(m,y1)、B(n,y2)(m<n <3)在对称轴左侧,从而判断出y1与y2的大小关系.解答:解:(1)∵抛物线y=a(x﹣3)2+2经过点(1,﹣2),∴﹣2=a(1﹣3)2+2,解得a=﹣1;(2)∵函数y=﹣(x﹣3)2+2的对称轴为x=3,∴A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,又∵抛物线开口向下,∴对称轴左侧y随x的增大而增大,∵m<n<3,∴y1<y2.点评:此题主要考查了二次函数的性质,二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出是解题关键.23.(9分)(2023•胡文原创)某校开展“中国梦•胡文原创梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有200 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是36 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费?考点:条形统计图;扇形统计图分析:(1)根据手抄报的人数和所占的百分比求出总人数,用1减去其它所占的百分百就是独唱的百分比,再乘以360°即可得出扇形统计图中“独唱”部分的圆心角的度数,再用总人数减去其它的人数就是绘画的人数,从而补全统计图;(2)根据征文、独唱、绘画、手抄报的人数和每次的标准求出各项的费用,再加起来即可求出总费用.解答:解:(1)绘画的人数是800×25%=200(名);扇形统计图中“独唱”部分的圆心角是360°×(1﹣28%﹣37%﹣25%)=36(度),故答案为:200,36.如图:(2)根据题意得:296×10+80×12+200×15+224×12=9608(元),答:开展本次活动共需9608元经费.点评:此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(9分)(2023•胡文原创)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l (cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?考点:一元二次方程的应用分析:(1)根据题目所给的函数解析式把t=4s代入求得l的值即可;(2)根据图可知,二者第一次相遇走过的总路程为半圆,分别求出甲、乙走的路程,列出方程求解即可;(3)根据图可知,二者第二次相遇走过的总路程为一圈半,也就是三个半圆,分别求出甲、乙走的路程,列出方程求解即可.解答:解:(1)当t=4s时,l=t2+t=8+6=14(cm),答:甲运动4s后的路程是14cm;(2)由图可知,甲乙第一次相遇时走过的路程为半圆21cm,甲走过的路程为t2+t,乙走过的路程为4t,则t2+t+4t=21,解得:t=3或t=﹣14(不合题意,舍去),答:甲、乙从开始运动到第一次相遇时,它们运动了3s;(3)由图可知,甲乙第一次相遇时走过的路程为三个半圆:3×21=63cm,则t2+t+4t=63,解得:t=7或t=﹣18(不合题意,舍去),答:甲、乙从开始运动到第二次相遇时,它们运动了7s.点评:本题考查了一元二次方程的应用,试题比较新颖.解题关键是根据图形分析相遇问题,第一次相遇时二者走的总路程为半圆,第二次相遇时二者走的总路程为三个半圆,本题难度一般.25.(12分)(2023•胡文原创)如图,直线y=﹣x+2分别与x、y轴交于点B、C,点A(﹣2,0),P是直线BC上的动点.(1)求∠ABC的大小;(2)求点P的坐标,使∠APO=30°;(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.考点:一次函数综合题分析:(1)求得B、C的坐标,在直角△BOC中,利用三角函数即可求解;(2)取AC中点Q,以点Q为圆心,2为半径长画圆⊙Q,⊙Q与直线BC的两个交点,即为所求;(3)当BC在不同位置时,点P的个数会发生改变,使∠APO=30°的点P 的个数情况有四种:1个、2个、3个、4个.如答图2所示.解答:解:(1)在y=﹣x+2中,令x=0,得y=2;令y=0,得x=2,∴C(0,2),B(2,0),∴OC=2,OB=2.tan∠ABC===,∴∠ABC=60°.(2)如答图1所示,连接AC.由(1)知∠ABC=60°,∴BC=2OB=4.又∵AB=4,∴AB=BC,∴△ABC为等边三角形,AB=BC=AC=4.取AC中点Q,以点Q为圆心,2为半径长画圆,与直线BC交于点P1,P2.∵QP1=2,QO=2,∴点P1与点C重合,且⊙Q经过点O.∴P1(0,2).∵QA=QO,∠CAB=60°,∴△AOQ为等边三角形.∴在⊙Q中,AO所对的圆心角∠OQA=60°,由圆周角定理可知,AO所对的圆周角∠APO=30°,故点P1、P2符合条件.∵QC=QP2,∠ACB=60°,∴△P2QC为等边三角形.∴P2C=QP=2,∴点P2为BC的中点.∵B(2,0),C(0,2),∴P2(1,).综上所述,符合条件的点P坐标为(0,2),(1,).(3)当BC在不同位置时,点P的个数会发生改变,使∠APO=30°的点P的个数情况有四种:1个、2个、3个、4个.如答图2所示,以AO为弦,AO所对的圆心角等于60°的圆共有2个,记为⊙Q,⊙Q′,点Q,Q′关于x轴对称.∵直线BC与⊙Q,⊙Q′的公共点P都满足∠APO=∠AQO=∠AQ′O=30°,∴点P的个数情况如下:①有1个:直线BC与⊙Q(或⊙Q′)相切;②有2个:直线BC与⊙Q(或⊙Q′)相交;③有3个:直线BC与⊙Q(或⊙Q′)相切,同时与⊙Q(或⊙Q′)相交;直线BC过⊙Q与⊙Q′的一个交点,同时与两圆都相交;④有4个:直线BC同时与两圆都相交,且不过两圆的交点.点评:本题是代数几何综合题,考查了坐标平面内直线与圆的位置关系.难点在于第(3)问,所涉及的情形较多,容易遗漏.26.(14分)(2023•胡文原创)如图1,在平面直角坐标系中,正方形OABC的顶点A(﹣6,0),过点E(﹣2,0)作EF∥AB,交BO于F;(1)求EF的长;(2)过点F作直线l分别与直线AO、直线BC交于点H、G;①根据上述语句,在图1上画出图形,并证明=;②过点G作直线GD∥AB,交x轴于点D,以圆O 为圆心,OH 长为半径在x轴上方作半圆(包括直径两端点),使它与GD 有公共点P .如图2所示,当直线l 绕点F旋转时,点P也随之运动,证明:=,并通过操作、观察,直接写出BG 长度的取值范围(不必说理);(3)在(2)中,若点M(2,),探索2PO+PM的最小值.考点:圆的综合题.3718684分析:(1)利用正方形与平行线的性质,易求线段EF的长度.(2)①首先依题意画出图形,如答图1所示.证明△OFH∽△BFG,得;由EF∥AB,得.所以;②由OP=OH,则问题转化为证明=.根据①中的结论,易得=,故问题得证.(3)本问为探究型问题,利用线段性质(两点之间线段最短)解决.如答图2所示,构造矩形,将2PO+PM转化为NK+PM,由NK+PM≥NK+KM,NK+KM ≥MN=8,可得当点P在线段MN上时,2OP+PM的值最小,最小值为8.解答:(1)解:解法一:在正方形OABC中,∠FOE=∠BOA=∠COA=45°.∵EF∥AB,∴∠FEO=∠BAO=90°,∴∠EFO=∠FOE=45°,又E(﹣2,0),∴EF=EO=2.解法二:∵A(﹣6,0),C(0,6),E(﹣2,0),∴OA=AB=6,EO=2,∵EF∥AB,∴,即,∴EF=6×=2.(2)①画图,如答图1所示:证明:∵四边形OABC是正方形,∴OH∥BC,∴△OFH∽△BFG,∴;∵EF∥AB,∴;∴.②证明:∵半圆与GD交于点P,∴OP=OH.由①得:,又EO=2,EA=OA﹣EO=6﹣2=4,∴.通过操作、观察可得,4≤BG≤12.(3)解:由(2)可得:=,∴2OP+PM=BG+PM.如答图2所示,过点M作直线MN⊥AB于点N,交GD于点K,则四边形BNKG为矩形,∴NK=BG.∴2OP+PM=BG+PM=NK+PM≥NK+KM,当点P与点K重合,即当点P在直线MN上时,等号成立.又∵NK+KM≥MN=8,当点K在线段MN上时,等号成立.∴当点P在线段MN上时,2OP+PM的值最小,最小值为8.点评:本题是几何综合题,主要考查了相似三角形与圆的相关知识.图中线段较多,注意理清关系.第(1)(2)问考查几何基础知识,难度不大;第(3)问考查几何最值问题,有一定的难度.需要注意的是:线段的性质(两点之间线段最短)是初中数学常见的最值问题的基础,典型的展开图﹣最短路线问题、轴对称﹣最短路线问题,均是利用这一性质,希望同学们能够举一反三、触类旁通.四、附加题(共10分):在答题卡上相应题目的答题区域内作答.友情提示:请同学们做完上面考题后,再认真检查一遍,估计一下你的得分情况,如果你全卷得分低于90分(及格线),则本题的得分将计入全卷总分,但计入后全卷总分不超过90分;如果你全卷已经达到或超过90分,则本题的得分不计入全卷总分.27.(2023•胡文原创)方程x+1=0的解是x=﹣1 .考点:解一元一次方程.分析:通过移项即可求得x的值.解答:解:由原方程移项,得x=﹣1.故答案是:x=﹣1.点评:本题考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.28.(2023•胡文原创)如图,∠AOB=90°,∠BOC=30°,则∠AOC= 60 °.考点:余角和补角.3718684分析:根据图形,求出∠BOC的余角即可.解答:解:由图形可知,∠AOC=∠AOB﹣∠BOC=90°﹣30°=60°.故答案为:60.点评:考查了余角的定义:若两个角的和为90°,则这两个角互余.。

