离散数学集合证明PPT讲稿
合集下载
离散数学 第六章的 ppt课件
符号化表示为:B A x ( xB xA ) B ⊈ A x ( xB xA )
例如N Z Q R C,但Z ⊈ N。显然对任何集合A都有A A。
定义6.2 设A,B为集合,如果A B且B A,则称A与B相等,记作A=B。 如果A与B不相等,则记作A≠B。
符号化表示为: A = B A B B A
1. 集合的广义并与广义交
定义6.10 设A为集合,A的元素的元素构成的集合称为A的广 义并,记为∪A。符号化表示为
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
广义交 A= { x | z ( zA xz )}
A B=B A
(6.29)
(A B) C=A (B C) A =A A A= A B=A C B=C
(6.30) (6.31) (6.32) (6.33)
离散数学 第六章的
25
书本88页
例6.5 设A={{a},{a,b}}
计算∪∪A,∩∩A和∩∪A∪(∪∪A-∪∩A)。
解: ∪A={a,b}
∩A={a}
∪∪A=a∪b
∩∩A=a
∩∪A=a∩b
∪∩A=a
∩∪A∪(∪∪A-∪∩A)
=(a∩b)∪((a∪b)-a)
=(a∩b)∪(b-a)
=b
所以∪∪A=a∪b,∩∩A=a,∩∪离散A∪数学(∪第∪六A章-的 ∪∩A)=b。
26
6.4 集合恒等式(P92)
集合算律 1.只涉及一个运算的算律:
离散数学 第六章的
12
集合运算的表示
文氏图
A
B
AB
例如N Z Q R C,但Z ⊈ N。显然对任何集合A都有A A。
定义6.2 设A,B为集合,如果A B且B A,则称A与B相等,记作A=B。 如果A与B不相等,则记作A≠B。
符号化表示为: A = B A B B A
1. 集合的广义并与广义交
定义6.10 设A为集合,A的元素的元素构成的集合称为A的广 义并,记为∪A。符号化表示为
广义并 A = { x | z ( zA xz )}
定义6.11 设A为非空集合,A的所有元素的公共元素构成的 集合称为A的广义交,记为∩A。符号化表示为
广义交 A= { x | z ( zA xz )}
A B=B A
(6.29)
(A B) C=A (B C) A =A A A= A B=A C B=C
(6.30) (6.31) (6.32) (6.33)
离散数学 第六章的
25
书本88页
例6.5 设A={{a},{a,b}}
计算∪∪A,∩∩A和∩∪A∪(∪∪A-∪∩A)。
解: ∪A={a,b}
∩A={a}
∪∪A=a∪b
∩∩A=a
∩∪A=a∩b
∪∩A=a
∩∪A∪(∪∪A-∪∩A)
=(a∩b)∪((a∪b)-a)
=(a∩b)∪(b-a)
=b
所以∪∪A=a∪b,∩∩A=a,∩∪离散A∪数学(∪第∪六A章-的 ∪∩A)=b。
26
6.4 集合恒等式(P92)
集合算律 1.只涉及一个运算的算律:
离散数学 第六章的
12
集合运算的表示
文氏图
A
B
AB
大一离散数学第1,2章 集合-ppt
A∩(B∩C)=(A∩B)∩C;
4. 恒等律:A∪Φ=A; A∩U=A; 5. 零 律:A∪U=U; A∩Φ=Φ; 6. 分配律:A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
7. 吸收律:A∩(A∪B)=A; A∪(A∩B)=A; 8. 否定律:
AA
9. DeMorgan律: A B A B
又再∵计|算A||=A4,|,||BB||=和5,|A∪B|, 然∴后|代A|入+公|B|式-(|2A.4∩.1B)|两=4端+,5-验2=证7=等|式A∪B|
即定理即2可.4.。1成立;
(2)略。
三个集合的情形
• 定理2.4.3 设A,B和C是任意三个有限集合, 有
A∪B∪C =( A + B + C )-( A∩B + A∩C + B∩C )+ A∩B∩C
↓ ↓ ↓ ↓ ↓ ... ↓ ... E+ 2 4 6 8 10 ... 2(n+1) ... 所以,E+也是可数集合。
3)
在P与N之间建立1-1对应的关系 f:N→P如下: N 0 1 2 3 4 ...