2024年重庆市沙坪坝区中考数学全真模拟试卷及参考答案

2024年重庆市沙坪坝区中考数学全真模拟试卷及参考答案

2024年重庆市沙坪坝区中考数学全真模拟试卷一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)﹣2的相反数是()A.2B.﹣2C.D.2.(4分)六个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B.C.D.3.(4分)反比例函数的图象一定经过的点是()A.(1,6)B.(﹣1,﹣6)C.(2,﹣3)D.(3,2)4.(4分)如图,直线m∥n,点A在直线m上,点B在直线n上,连接AB,过点A作AC ⊥AB,交直线n于点C.若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.60°5.(4分)如图,在平面直角坐标系中,△OAB和△OCD是以原点O为位似中心的位似图形.若OB=2OD,△OCD的周长为3,则△OAB的周长为()A.6B.9C.12D.306.(4分)估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间7.(4分)下列图形都是由同样大小的菱形按照一定规律组成的,其中第①个图形中共有9个菱形,第②个图形中共有12个菱形,第③个图形中共有15个菱形,…,按此规律排列下去,第⑥个图形中的菱形个数为()A.21B.24C.27D.308.(4分)如图,在△ABC中,∠B=30°,点O是边AB上一点,以点O为圆心,以OA 为半径作圆,⊙O恰好与BC相切于点D,连接AD.若AD平分∠CAB,,则线段AC的长是()A.2B.C.D.9.(4分)如图,正方形ABCD中,点E为边BA延长线上一点,点F在边BC上,且AE =CF,连接DF,EF.若∠FDC=α.则∠AEF=()A.90°﹣2αB.45°﹣αC.45°+αD.α10.(4分)已知a>b>0>c>d>e,对多项式a﹣b﹣c﹣d﹣e任意添加绝对值运算(不可添加为单个字母的绝对值或绝对值中含有绝对值的情况)后仍只含减法运算,称这种操作为“绝对领域”,例如:a﹣|b﹣c﹣d|﹣e,a﹣|b﹣c|﹣|d﹣e|等,下列相关说法正确的数是()①一定存在一种“绝对领域”操作使得操作后的式子化简的结果为非负数;②一定存在一种“绝对领域”操作使得操作后的式子化简的结果与原式的和为0;③进行“绝对领域”操作后的式子化简的结果可能有9种结果.A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)(4﹣π)0﹣|﹣3|=.12.(4分)如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.13.(4分)寒假期间,小明、小红二人在《满江红》《流浪地球2》《中国乒乓》《熊出没》四部影片中各自随机选择了一部影片观看(假设两人选择每部影片的机会均等),则二人恰好选择同一部影片观看的概率为.14.(4分)2023年,哈尔滨旅游强势出圈,全市旅游总收入达到1700亿元,据了解,2021年哈尔滨全市旅游总收入为950亿元,若设这两年全市旅游总收入的年平均增长率为x,则可列方程:.15.(4分)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,∠A=45°,AD=6,BC=2,以点C为圆心,CB长为半径画弧交CD于点E,则图中阴影部分面积为.16.(4分)如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.17.(4分)若关于x的一元一次不等式组有且仅有3个偶数解,且关于y的分式方程的解为非负数,则所有满足条件的整数m的值之和是.18.(4分)如果一个四位自然数的各数位上的数字互不相等且均不为0,满足a+b+c =d2;那么称这个四位数为“和方数”.例如:四位数2613,因为2+6+1=32,所以2613是“和方数”;四位数2514,因为2+5+1≠42,所以2514不是“和方数”.若是“和方数”,则这个数是;若四位数M是“和方数”,将“和方数”M的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N,若M+N能被33整除,则满足条件的M的最大值是.三、解答题(本大题共8个小题,19题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)y(x+y)+(x+y)(x﹣y);(2).20.(10分)为进一步营造良好的通信科技人才成长环境,提升信息科技素养,培养科技创新后备人才,某学校开展了以“青少年通信科技创新大赛”为主题的科技系列活动,初赛采用标准试题线上答题.其中该校对七、八年级学生进行了初赛测试,现从七、八年级中各随机抽取10名学生的成绩(百分制,单位:分)进行整理、描述和分析(成绩得分用x表示,共分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100),下面给出了部分信息:七年级10名学生的成绩是:63,72,76,82,82,86,86,86,97,100八年级10名学生的成绩在C组中的数据是:84,86,82,87,87.七、八年级抽取的学生成绩统计表年级七年级八年级平均数8383中位数84a众数b87八年级抽取的学生成绩扇形统计图请根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)根据以上数据,你认为哪个年级学生的初赛成绩更好?请说明理由(写出一条理由即可);(3)该校七年级有480人、八年级有560人参加了此次初赛测试,请估计两个年级参加初赛测试的成绩不低于90分的共有多少人.21.(10分)如图,在Rt△ABC中,∠B=90°,AD平分∠BAC.小明在刚学完“三角形全等的判定”这节课后,想利用所学知识,推导出△ABD和△ACD面积的比值与AB,AC两边比值的关系.他的思路是:过点D作AC的垂线,垂足为点H,再根据三角形全等来证明△ABD和△ACD的高相等,进一步得到△ABD和△ACD的面积之比等于∠BAC 的两邻边边长之比.请根据小明的思路完成以下作图与填空:(1)用直尺和圆规,过点D作AC的垂线,垂足为点H(只保留作图痕迹).(2)证明:∵DH⊥AC,∴∠AHD=90°=∠B.∵AD平分∠BAC,∴①.在△ABD和△AHD中,∴△ABD≌△AHD(AAS).∴③.∵,,∴.小明再进一步研究发现,只要一个三角形被其任意一内角角平分线分为两个三角形,均有此结论.请你依照题意完成下面命题:如果一个三角形满足被其任意一内角角平分线分为两个三角形,那么④.22.(10分)远方食品公司有甲、乙两个组共36名工人.甲组每天制作6400个粽子,乙组每天制作12000个粽子.已知乙组每人每天制作的粽子数量是甲组每人每天制作粽子数量的.(1)求甲、乙两组各有多少名工人?(2)为了提高粽子的日产量,公司决定从乙组抽调部分人员到甲组中,抽调后甲组每人每天制作粽子数量提高,而乙组每人每天制作粽子数量降低.若每天至少生产20300个粽子,则至少需要抽调多少人到甲工作组?23.(10分)如图1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=4,AB=10,点P 在四边形的边上,且沿着点B→C→D→A运动.设点P的运动路程为x,记AB、BP、P A 围成的面积为S,y1=S,.(1)请直接写出y1与x的函数关系式,并写出x的取值范围;(2)如图2,平面直角坐标系中已画出函数y2的图象,请在同一坐标系中画出函数y1的图象,并根据函数图象,写出函数y的一条性质;(3)结合y1与y2的函数图象,直接写出当y1>y2时,x的取值范围.(结果保留一位小数,误差范围不超过0.2).24.(10分)今年夏季我市持续高温引发多地山火.如图,某地山火火口AB宽10米,受风力等因素的影响,火源头A正沿东北方向的AD蔓延,火源头B正沿北偏东60°方向的BC蔓延,山火救援队在前方赶造一条阻燃带CD,已知CD∥AB,AB与CD间的距离为40米.(1)求阻燃带CD的长度(精确到个位);(2)若救援队赶造阻燃带的速度为每小时12米,火源头A的蔓延速度是每小时15米,火源头B的蔓延速度是每小时20米,受热浪影响,火源头到来前10分钟无法工作.通过计算说明,救援队能否在最先到达阻燃带CD的火源头到来前10分钟赶造好阻燃带?(参考数据:,)25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2过点(2,)且交x轴于点A(1,0),点B,交y轴于点C,顶点为D,连接AC,BC.(1)求抛物线的表达式.(2)点P是直线BC下方抛物线上的一动点,过点P作PM∥AC交x轴于点M,PH∥x 轴交BC于点H,求PM+PH的最大值,以及此时点P的坐标.(3)连接DA,把原抛物线沿射线DA方向平移个单位长度后交x轴于A,B两点(A′在B′右侧),在新抛物线上是否存在一点G,使得∠GA′B′=45°,若存在,求出点G的坐标,若不存在,请说明理由.26.(10分)已知△ABC为等边三角形,D是边AB上一点,连接CD,点E为CD上一点,连接BE.(1)如图1,延长BE交AC于点F,若∠CBF=45°,,求CF的长;(2)如图2,将△BEC绕点C顺时针旋转60°到△AGC,延长BC至点H,使得CH=BD,连接AH交CG于点N,求证CE=DE+2GN;(3)如图3,AB=8,点H是BC上一点,且BD=2CH,连接DH,点K是AC上一点,CK=AD,连接DK,BK,将△BKD沿BK翻折到△BKQ,连接CQ,当△ADK的周长最小时,直接写出△CKQ的面积.2024年重庆市沙坪坝区中考数学全真模拟试卷参考答案一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.A;2.C;3.C;4.B;5.A;6.B;7.B;8.C;9.B;10.B 二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.﹣2;12.250;13.;14.950(1+x)2=1700;15.6﹣π;16.2;17.8;18.8354;6213三、解答题(本大题共8个小题,19题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)xy+x2;(2).;20.86.5;86;30;21.∠BAD=∠HAD;BD=DH;这两个三角形的面积之比,等于这个角的两条邻边边长之比.;22.(1)甲组有16名工人,乙组有20名工人;(2)至少需要抽调7人到甲工作组.;23.(1)y1=;(2)作图见解答过程;当0<x<5时,y随x的增大而增大;当5<x<9时,y随x的增大而不变;当9<x<14时,y随x的增大而小;(3)3.2<x<13.2.;24.(1)阻燃带CD的长度约为39米;(2)救援队能在最先到达阻燃带CD的火源头到来前10分钟赶造好阻燃带,理由见解答.;25.(1);(2)最大值为,此时;(3)点G的坐标为:(1,﹣)或(﹣2,).;26.(1)2.(2)详见解答.(3)4.。