↓ ↓ ↓ ↓ ↓ ... P 2 3 5 7 11 ... 所以,P也是可数集合。
4)
• 推论2.4.4 设U为全集, A,B和C是任意有 限集合,则
A∩B∩C = U -( A + B + C ) +( A∩B + A∩C + B∩C )- A∩B∩C
容斥原理的推广
• 定理2.4.5 设A1, A2, …, An是任意n个有限集合, 则
n
A1∪A2 ∪ ∪An = Ai - Ai∩Aj + Ai∩Aj∩Ak
4. 恒等律:A∪Φ=A; A∩U=A; 5. 零 律:A∪U=U; A∩Φ=Φ; 6. 分配律:A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
7. 吸收律:A∩(A∪B)=A; A∪(A∩B)=A; 8. 否定律:
AA
9. DeMorgan律: A B A B
又再∵计|算A||=A4,|,||BB||=和5,|A∪B|, 然∴后|代A|入+公|B|式-(|2A.4∩.1B)|两=4端+,5-验2=证7=等|式A∪B|
即定理即2可.4.。1成立;
(2)略。
三个集合的情形
• 定理2.4.3 设A,B和C是任意三个有限集合, 有
A∪B∪C =( A + B + C )-( A∩B + A∩C + B∩C )+ A∩B∩C
↓ ↓ ↓ ↓ ↓ ... ↓ ... E+ 2 4 6 8 10 ... 2(n+1) ... 所以,E+也是可数集合。
3)
在P与N之间建立1-1对应的关系 f:N→P如下: N 0 1 2 3 4 ...
↓ ↓ ↓ ↓ ↓ ... P 2 3 5 7 11 ... 所以,P也是可数集合。
4)
• 推论2.4.4 设U为全集, A,B和C是任意有 限集合,则
A∩B∩C = U -( A + B + C ) +( A∩B + A∩C + B∩C )- A∩B∩C
容斥原理的推广
• 定理2.4.5 设A1, A2, …, An是任意n个有限集合, 则
n
A1∪A2 ∪ ∪An = Ai - Ai∩Aj + Ai∩Aj∩Ak
离散数学的ppt课件
科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。
边
连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。
《离散数学集合》课件
满射。
双射
03
如果一个映射既是单射又是满射,则称该映射为双射。
函数的基本性质
确定性
对于任意一个输入,函数只能有一个输出。
互异性
函数的输出与输入一一对应,没有重复的输 出值。
可计算性
对于任意给定的输入,函数都能计算出唯一 的输出值。
域和陪域
函数的输入值的集合称为函数的定义域,函 数输出的集合称为函数的陪域。
04
集合的运算性质
并集运算性质
并集的交换律
对于任意集合A和B,有A∪B=B∪A。
并集的幂等律
对于任意集合A,有A∪A=A。
并集的结合律
对于任意集合A、B和C,有 A∪(B∪C)=(A∪B)∪C。
并集的零律
对于任意集合A和空集∅,有A∪∅=ቤተ መጻሕፍቲ ባይዱ。
交集运算性质
交集的交换律
对于任意集合A和B,有A∩B=B∩A。
在数学中的应用
集合论
集合论是数学的基础,它为数学提供了基本的逻辑和概念 框架。通过集合,可以定义和讨论概念、关系和性质等。
概率论
在概率论中,集合用来表示事件,事件发生的概率可以定 义为该事件所对应的集合的元素个数与样本空间所对应的 集合的元素个数之比。
拓扑学
拓扑学是研究几何形状在大范围内变化的学科。在拓扑学 中,集合用来表示空间中的点、线、面等元素,以及它们 之间的关系。
THANKS FOR WATCHING
感谢您的观看
03
集合的分类
有穷集和无穷集
有穷集
集合中元素的数量是有限的,可以明 确地列举出集合中的所有元素。例如 ,集合{1, 2, 3}是一个有穷集。
无穷集
集合中元素的数量是无限的,无法列 举出集合中的所有元素。例如,自然 数集N={1, 2, 3,...}是一个无穷集。
《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。
离散数学集合.ppt
2. 设S , 试判断下列各式是否正 a , 3 , 4 , 确,并将正确的题号填入括号内。
A.