数学中考全真模拟试题(附答案)

数学中考全真模拟试题(附答案)
12.函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为-8,最大值为1,则m的取值范围是()
A. 0≤m<2B. 0≤m≤5C.m>5D. 2≤m≤5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分解因式:m2-6m+9=_______ .
14.在一个不透明 袋子中装有4个白球,a个红球,这些球除颜色外都相同.若从袋子中随机摸出1个球是红球的概率为 ,则a=___.
【详解】解:从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D.
综上所述,只有A选项符合条件,这个几何体是圆柱.
故选:A.
【点睛】本题考查由三视图判定几何体,掌握几何体的特征是正确选择的关键.
3.2020年7月23日,中国首次火星探测任务“天问一号”探测器顺利升空.在天问一号飞抵距离地球1200000公里的时候,还专门对地球和月球进行了合影“拍照”,具有里程碑式的意义.数字1200000用科学记数法表示为()
数学中考综合模拟检测试题
学校________班级________姓名________成绩________
(考试时间:120分钟 满分:120分)
一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.2021的倒数是()
A.2021B.-2021C. D.
A.5000(1+2x)=7500
B.5000(1+x)=7500
C.5000(1+x)2=7500
D.5000+5000(1+x)+5000(1+x)2=7500

河北省邢台市第五中学2024届中考数学全真模拟试卷含解析

河北省邢台市第五中学2024届中考数学全真模拟试卷含解析

河北省邢台市第五中学2024届中考数学全真模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,Rt AOB 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .2.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .3.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .34.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a 元,则原售价为( ) A .(a ﹣20%)元B .(a +20%)元C .a 元D . a 元5.如图所示的几何体的俯视图是( )A .B .C .D .6.关于8的叙述正确的是( ) A .8=35+ B .在数轴上不存在表示8的点 C .8=±22D .与8最接近的整数是37.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( ) A .26±B .6±C .2或3D .2或38.学校小组5名同学的身高(单位:cm )分别为:147,156,151,152,159,则这组数据的中位数是( ). A .147B .151C .152D .1569.π这个数是( ) A .整数B .分数C .有理数D .无理数10.在直角坐标系中,设一质点M 自P 0(1,0)处向上运动一个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处……,如此继续运动下去,设P n (x n ,y n ),n =1,2,3,……,则x 1+x 2+……+x 2018+x 2019的值为( )A .1B .3C .﹣1D .2019二、填空题(共7小题,每小题3分,满分21分)11.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC=30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ=OQ ,则满足条件的∠OCP 的大小为_______.12.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.13.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为_____.14.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.15.在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1.则这位选手五次射击环数的方差为.16.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=_____.17.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.三、解答题(共7小题,满分69分)18.(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数 6 7 8 9 10甲命中相应环数的次数0 1 3 1 0乙命中相应环数的次数 2 0 0 2 1(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)19.(5分)如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得△ABC∽△CDE.(保留作图痕迹不写作法)20.(8分)《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.21.(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D 类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?22.(10分)如图,已知矩形 OABC 的顶点A 、C 分别在 x 轴的正半轴上与y 轴的负半轴上,二次函数228255y x x =--的图像经过点B 和点C .(1)求点 A 的坐标;(2)结合函数的图象,求当 y<0 时,x 的取值范围. 23.(12分)如图,已知一次函数的图象与反比例函数的图象交于A,B 两点,点A 的横坐标是2,点B的纵坐标是-2。

中考全真模拟测试 数学试题 附答案解析

中考全真模拟测试 数学试题 附答案解析
答案与解析
一.选择题
1.计算 的结果是( )
A.1 8B.9C.-9D.-1.8
【答案】B
【解析】
【分析】
先去括号,然后计算,即可得到答案.
【详解】解: ;
故选择:B.
【点睛】本题考查了有理数的减法运算,解题的关键是掌握去括号法则.
2.如图,直线 , , ,则 的度数是()
A. B. C. D.
【答案】C
5.若不等式组 无解,那么m的取值范围是()
A.m>2B.m<2C.m≥2D.m≤2
【答案】D
【解析】
【分析】
先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
【详解】解:
由①得,x>2,
由②得,x<m,
又因为不等式组无解,
所以根据”大大小小解不了”原则,
m≤2.
读书时间(小时)
7
8
9
10
11
学生人数
6
10
9
8
7
A.9,8B.9,9C.9.5,9D.9.5,8
【答案】A
【解析】
【分析】
根据中位数和众数的定义进行解答即可.
【详解】由表格,得该班学生一周读书时间的中位数和众数分别是9,8.
【点睛】本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.
15.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.
16.如图,PA,PB分别切⊙O于点A,B.若∠P=100°,则∠ACB的大小为_____(度).
17.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.

2024届重庆市九龙坡区中考数学全真模拟试题含解析

2024届重庆市九龙坡区中考数学全真模拟试题含解析

2024届重庆市九龙坡区中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)1.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元 B .200元C .225元D .259.2元3.在函数y =1xx 中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠14.如图所示的几何体的左视图是( )A .B .C .D .5.若矩形的长和宽是方程x 2-7x+12=0的两根,则矩形的对角线长度为( ) A .5B .7C .8D .106.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A :篮球,B :排球,C :足球,D :羽毛球,E :乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A .选科目E 的有5人B .选科目A 的扇形圆心角是120°C .选科目D 的人数占体育社团人数的15D .据此估计全校1000名八年级同学,选择科目B 的有140人 7.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >08.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .99.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π- B .2233π-C .233π- D .233π-10.若关于x 的分式方程的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3B .1,2C .1,3D .2,3二、填空题(本大题共6个小题,每小题3分,共18分)11.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表: 价格/(元/kg )12 10 8 合计/kg 小菲购买的数量/kg2 2 2 6 小琳购买的数量/kg1236从平均价格看,谁买得比较划算?( )A .一样划算B .小菲划算C .小琳划算D .无法比较12.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= .13.已知一组数据4,x ,5,y ,7,9的平均数为6,众数为5,则这组数据的中位数是_____.14.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。