S
B.
S
C.
S
D.
S
A B C
答案:
B P ( P ( A )),判断下列论断 3. 设 A , 是否正确,并将“Y”或“N”填入相应论断 后面的括号中。
{ a , { a } }, { , a , { a } }}
练习
1. 试判断下列各式是否正确,并将正确的题 号填入括号内。
B. a a ,a a a A. C.
a a , a a a D.
答案: A B D
9. 排中律
10. 矛盾律 11. 余补律 12. 双重否定律 13. 补交转换律
AA=E
AA=
=E, A= A E=
A-B= AB
20
基本集合恒等式(续)
14. 关于对称差的恒等式 (1) 交换律 AB=BA (2) 结合律 (AB)C=A(BC) (3) 对的分配律 A(BC)=(AB)(AC) (4) A=A, AE= ~ A (5) AA=, A ~ A= E
第4章 关系
4.0 集合及相关概念
4.1 关系的定义及其表示
4.2 关系运算
4.3 关系的性质
4.4 等价关系与偏序关系
1
4.0 集合及其运算
集合及其表示法
包含(子集)与相等 空集与全集 集合运算(,, - , ~ , ) 基本集合恒等式 包含与相等的证明方法
~ AB= { x | x是外地走读生}
(A-B) D= { x | x是北京住校生, 并且喜欢听音乐} ~ D ~ B= { x | x是不喜欢听音乐的住校生}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15
分配律(证明)
• A(BC)=(AB)(AC)
证明: x, xA(BC)
xA x(BC)
(定义)
xA (xB xC)
(定义)
(xAxB)(xAxC) (命题逻辑分配律)
(xAB)(xAC)
(定义)
x(AB)(AC)
(定义)
A(BC)=(AB)(AC)
2020/9/12
《集合论与图论》第4讲
(AB)C=A(BC) (AB)C=A(BC)
• 分配律(distributive laws)
A(BC)=(AB)(AC) A(BC)=(AB)(AC)
2020/9/12
《集合论与图论》第4讲
3
集合恒等式(关于与 、续)
• 吸收律(absorption laws)
A(AB)=A A(AB)=A
2020/9/12
16
零律(证明)
• A =
证明: x, xA xA x xA 0 0 A =
(定义) (定义) (命题逻辑零律)
2020/9/12
《集合论与图论》第4讲
17
排中律(证明)
• A~A = E
证明: x, xA~A
xA x~A
(定义)
xA xA
(~定义)
xA xA
(定义)
1
2020/9/12
《集合论与图论》第4讲
11
对偶原理(举例、续)
• 零律 • 同一律
A E =E A =
A =A A E=A
2020/9/12
《集合论与图论》第4讲
12
对偶原理(举例、续)
•
ABA
ABA
•
A
E A
2020/9/12
《集合论与图论》第4讲
13
集合恒等式证明(方法)
• 逻辑演算法:
(命题逻辑排中律)
A~A = E
2020/9/12
《集合论与图论》第4讲
18
集合演算法(格式)
题目: A=B. 证明: A
=…(????) =B A=B. #
题目: AB. 证明: A
…(????) B AB. #
2020/9/12
《集合论与图论》第4讲
19
吸收律(证明)
• A(AB)=A
• 对偶原理: 对偶式同真假. 或者说, 集合恒
等式的对偶式还是恒等式.