中考全真模拟测试 数学试题 含答案解析

中考全真模拟测试 数学试题 含答案解析

一、选择题(每小题3分,共30分,每小题仅有一个答案是正确的)1.计算:1(2)()(2)2-÷-⨯-的结果是( )A .-8B .8C .-2D .22.如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为( )A .B .2C .2D .63.x =1是关于的一元二次方程x 2+ax +2b =0的解,则2a +4b =( )A. -2 .B. -3 .C. 4 .D. -6.4.点(1,m),(2,n)在函数1y x =-+的图象上,则,m n 的关系是( )A. m n ≤B.m n =C. m n <D.m n >5.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为( )A .2B .3C .4D .56.把一根9m 长的钢管截成1m 长和2m 长两种规格均有的短钢管,且没有余料,设某种截法中1m 长的钢管有a 根,则a 的值可能有( )A .3种B .4种C .5种D .9种7.如图,点A 在⊙O 上,BC 为⊙O 的直径,AB =4,AC =3,D 是AB 的中点,CD 与AB 相交于点P ,则CP 的长为( )A B .32 C .72 D 8.如图,在△ABC 中,∠B =50°,CD ⊥AB 于点D ,∠BCD 和∠BDC 的角平分线相交于点E ,F 为边AC 的中点,CD =CF ,则∠ACD +∠CED =( )A .125°B .145°C .175°D .190°9.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1.x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <﹣3 B .c <﹣2 C .c <14 D .c <110.如图,ABCD 是正方形,点E 、F 在直线AC 上,CE =2, ∠E +∠F =45°,设AC =x ,AF =y ,则y 关于x 的函数关系式为( )A 2y x = B. 24x y = C. y =3x D. y =2-x 二、填空题(每小题4分,共24分)11.分解因式:am 2﹣9a = . 12.老师给出一个函数,甲、乙各指出了这个函数的一个性质:甲:第一、三象限有它的图象;乙:在每个象限内,y 随x 的增大而减小.请你写一个满足上述性质的函数表达式 .13.若关于x 的方程15102x m x x-=--无解,则m = . 14.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE .图中,∠BAC = 度.15.如图,双曲线9(0)y xx=>经过矩形OABC的顶点B,双曲线(0)ky xx=>交AB,BC于点E.F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.16.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是.三、解答题:(本题共7小题,计66分)17.(本题6分)计算:(﹣2)2﹣|﹣2|﹣2cos45°+(3﹣π)018.(本题8分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A.B.C.D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.19.(本题8分)寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元;(1)求每副围棋和每副中国象棋各多少元;(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?20.(本题10分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.21.(本题10分)如图,抛物线y=-x2+2x+c与x轴交于A、B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(-1,0).(1)求该抛物线的解析式及顶点M的坐标;(2)求△EMF 与△BNF 的面积之比.22.(本题10分)如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD =CB ,连接DO 并延长交CB 的延长线于点E .(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE =2,DE =4,求圆的半径及AC 的长.23.(本题14分)已知抛物线1C :21112y x x =-+,点F (1,1). (1)求抛物线1C 的顶点坐标; (2)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF+=; ②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立?请说明理由; (3)将抛物线1C 作适当的平移,得抛物线2C :221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m 的最大值.参考答案一、选择题:CBADA BDCBB二、填空题:11. (3)(3)a m m +- 2y x =等 12. 8-13. 3614. 251815.三、解答题17.【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:(﹣2)2﹣|﹣2|﹣2cos 45°+(3﹣π)0, =4﹣(2﹣)﹣2×+1, =4﹣2+﹣+1, =3.【点评】本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.18.解:(1)y =10÷25%=40,x =40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种 ∴P (甲乙)=62=31答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算 19.【解答】解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:,∴,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40﹣z )副,根据题意得:16z +10(40﹣z )≤550,∴z ≤25,∴最多可以购买25副围棋;【点评】本题考查二元一次方程组,一元一次不等式的应用;能够通过已知条件列出准确的方程组和不等式是解题的关键.20.解:(1)∵四边形ABCD 是正方形,∴∠ADG =∠C =90°,AD =DC ,又∵AG ⊥DE ,∴∠DAG +∠ADF =90°=∠CDE +∠ADF ,∴∠DAG =∠CDE ,∴△ADG ≌△DCE (ASA );(2)如图所示,延长DE 交AB 的延长线于H ,∵E 是BC 的中点,∴BE =CE ,又∵∠C =∠HBE =90°,∠DEC =∠HEB , ∴△DCE ≌△HBE (ASA ),∴BH =DC =AB ,即B 是AH 的中点,又∵∠AFH =90°, ∴Rt △AFH 中,BF =AH =AB .【分析】(1)依据正方形的性质以及垂线的定义,即可得到∠ADG =∠C =90°,AD =DC,∠DAG=∠CDE,即可得出△ADG≌△DCE;(2)延长DE交AB的延长线于H,根据△DCE≌△HBE,即可得出B是AH的中点,进而得到AB=FB.【点评】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.22.【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(4﹣r)2=r2+22,推出r=1.5,由tanOB CDEEB DE∠==,推出=,可得CD=BC=3,再利用勾股定理即可解决问题;【解答】(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD(SSS),∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2, ∴(4﹣r)2=r2+22,∴r=1.5,∵tan ∠E ==,∴=, ∴CD =BC =3,在Rt △ABC 中,AC =3.∴圆的半径为1.5,AC 的长为3. 【点评】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.(II )①根据题意,可得点A (0,1),∵F (1,1).理由如下:如图,过点(,)P P P x y 作PM ⊥AB 于点M ,则FM =1P x -,PM =1P y -(01)P x <<∴R t △PMF 中,有勾股定理,得22222(1)(1)PF FM PM xP yP =+=-+-又点(,)P P P x y 在抛物线1C 上,∴22221(1)P P P PF y y y =-+-=即P PF y =.过点(,)Q Q Q x y 作QN ⊥B ,与AB 的延长线交于点N , 同理可得Q QF y =.图文∠PMF =∠QNF =90°,∠MFP =∠NFQ , ∴△PMF ∽△QNF这里11P PM y PF =-=-,11Q QN y QF =-=-(3) 令3y x =,设其图象与抛物线2C 交点的横坐标为00,'x x ,且00'x x <, 2观察图象.随着抛物线2C 向右不断平移,00,'x x 的值不断增大, ∴当满足2x m <≤,2y x ≤恒成立时,m 的最大值在0x 处取得. 可得当02x =时.所对应的m 为最大值.解得4h =或0h =(舍)解得122,8x x == ∴m 的最大值为8。

江西省赣州市石城县2024届中考数学全真模拟试卷含解析

江西省赣州市石城县2024届中考数学全真模拟试卷含解析

江西省赣州市石城县2024届中考数学全真模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是()A.119 B.289 C.77或119 D.119或2892.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D.3.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差4.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.65.如图,在半径为5的⊙O中,弦AB=6,点C是优弧AB上一点(不与A,B重合),则cosC的值为()A .43B .34C .35D .456.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .7.下列实数中,在2和3之间的是( ) A .πB .2π-C .325D .3288.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)9.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①abc >0;②2a+b >0;③b 2﹣4ac >0;④a ﹣b+c >0,其中正确的个数是( )A .1B .2C .3D .410.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是011.如图,已知函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1,则不等式ax 2+bx+3x>0的解集是( )A .x <﹣3B .﹣3<x <0C .x <﹣3或x >0D .x >012.如图,抛物线y=-x 2+mx 的对称轴为直线x=2,若关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-5二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y +. 14.二次函数y=223x 的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3…B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3…C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3…四边形A n ﹣1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 1=∠A 2B 3A 3…=∠A n1B n A n =60°,菱形A n ﹣1B n A n C n 的周长为 .15.如图,OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比为3:4,90OCD =∠,60AOB ∠=,若点B 的坐标是(6,0),则点C 的坐标是__________.16.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n 个图形的周长是___.17.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.18.不等式组2x+1x{4x3x+2>≤的解集是▲ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.20.(6分)综合与探究:如图1,抛物线y=322333x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(03.(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P 的坐标; 若不存在,请说明理由.21.(6分)如图,在每个小正方形的边长为1的网格中,点A ,B ,M ,N 均在格点上,P 为线段MN 上的一个动点(1)MN 的长等于_______,(2)当点P 在线段MN 上运动,且使PA 2+PB 2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P 的位置,并简要说明你是怎么画的,(不要求证明)22.(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。

2024年中考数学模拟考试试卷(含有答案)

2024年中考数学模拟考试试卷(含有答案)
【详解】解:
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是



故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4

∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径



又∵

∴பைடு நூலகம்是等边三角形



∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

2023年中考数学全真模拟卷(含答案)

2023年中考数学全真模拟卷(含答案)

2023年中考数学全真模拟卷第一模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

每小题给出的四个选项中只有一个选项是最符合题意的)1.2020的相反数是()A .12020B .-12020C .-2020D .±20202.据报道,中国医学研究人员通过研究获得了纯化灭活新冠病毒疫苗,该疫苗在低温电镜下呈椭圆形颗粒,最小直径约为90nm ,已知1nm =10﹣9m ,则90nm 用科学记数法表示为()A .0.09×10﹣6mB .0.9×10﹣7mC .9×10﹣8mD .90×10﹣9m3.如右图是某个几何体的三视图,该几何体为()A .长方体B .四面体C .圆柱体D .四棱锥4.下列运算正确的是()A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2b 3)3=a 5b 6D .(a 2)3=a 65.如图,AC 与BD 相交于点O ,且OA OC =,OB OD =,则下列结论错误的是()A .AB CD =B .AC ∠=∠C .//AB CD D .OA OD=6.对一批校服进行抽查,统计合格校服的套数,得到合格校服的频率频数表如下:抽取件数501001502005008001000合格频数3080120140445720900合格频率0.60.80.80.70.890.90.9估计出售1200套校服,其中合格校服大约有()A .1080套B .960套C .840套D .720套8.已知函数3y x =-,113y x =-+,6y kx =+的图象交于一点,则k 值为().A .2B .2-C .3D .3-8.如图,将长方形纸片ABCD ,沿折痕MN 折叠,B 分别落在A 1,B 1的位置,A 1B 1交AD 于点E ,若∠BNM =65°,以下结论:①∠B 1NC =50°;②∠A 1ME =50°;③A 1M ∥B 1N ;④∠DEB 1=40°.正确的个数有()A .1个B .2个C .3个D .4个9.如图,某社会实践学习小组为测量学校A 与河对岸江景房B 之间的距离,在学校附近选一点C ,利用测量仪器测得60A ∠=︒,90C ∠=︒,AC =300米.由此可求得学校与江景房之间的距离AB 等于()A .150米B .600米C .800米D .1200米10.如图是二次函数y =ax 2+bx +c 的图象,对于下列说法:其中正确的有()①ac >0,②2a +b >0,③4ac <b 2,④a +b +c <0,⑤当x >0时,y 随x 的增大而减小,A .5个B .4个C .3个D .2个二、填空题(本大题共7小题,每小题4分,共28分)11.函数16y x =-中,自变量x 的取值范围是_____.12.在创建“平安校园”活动中,鄂州市某中学组织学生干部在校门口值日,其中五位同学5月份值日的次数分别是4,4,5,x ,6.已知这组数据的平均数是5,则这组数据的中位数是________.13.如图,已知AB ∥CD ∥EF ,FC 平分∠AFE ,∠C =25°,则∠A 的度数是_____.14.如图,在矩形ABCD 中,8AB =,6BC =,以B 为圆心,适当的长为半径画弧,交BD ,BC 于M ,N 两点;再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交CD 于点F ;再以B 为圆心,BD 的长为半径画弧,交射线BP 于点E ,则EF 的长为______.15.如图,在平面直角坐标系中,矩形ABCD 的BC 边落在y 轴上,其它部分均在第二象限,双曲线k y x=过点A ,延长对角线CA 交x 轴于点E ,以从AD 、AE 为边作平行四边形AEFD ,若平行四边形AEFD 的面积为2,则k 的值为_____.16.如图,将△ABC 沿BC 边上的中线AD 平移到△A′B′C′的位置,已知△ABC 的面积为18,阴影部分三角形的面积为8,若AA′=1,则A′D 的值为______.17.如图,由两个长为2,宽为1的长方形组成“7”字图形.(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OBOA的值为____.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点1F ,摆放第三个“7”字图形得顶点2F ,依此类推,…,摆放第a 个“7”字图形得顶点-1n F ,…,则顶点2019F 的坐标为_____.三、解答题(本大题共3小题,每小题6分,共18分)18.先化简再求值:223422)1121x x x x x x ++-÷---+(,其中x 取﹣1、+1、﹣2、﹣3中你认为合理的数.19.某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议.20.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E.若D 为AC 的中点,求证:DE 是⊙O 的切线.四、解答题(本大题共3小题,每小题8分,共24分)21.已知点()11,A x y ,()22,B x y 是反比例函数(0)ky k x=≠图象上两点.(1)若点A ,B 关于原点中心对称,求122157x y x y -的值(则用含k 的代数式表示).(2)设11x a =-,21x a =+,若12y y <,求a 的取值范围.22.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.23.关于三角函数有如下的公式:①cos(α+β)=cos αcos β﹣sin αsin β;②sin(α+β)=sin αcos β+cos αsin β;③()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-⋅≠-⋅;利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如()(11tan 45tan 60tan105tan 456021tan 45tan 60+︒+︒︒=︒+︒==-+-︒⋅︒.根据上面的知识,你可以选择适当的公式解决下面的实际问题:(1)求tan 75︒,cos75°的值;(2)如图,直升机在一建筑物CD 上方的点Α处测得建筑物顶端点D 的俯角α为60°,底端点C 的俯角为75°,此时直升机与建筑物CD 的水平距离BC 为30m 求建筑物CD 的高.五、解答题(本大题共2小题,每小题10分,共20分)24.在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM=12∠ABC,点D是直线BC上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.(1)如图1所示,当点D与点B重合时,延长BA,CM交点N,证明:DF=2EC;(2)当点D在直线BC上运动时,DF和EC是否始终保持上述数量关系呢?请你在图2中画出点D运动到CB延长线上某一点时的图形,并证明此时DF与EC的数量关系.25.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.2023年中考数学全真模拟卷(答案)第一模拟(本卷满分120分,考试时间为90分钟)一、单选题(共10小题,每小题3分,共30分。

浙江省杭州余杭区2024届中考数学全真模拟试卷含解析

浙江省杭州余杭区2024届中考数学全真模拟试卷含解析

浙江省杭州余杭区2024届中考数学全真模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.60050x-=450xB.60050x+=450xC.600x=45050x+D.600x=45050x-3.计算(﹣12)﹣1的结果是()A.﹣12B.12C.2 D.﹣24.数据”1,2,1,3,1”的众数是( )A.1 B.1.5 C.1.6 D.35.下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6D.a6÷a3=a26.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF 的长为()A.95B.185C.165D.1257.若10,则实数a在数轴上对应的点的大致位置是()A .点EB .点FC .点GD .点H8.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A .310B .15C .12D .710 9.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC ′的位置,此时露在水面上的鱼线B 'C '长度是( )A .3mB .33 mC .23 mD .4m10.关于的一元二次方程有两个不相等的实数根,则的取值范围为( ) A . B . C . D .二、填空题(本大题共6个小题,每小题3分,共18分)11.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.12.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边AB=5,则它的周长等于_____.132(2)-14.若代数式5x x +有意义,则实数x 的取值范围是____. 15.一个几何体的三视图如左图所示,则这个几何体是( )A.B.C.D.16.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=1.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为P n (n为正整数),则点P2016与点P2017之间的距离为_________.三、解答题(共8题,共72分)17.(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?18.(8分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m 的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。

中考数学仿真试题及答案

中考数学仿真试题及答案

中考数学仿真试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x+3=7的解?A. x=1B. x=2C. x=3D. x=4答案:A2. 一个数的平方等于4,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:C3. 函数y=3x-2的图象经过第几象限?A. 第一、二、四象限B. 第一、三、四象限C. 第一、二、三象限D. 第二、三、四象限答案:B4. 计算(-2)^3的值是多少?A. 8B. -8C. 6D. -6答案:B5. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A6. 已知一个圆的半径为5cm,那么它的直径是:A. 10cmB. 20cmC. 15cmD. 25cm答案:A7. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C8. 计算(-3)^2的值是多少?A. 9B. -9C. 6D. -6答案:A9. 一个数的立方等于-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B10. 函数y=x^2-4x+4的顶点坐标是:A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A二、填空题(每题3分,共30分)1. 一个数的相反数是-4,那么这个数是____。

答案:42. 一个数的倒数是2,那么这个数是____。

答案:1/23. 一个数的平方根是3,那么这个数是____。

答案:94. 一个数的立方根是-2,那么这个数是____。

答案:-85. 计算(-5)^2的值是____。

答案:256. 计算√16的值是____。

答案:47. 一个数的绝对值是8,那么这个数可以是____。

答案:8或-88. 一个数的平方等于9,那么这个数是____。

答案:3或-39. 计算(-2/3)^3的值是____。

答案:-8/2710. 一个数的立方等于27,那么这个数是____。

中考全真模拟考试 数学试卷 含答案解析

中考全真模拟考试 数学试卷 含答案解析
∴ ,
∴旋转角α=24°,
故选:D.
【点睛】本题考查旋转变换,正多边形与圆,等边三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
10.设实数a,b,c满足a+b=3c2﹣4c+6,a﹣b=c2﹣4c+4,则a,b,c的大小关系是()
A.a<b≤cB.b≤a<cC.c<b≤aD.c长是_________.
【答案】 ;
【解析】
【分析】
因为正方形的面积等于边长乘以边长,即边长的平方,根据正方形面积是5,可得:正方形边长的平方等于5,即边长等于 .
分数段/分
频数
频率
A
90<x≤100
a
0.12
B
80<x≤90
b
0.18
C
70<x≤80
20
c
D
60<x≤70
15
d
请根据以上信息,解答下列问题:
(1)已知A,B档的学生人数之和等于D档学生人数,求被抽取的学生人数,并把频数分布直方图补充完整.
(2)该校七年级共有200名学生参加测试,请估计七年级成绩在C档的学生人数.
A B. C. D.
5.对于一次函数y=3x﹣1,下列说法正确的是()
A.图象经过第一、二、三象限
B.函数值y随x的增大而增大
C.函数图象与直线y=3x相交
D.函数图象与y轴交于点(0, )
6.如图,直线l1∥l2,且分别与等腰△ABC的两条腰相交,若∠1=40°,∠2=86°,则∠B的度数为()
A.54°B.60°C.63°D.70°
【详解】∵∠3=∠2=86°,∠5=∠1=40°,
∵直线l1∥l2,
∴∠4=180°﹣∠3=94°,