2020/9/12
《集合论与图论》第4讲
10
对偶原理(举例)
• 分配律
A (B C) = (A B ) (A C ) A (B C) = (A B ) (A C )
• 排中律
A ~A=E
• 矛盾律
A ~A=
2020/9/12
《集合论与图论》第4讲
22
集合恒等式证明(举例)
• 基本集合恒等式 • 对称差()的性质 • 集族({A}S)的性质 • 幂集(P( ))的性质
2020/9/12
《集合论与图论》第4讲
23
补交转换律
• A-B = A~B
证明: x, xA-B
xA xB xA x~B x A~B
7
集合恒等式(关于-)
• 补交转换律(difference as intersection)
A-B=A~B
2020/9/12
《集合论与图论》第4讲
8
集合恒等式(推广到集族)
• 分配律
B ({A }S ) (B A ) S
B ({A }S ) (B A ) S
• 德●摩根律 ~ ({A }S ) (~ A ) S
离散数学集合证明课件
2020/9/12
《集合论与图论》第4讲
1
集合恒等式(关于与)
• 等幂律(idempotent laws)
AA=A AA=A
• 交换律(commutative laws)
AB=BA AB=BA
2020/9/12
《集合论与图论》第4讲
2
集合恒等式(关于与、续)
• 结合律(associative laws)
利用逻辑等值式和推理规则
• 集合演算法:
利用集合恒等式和已知结论
2020/9/12
《集合论与图论》第4讲
14
逻辑演算法(格式)
题目: A=B. 证明: x,
xA … (????) xB
A=B. #
题目: AB. 证明: x,
xA … (????) xB
AB. #
2020/9/12
《集合论与图论》第4讲
《集合论与图论》第4讲
4
集合恒等式(关于~)
• 双重否定律(double complement law)
~~A=A
• 德●摩根律(DeMorgan’s laws)
~(AB)=~A~B ~(AB)=~A~B
2020/9/12
《集合论与图论》第4讲
5
集合恒等式(关于与E)
• 零律(dominance laws)
AE=E A=
• 同一律(identity laws)
A=A AE=A
2020/9/12
《集合论与图论》第4讲
6
集合恒等式(关于,E)
• 排中律(excluded middle)
A~A = E
• 矛盾律(contradiction)
• 全补律
A~A =
~ = E
~E =
2020/9/12
《集合论与图论》第4讲
~ ({A }S ) (~ A ) S
B ({A }S ) (B A ) S
B ({A }S ) (B A ) S
2020/9/12
《集合论与图论》第4讲
9
对偶(dual)原理
• 对偶式(dual): 一个集合关系式, 如果只含
有, ,~,, E,=, , 那么, 同时把与互 换, 把与E互换, 把与互换, 得到的式子 称为原式的对偶式.
A(AB) = A
2020/9/12
《集合论与图论》第4讲
21
集合演算法(格式,续)
题目: A=B. 证明: () …
AB () …
AB A = B. # 说明: 分=成与
题目: AB. 证明: AB (或AB)
=…(????) = A (或B) AB. # 说明: 化成= AB=AAB AB=BAB
A-B = A~B. #
2020/9/12
《集合论与图论》第4讲
24
德●摩根律的相对形式
• A-(BC)=(A-B)(A-C)
• A-(BC)=(A-B)(A-C)
证明: A-(BC)
= A~(BC)
(补交转换律)
= A(~B~C)
(德●摩根律)
= (AA)(~B~C) (等幂律)
A
B
证明: A(AB)
= (AE)(AB) (同一律)
= A(EB)
(分配律)
= AE
(零律)
=A
(同一律)
A(AB)=A
2020/9/12
《集合论与图论》第4讲
20
吸收律(证明、续)
• A(AB) = A
A
B
证明: A(AB)
= (AA)(AB) (分配律)
= A(AB)
(等幂律)
=A
(吸收律第一式)