中考全真模拟测试 数学试卷 含答案解析

中考全真模拟测试 数学试卷 含答案解析

一、选择题(每小题3分,共30分)1.下列各数中比3大比4小的无理数是( )A B C .3.1 D .1032.国产科幻电影《流浪地球》上映17日,票房收入突破40亿人民币,将40亿用科学记数法表示为( ) A.84010⨯B.9410⨯C.104010⨯D.110.410⨯3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A .B .C .D .4.下列运算正确的是( ) A.5510a aaB.76a a aC.326a a aD.236aa5. 关于x 的一元二次方程220x x m -+=无实数根,则实数m 的取值范围是( ) A.m <1B.m ≥1C.m ≤1D.m >16. 如图,在△ABC 中,AB =AC,∠A =30°,直线a ∥b,顶点C 在直线b 上,直线a 交AB 于点D,交AC 于点E,若∠1=145°,则∠2的度数是( ) A.30°B.35°C.40°D.45°7. 从-1,2,3,-6这四个数中任取两个数,分别记作m,n,那么点(m,n) 在函数6y x =图象上的概率是 A.12B.13C.14D.188. 将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( ) A .y =(x -4)2-6 B .y =(x -1)2-3 C .y =(x -2)2-2 D .y =(x -4)2-29. 如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )2π2πC.πD.2π10. 已知60AOB ∠=︒,以O 为圆心,以任意长为半径作弧,交OA,OB 于点M ,N ,分别以M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在AOB ∠内交于点P ,以OP 为边作15POC ∠=︒,则BOC ∠的度数为( ).A .15︒B .45︒C .15︒或30︒D .15︒或45︒ 二、填空题(每小题3分,共15分)11. 若一个数的平方等于5,则这个数等于________.. 12. 若关于x 的分式方程2222xmm x x有增根,则m 的值为________.13. 如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c +的解为 .14. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm,点D 为△ABC 内一点,∠BAD =15°,AD =6cm,连接BD,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E,连接DE,DE 交AC 于点F,则CF 的长为________cm.15. 如图,矩形ABCD 中,AB =,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:222221121x x x xx x x x⎛⎫--÷⎪---+⎝⎭,其中x是不等式组的整数解.17.(9分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,”三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.18.(9分)如图,已知反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于A(1,3),B(3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.19.(9分)如图,⊙O 与△ABC 的AC 边相切于点C ,与AB 、BC 边分别交于点D 、E ,DE ∥OA ,CE 是⊙O 的直径. (1)求证:AB 是⊙O 的切线; (2)若BD =4,CE =6,求AC 的长.20.(9分)如图,某建筑物CD 高96米,它的前面有一座小山,其斜坡AB 的坡度为i =1:1.为了测量山 顶A的高度,在建筑物顶端D 处测得山顶A 和坡底B 的俯角分别为α,β.已知tan 2α=,tan 4β=,求山顶A 的高度AE(C 、B 、E 在同一水平面上).21.(10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1) 求y 关于x 的函数解析式(不要求写出自变量的取值范围)(2) 该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元 (3) 由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值22.(10分)如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 的中点,∠EDF =90°,DE 交AC 于点G ,DF 经过点C .(1)求∠ADE 的度数;(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求PMQN 的值;(3)若图1中的∠B =β(60°<β<90°),(2)中的其余条件不变,请直接写出PMQN的值(用含β的式子表示).23.(11分)如图,抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0),与y 轴交于点C,且过点D(2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E,当△OBE 与△ABC 相似时,求点Q 的坐标.图1G FED C B AQ NM PE 2F 2图2F 1E 1D CBA答案与解析一、选择题(每小题3分,共30分)1.下列各数中比3大比4小的无理数是( )A B C .3.1 D .103【答案】A所以3<4,,故选项A 正确.2.国产科幻电影《流浪地球》上映17日,票房收入突破40亿人民币,将40亿用科学记数法表示为( )A.84010⨯B.9410⨯C.104010⨯D.110.410⨯【答案】B.【解析】本题考查了科学记数法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数.因此40亿可用科学记数法表示为9410⨯,故选B.3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A .B .C .D .【答案】B【解析】俯视图是上面往下观察所得的图形,观察可知第一层一个靠左边,第二层两根,故选B. 4.下列运算正确的是( ) A.5510aa aB.76aa aC.326aa aD.236a a【答案】B【解析】A.合并同类项得5552aa a ,B.同底数幂除法底数不变指数相减,故正确,C.同底数幂乘法,底数不变指数相加,应为325aa a ,C.指数乘方运算底数不变指数相乘,且负数的偶次幂应为正数,故结果应为236a a .5. 关于x 的一元二次方程220x x m -+=无实数根,则实数m 的取值范围是( ) A.m <1B.m ≥1C.m ≤1D.m >1【答案】D.【解析】∵方程无实数根, ∴△=(-2)2-4×1·m =4-4m <0. 解得,m >1. 故选D.6. 如图,在△ABC 中,AB =AC,∠A =30°,直线a ∥b,顶点C 在直线b 上,直线a 交AB 于点D,交AC 于点E,若∠1=145°,则∠2的度数是( ) A.30°B.35°C.40°D.45°【答案】C【解析】△ABC 中,AB =AC,∠A =30°,∴∠B =75°,∵∠1=145°,∴∠FDB =35°过点B 作BG ∥a ∥b,∴∠FDB=∠DBG,∠2=∠CBG,∵∠B =∠ABG+∠CBG,∴∠2=40°,故选C7. 从-1,2,3,-6这四个数中任取两个数,分别记作m,n,那么点(m,n) 在函数6y x =图象上的概率是 A.12B.13C.14D.18【答案】B【解析】从-1,2,3,-6这四个数中任取两个数,所有可能的结果有12种,每种结果的可能性相同,其中,两数乘积为6的结果有4种,当两数乘积为6时,点(m,n)必定在函数6y x =的图象上,因此P =41=123.故选B. 8. 将抛物线y =x 2-6x +5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )A .y =(x -4)2-6B .y =(x -1)2-3C .y =(x -2)2-2D .y =(x -4)2-2 【答案】D【解析】y =x 2-6x +5= (x -3) 2-4,把向上平移两个单位长度,再向右平移一个单位长度后, 得y = (x -3-1) 2-4+2,即y =(x -4)2-2.9. 如图,在Rt △ABC 中,∠ABC =90°,AB ==2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为( )2π2πC.πD.2π【答案】A【解题过程】在Rt △ABC 中,连接OD,∠ABC =90°,AB ==2,∴∠A =30°,∠DOB =60°,过点D 作DE⊥AB 于点E,∵AB =∴AO =OD ∴DE =32,∴S 阴影=S △ABC -S △AOD -S 扇形BOD =-2π2π,故选A.10. 已知60AOB ∠=︒,以O 为圆心,以任意长为半径作弧,交OA,OB 于点M ,N ,分别以M ,N 为圆心,以大于12MN 的长度为半径作弧,两弧在AOB ∠内交于点P ,以OP 为边作15POC ∠=︒,则BOC ∠的度数为( ).A .15︒B .45︒C .15︒或30︒D .15︒或45︒ 【答案】D【解析】由题目可以得出OP 为AOB ∠的平分线,所以1302AOP BOP AOB ∠=∠=∠=︒,又因为15POC ∠=︒,考虑到点C 有可能在AOP ∠内也有可能在BOP ∠内,所以当点C 在AOP ∠内时BOC ∠45BOP POC =∠+∠=︒,当点C 在BOP ∠内时BOC ∠15BOP POC =∠-∠=︒.二、填空题(每小题3分,共15分)11. 若一个数的平方等于5,则这个数等于________.【答案】【解析】∵正数的平方根有两个,且互为相反数,故5的平方是 12. 若关于x 的分式方程2222xmm x x有增根,则m 的值为________.【答案】1【解析】解原分式方程,去分母得:x -2m =2m(x -2),若原分式方程有增根,则x =2,将其代入这个一元一次方程,得2-2m =2m(2-2),解之得,m =1.13. 如图,直线2y x =+与直线y ax c =+相交于点(,3)P m ,则关于x 的不等式2x +≤ax c +的解为.【答案】1x ≤-【解析】因为直线2y x =+与直线y ax c =+相交于点(,3)P m ,所以32m =+,解得1m =,由图象可以直接得出关于x 的不等式2x +≤ax c +的解为1x ≤-.14. 如图,在△ABC 中,∠BAC =90°,AB =AC =10cm,点D 为△ABC 内一点,∠BAD =15°,AD =6cm,连接BD,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E,连接DE,DE 交AC 于点F,则CF 的长为________cm.【答案】10-【解题过程】∵∠BAC=90°,∠BAD=15°,∴∠DAF=75°由旋转可知,∠ADF=45°,过点A作AM⊥DF于点M,∴AM AD=∴AF=∵AC=AB=10,∴FC=AC-AF=10-15. 如图,矩形ABCD中,AB=,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是________.【答案】【解析】连接CE,∵点E是AD的中点,∴AE=ED=EG,∠EGC=∠D,∴△EGC≌△EDC,∴GC=AB=,设AF=GF=x,∴FB=x,在Rt△FBC中,FB2+BC2=FC2,即(x)2+122=(x+)2,解之,得:x=在Rt△AFE中,EF.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:222221121x x x xx x x x⎛⎫--÷⎪---+⎝⎭,其中x是不等式组的整数解.【答案】解:原式=[-]•=•=解不等式组,得1≤x<3,则不等式组的整数解为1、2.当x=1时,原式无意义;当x=2,∴原式=.【解析】先化简分式,再解不等式,找出符合条件的值,最后代入求值.17.(9分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,”三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【答案】解:(1)40(2)90°;(3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,用树状图表示如下:由树状图可得,总共有12种结果,符合条件的有4种,故所选两名同学中,恰好是一名七年级和一名九年级同学的概率是4÷12=13.【解析】(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人) (2)三等奖所对应的圆心角=4010×360°=90°; 18.(9分)如图,已知反比例函数y =(k ≠0)的图象与一次函数y =﹣x +b 的图象在第一象限交于A (1,3),B (3,1)两点(1)求反比例函数和一次函数的表达式;(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内交一次函数y =﹣x +b 的图象于点M ,交反比例函数y =上的图象于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.【答案】解:(1)y=,y=﹣x+4;(2)由图象可得:当1<a<3时,PM>PN.【解析】(1)∵反比例函数y=(k≠0)的图象与一次函数y=﹣x+b的图象在第一象限交于点A(1,3),∴3=,3=﹣1+b,∴k=3,b=4,∴反比例函数和一次函数的表达式分别为y=,y=﹣x+4;19.(9分)如图,⊙O与△ABC的AC边相切于点C,与AB、BC边分别交于点D、E,DE∥OA,CE是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,CE=6,求AC的长.【答案】证明:(1)连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=OC,∴△AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是⊙O的直径,AC为⊙O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO==90°,∴OD⊥AB,∵OD为⊙O的半径,∴AB是⊙O的切线.(2)∵CE=6,∴OD=OC=3,∵∠BDO=90°,∴222BO BD OD=+,∵BD=4,∴OB=5,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B,∴△BDO∽△BCA,∴BD OD BC AC=,∴438AC=,OEDCBA∴AC =6. 【解析】先连接切点和半径,再证明垂直,即可得出第一问; 利用三角形相似,即可得出第二问.20.(9分)如图,某建筑物CD 高96米,它的前面有一座小山,其斜坡AB 的坡度为i =1:1.为了测量山 顶A的高度,在建筑物顶端D 处测得山顶A 和坡底B 的俯角分别为α,β.已知tan 2α=,tan 4β=,求山顶A 的高度AE(C 、B 、E 在同一水平面上).【答案】解:如图,设DA 与CB 的交点为O . ∵96tan tan 2DC O OC OCα∠====, ∴48OC =同理,∵96tan tan 4DC DBC BC BCβ∠==== ∴24BC =.∴482424OB OC BC =-=-=.设AE x =米,则 则由i =1:1得BE x =,12OE x =; ∴1242x x +=, ∴16x =∴山顶A 的高度AE 为16米.【解析】利用坡比的定义,找出同角的正切值即可.21.(10分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1) 求y关于x的函数解析式(不要求写出自变量的取值范围)(2) 该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(3) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值【答案】(1)设y与x的函数关系式为y=kx+b,依题意有,50100 6080k bk b+=⎧⎨+=⎩,解得,k=-2,b=200,y与x的函数关系式是y=-2x+200;(2)将售价50,周销售量100,周销售利润1000,带入周销售利润=周销售量×(售价-进价)得到,1000=100×(50-进价),即进价为40元/件;周销售利润w=(x-40)y=(x-40)(-2x+200)=-2(x-70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元,故答案为40,70,1800;(3)依题意有,w=(-2x+200)(x-40-m)=-2x2+(2m+280)x-8000-200m=221401260180022m x m m +⎛⎫--+-+ ⎪⎝⎭∵m >0, ∴对称轴140=702m x +>, ∵-2<0, ∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x =65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m =5.【解析】注意进价、售价、利润之间的关系,第三问注意销售单价、销售量、销售总价之间的关系. 22.(10分)如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,D 为AB 的中点,∠EDF =90°,DE 交AC 于点G ,DF 经过点C .(1)求∠ADE 的度数;(2)如图2,将图1中的∠EDF 绕点D 顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E 1DF 1,∠E 2DF 2,DE 1交直线AC 于点P ,DF 1交直线BC 于点Q ,DE 2交直线AC 于点M ,DF 2交直线BC 于点N ,求PM QN的值;(3)若图1中的∠B =β(60°<β<90°),(2)中的其余条件不变,请直接写出PM QN的值(用含β的式子表示).【答案】解:(1)∵∠ACB =90°,D 为AB 的中点, ∴CD=DB , ∴∠DCB =∠B ∵∠B =60°,∴∠DCB =∠B =∠CDB =60°.图1G FEC B Q NM PE 2F 2图2F 1E 1CB∴∠CDA =120°. ∵∠EDC =90°, ∴∠ADE =30°;(2)∵∠C =90°,∠MDN =90°, ∴∠DMC +∠CND =180°. ∵∠DMC +∠PMD =180°, ∴∠CND =∠PMD . 同理∠CPD =∠DQN . ∴△PMD ∽△QND过点D 分别做DG ⊥AC 于G ,DH ⊥BC 于H . 可知DG,DH 分别为△PMD 和△QND 的高. ∴DH DGQN PM =∵DG ⊥AC 于G,DH ⊥BC 于H , ∴DG ∥BC . 又∵D 为AB 中点,∴G 为AC 中点. ∵∠C =90°,∴四边形CGDH 为矩形,有CG =DH =AG ,Rt △AGD 中, ,3330tan tan 0===∠AG GD A . 即33=HD GD . 33=∴QN PM (3)tan(90°﹣β)(或=βtan 1. 【解析】利用旋转和三角形相似是解决本题的关键,最后要注意三角函数的定义.23.(11分)如图,抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0),与y 轴交于点C,且过点D(2,-3).点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E,当△OBE 与△ABC 相似时,求点Q 的坐标.【答案】解:(1)将点A(-1,0),点B(3,0),点D(2,3)代入2y ax bx c =++得0930423a b c a b c a b c -+=⎧⎪++=⎨⎪++=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为223y x x =--(2)如图,设PD 与y 轴相交于点F,OD 与抛物线相交于点G,设P 坐标为(2,23m m m --),则直线PD 的解析式为23y mx m =--,它与y 轴的交点坐标为F(0,-2m-3),则OF =2m+3.∴()()()21112323222ODP S OF D P m m m m ∆=⨯-=+-=-++点的横坐标点的横坐标 由于点P 在直线OD 下方,所以322m -<<.∴当()1122214b m a =-=-=⨯-时,△POD 面积的最大值2211114933242416ODP S m m ∆⎛⎫=-++=-+⨯+= ⎪⎝⎭ (3)①由223y x x =--得抛物线与y 轴的交点C(0,-3),结合A(-1,0)得直线AC 的解析式为33y x =--, ∴当OE ∥AC 时,△OBE 与△ABC 相似;此时直线OE 的解析式为3y x =-.又∵2233y x x y x ⎧=--⎨=-⎩的解为11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩∴Q的坐标为1322⎛-- ⎝⎭和1322⎛⎫--+ ⎪ ⎪⎝⎭. ②如图,作EN ⊥y 轴于N,由A(-1,0),B(3,0),C(0,-3)得AB =3-(-1)=4,BO =3,BC=当BE OB BA BC=即4BE =时 ,△OBE 与△ABC 相似;此时BE= 又∵△OBC ∽△ONE,∴NB =NE =2,此时E 点坐标为(1,-2),直线OE 的方程为2y x =-.又∵2232y x x y x ⎧=--⎨=-⎩的解为11x y ⎧=⎪⎨=-⎪⎩,22x y ⎧=⎪⎨=⎪⎩ ∴Q的坐标为-和(. 综上所述,Q的坐标为13,22⎛-+- ⎝⎭,1322⎛-+ ⎝⎭,-,(. 【解析】(1)方法二、∵抛物线2y ax bx c =++与x 轴交于点A(-1,0),点B(3,0), ∴设抛物线的解析式为()()13y a x x =+-.又∵抛物线过点 D(2,-3),∴()()21233a +-=-∴1a =∴()()211323y x x x x =⨯+-=--. (2)注意平面直角坐标系中线段的表示方法,注意求三角形面积时可以构造同底等高.(3)注意相似中的对应,应进行分类讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学全真模拟试题
一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项) 1.-5的相反数是( )
A. -5
B. 5
C.
1
5
D. 1
5-
2.下列所给图形中,既是中心对称图形又是轴对称图形的是( )
3.如图,桌面上有一个一次性纸杯,它的俯视图是( )
A .
B .
C .
D . 4.要使分式
3
2x x
--有意义,则x 的取值应满足( ) A .x 3≠ B .x 2≠ C .2x < D .x>2
5.某校7名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为( )
A .6,7
B .8,6
C . 5,7
D . 8,7 6.下列运算正确的是( )
A. 632a a a =⨯
B.222)(b a b a +=+
C. 236()a a -=-
D. 235a a a +=
7.将二次函数3)2(2---=x y 的图象先向右平移2个单位,再向上平移2单位后,所得图象的函数表达式是( )
A .2y 1x =--
B .2y 5x =--
C .()2y x 41=---
D .()2y x 45=--- 8AB O C D D=20BAC ∠∠o e 、如图,是直径,,是圆上的点,若,则的值是( ) A .20o B .60o C .70o D .80o
9.某校组织1080名学生去外地参观,现有A 、B 两种不同型号的客车可供选择。

在每辆
(第
3题图) 主视方向
第8题
A
车刚好满座的前提下,每辆B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租12辆,设A 型客车每辆坐x 人,根据题意列方程为( ) A 、
108010801215x x =+- B 、108010801215x x =-- C 、108010801215x x =++ D 、10801080
1215
x x =-+ ()
6
y S S A 10.OAD BCD A AO x B AB ABC C AC x D =V V V 点在反比例函数=
在第一象限的图象上,连结并延长交另一分支于点,以为斜边作等腰直角,顶点在第四象限,与轴交于点。

若,则点的横 坐标为
A .2
B .
C D .1
二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式: 2484x x -+=_____________.
12.在一个不透明的盒子中装有1个白球和2个黄球,它们除颜色不同外,其余均相同,
则从中随机摸出两个球是一白一黄的概率是_________ .
13.抛物线2y ax bx c =++的对称轴为直线x=1,与x 轴的一个交点的坐标为(﹣3,0),则
与x 轴另一个交点坐标为_______.
14.关于x 的一元二次方程210mx x -+=总有实数根,则m 应满足的条件是__________. 15.如图用两个完全相同的1cm ×4cm 长方形纸片,其中心用细铁丝串起来,使纸片交叉
叠合,旋转纸片,保持重叠部分形状为菱形,则菱形的最大面积是_______2
cm .
''''''''ABCD BC AD E F CE AF DE BF CDE ABF C DE A BF 3
EC A B G FA C D H tan 4
A G=6C G=4BC= .
=∆∆∆∆∠16.将一张矩形纸片,按如图进行折叠:分别在,两边上取两点,,使,分别以,为对称轴将与翻折得到与,且边的延长线与交于点,边的延长线与交于一点,已知EBG=,
,,则线段
80分)
17.(本题10分)计算:(1)2
12sin 30201742π-⎛⎫--︒++- ⎪⎝⎭
(2)()()21
2142
x x ++=-先化简,再求值: -x ,其中x
18.(本题8分)随着人们法制意识的加强,“开车不喝酒,喝酒不开车”的观念逐步深入人心.某记者随机选取了我县几个停车场对开车司机进行了相关调查,这次调查结果有四种情况:A .醉酒后仍开车;B .喝酒后不开车或请专业代驾;C .不开车的时候会喝酒,喝酒的时候不开车; D .从不喝酒.将这次调查情况绘制了如下尚不完整的统计图1
第15题
第16题
和图2,请根据相关信息,解答下列问题:
(1)该记者本次一共调查了 名司机; (
2)图1中情况D 所在扇形的圆心角为 °; (3)补全图2;
(4)若我县约有司机20万人,其中35岁以下占40﹪,则35岁以下的司机朋友中不违反“酒驾”禁令的人数为多少万人?
19. (本题8分)图1,图2是两张形状、大小完全相同的6×6方格纸,方格纸中的每个小正方形的边长均为1,所求作的图形各顶点也在格点上,
(1) 在图1中画一个以点A ,B 为顶点的菱形(不是正方形),并求菱形周长; (2) 在图2中画一个以点A 为所画的平行四边形对角线交点,且面积为6,求此平行四边形周长。

周长 周长
20.(本题8分)如图,ABCD 中,E 、F 是BC 、AB 的中点,DE 、DF 分别交AB 、CB 的延长
(第18题图1)
(第18题图2)
H
F E D
B
C
B
A
A
线于H 、G ; (1)求证:BH=AB ;
(2)若ABCD 为菱形,判断∠G 与∠H 的大小,并证明你的结论.
21.(本题10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销售量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y 元; (1) 当150x ≤<时,求出y 与x 的函数关系式;
(2) 问销售该商品第几天时,销售利润最大,最大利润是多少?
22. (本题10分) 如图,已知AB 是⊙O 的直径,C 是⊙O 上的点,且OE ⊥AC 于点E ,过点C 作⊙O 的切线,交OE 的延长线于点D ,交AB 的延长线于点F ,连接AD. (1)求证:AD 是⊙O 的切线;
(2)若tan ∠F=1
2
,⊙O 半径为1,求线段AD 的长.
E
B
F
D
O
A
C
23. (本题12分)如图,抛物线2a y x bx c =++ 过点A (3,0),B (-1,0),与y 轴交于点C (0,3),CE//AB,,点E 是二次函数上的点,连接BE ,过点B 作射线BF 交二次函数的图象于点F ,BA .EBF ∠使得平分 (1)求抛物线的函数解析式;
(2)求点F 的坐标;
()____________________
3S S x BC S ()
ECH EBC EBF =
V V V D 为抛物线的顶点,直线CD 交轴
于点G ,交直线EF 于H ,连,则::直接写出答案
24、(本题14分)如图,点C 和动点E 在射线AT 上,以AC 为边作Rt △ABC ,使∠BCA= 90o ,且BC=8,AB=10,边BC 上有一动点P ,使BP=CE ;边AB 上有一动点Q , 使AQ=2CE ,连结PQ ,EQ ,以PQ ,EQ 为邻边作EQPF ,设CE=m(m<5),
y
x
H F
E
G
D
C A
B O
(1)当E 在线段AC 上运动时, ①若5m 2
,求PQ 的值; ②当FQ ∥AC 时,求m 的值;
(2)在点E 的整个运动过程中,当m 取何值时,EQPF 的面积恰好被线段BC 或射线AT 分成1:3的两部分,求出所有符合条件的m 的值;
(3)如图2,以EQ 为直径作⊙O ,⊙O 与射线AT 相交于点E ,G ,与直线BC 相交于点M ,
N ,若MN=EG ,则m= (直接写出m 的值)
图1
F
Q
P
T
图2
N
M G
O
F
Q
P
B
A C E
数学答题卷
一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项)
二、填空题(本题有6小题,每小题5分,共30分)
11. ; 12. ; 13. ; 14. ; 15. ; 16. . 三、解答题(本题有8小题,共80分) 17.(本题10分)
(1)计算:(1)2
012sin 30201742π-⎛⎫--︒++- ⎪⎝⎭
(2)()()212142
x x ++=-先化简,再求值: -x ,其中x
18.(本题8分)
(1)该记者本次一共调查了 名司机;
(2)图1中情况D 所在扇形的圆心角为 °; (3)补全图2; (4)
19. (本题8分)
周长 周长 20.(本题8分) (1)
(2)
(第18题图1)
(第18题图2)
H
G
F
E D
B
C
B A
A
21.(本题10分)
(1)
(2)
22.(本题10分)
(1)
(2)
23.(本题12分)
(1)
(2)
E
B
F
D
A
C
(3) ____________________
S S S ECH EBC EBF V V V ::
24.(本题14分) (1)① ②
图1
备用图1
(2)
(3) m=。

相关文档
最新文档