利用导数研究不等式问题
专题05 应用导数研究不等式恒成立问题(解析版)
专题05 应用导数研究不等式恒成立问题【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,应用导数研究不等式恒成立问题的主要命题角度有:证明不等式恒成立、由不等式恒(能)成立求参数的范围、不等式存在性问题.本专题就应用导数研究不等式恒成立问题,进行专题探讨,通过例题说明此类问题解答规律与方法---参变分离、数形结合、最值分析等.一、利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.二、不等式恒成立问题的求解策略(1)已知不等式f(x,λ)≥0(λ为实参数)对任意的x∈D恒成立,求参数λ的取值范围.利用导数解决此类问题可以运用分离参数法,其一般步骤如下:(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a>0,Δ<0或a<0,Δ<0)求解.三、不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.【压轴典例】例1.(2021·全国高三其他模拟)已知数列{}n a 满足11a =,()1ln 1n n a a +=+.若11n n a a λ++≥恒成立,则实数λ的最大值是( )(选项中e 为自然对数的底数,大约为2.71828)A .21e -B .2e 1- CD .e【答案】D【详解】由()1ln 1n n a a +=+得()111ln 1n n n n a a a a +++-=-+,设()ln(1),1f x x x x =-+>-, ()1x f x x '=+,()f x 在(1,0)-单调递减,在(0,+∞)单调递增,故min ()(0)0f x f ==,则10n n a a +->,所以1n n a a +≤, 1n a ≥,由11n n a a λ++≥得111ln(1)n n a a λ++++≥易得11ln(11)n n a a λ++≤++,记110n t a ++=>,所以111ln(1ln )n n a t a t ++=++,记()ln t f t t=,()2ln 1()ln t f t t -'=,当ln 10t ->即()0f t '>得t e >时()f t 单调递增,当ln 10t -<即()0f t '<得0t e <<时()f t 单调递减,所以min ()()f t f e e ==,得e λ≤,例2.(2021·浙江嘉兴市·高三)已知函数()()()1x f x e a tax =-+,其中0t ≠.若对于某个t ∈R ,有且仅有3个不同取值的a ,使得关于x 的不等式()0f x ≥在R 上恒成立,则t 的取值范围为( )A .()1,eB .(),2e eC .(),e +∞D .()2,e +∞ 【答案】C【详解】显然0a ≥,否则0x e a ->,于是()()()10x f x e a tax =-+≥,即10tax +≥,这与不等式的解集为R 矛盾.又易知0a =时,不等式()0f x >恒成立.于是仅需再分析0a >的情形.易知0t >,由()()()10x f x e a tax =-+=知ln x a =或1x ta=-,所以11ln ln a a a ta t =-⇔-=.所以原问题等价于关于a 的方程1ln a a t-=有两解,设()ln h a a a =,则()ln 1h a a '=+,10a e <<时,()0h a '<,()h a 递减,1a e>时,()0'>h a ,()h a 递增,所以min 11()h a h e e ⎛⎫==- ⎪⎝⎭,0x →时,()0h a →,a →+∞时,()h a →+∞,所以由关于a 的方程1ln a a t -=有两解,得110e t-<-<,所以t e >. 例3.(2020·新高考全国Ⅰ卷)已知函数f(x)=ae x-1-ln x+ln a.(1)当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a 的取值范围.【解析】f(x)的定义域为(0,+∞),f'(x)=ae x-1-.(1)当a=e 时,f(x)=e x -ln x+1,f'(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x 轴,y 轴上的截距分别为,2,因此所求三角形的面积为.(2)当0<a<1时,f(1)=a+ln a<1不满足条件;当a=1时,f(x)=e x-1-ln x,f'(x)=e x-1-.当x ∈(0,1)时,f'(x)<0;当x ∈(1,+∞)时,f'(x)>0.所以f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.所以a=1满足条件;当a>1时,f(x)=ae x-1-ln x+ln a ≥e x-1-ln x ≥1.综上,a 的取值范围是[1,+∞).例4.(2020·全国卷Ⅰ高考理科·T21)已知函数f(x)=e x +ax 2-x.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f=e x +x 2-x ,f'=e x +2x -1,由于f″=e x +2>0, 故f'单调递增,注意到f'=0, 故当x ∈时,f'<0,f 单调递减,当x ∈时,f'>0,f 单调递增.(2)由f ≥x 3+1得,e x +ax 2-x ≥x 3+1,其中x ≥0, ①当x =0时,不等式为:1≥1,显然成立,符合题意;②当x>0时,分离参数a得,a≥-,记g =-,g'=-,令h=e x -x2-x -1,则h'=e x-x-1,h″=e x-1≥0,故h'单调递增,h'≥h'=0,故函数h单调递增,h≥h=0,由h≥0可得:e x -x2-x-1≥0恒成立,故当x ∈时,g'>0,g单调递增;当x ∈时,g'<0,g单调递减,因此,=g =,综上可得,实数a 的取值范围是.例5.(2020·天津高考·T20)已知函数f(x)=x3+k ln x(k∈R),f'(x)为f(x)的导函数.(1)当k=6时,①求曲线y=f(x)在点(1,f(1))处的切线方程;②求函数g(x)=f(x)-f'(x )+的单调区间和极值;(2)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有>.【解析】(1)①当k=6时,f(x)=x3+6ln x,f'(x)=3x2+.可得f(1)=1,f'(1)=9,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-1=9(x-1),即y=9x-8.②依题意,g(x)=x3-3x2+6ln x +,x∈(0,+∞).从而可得g'(x)=3x2-6x +-,整理可得:g'(x )=,令g'(x)=0,解得x=1.当x变化时,g'(x),g(x)的变化情况如表:x(0,1) 1 (1,+∞)g'(x) - 0 +g(x) 单调递减极小值单调递增所以,g(x)的减区间为(0,1),单调递增区间为(1,+∞);g(x)的极小值为g(1)=1,无极大值.(2)由f (x )=x 3+k ln x ,得f'(x )=3x 2+.对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令=t (t >1), 则(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))=(x 1-x 2)-2 =--3x 2+3x 1+k -2k ln =(t 3-3t 2+3t -1)+k .(ⅰ)令h (x )=x --2ln x ,x ∈(1,+∞).当x >1时,h'(x )=1+-=>0,由此可得h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1),即t --2ln t >0. 因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以(t 3-3t 2+3t -1)+k ≥(t 3-3t 2+3t -1)-3=t 3-3t 2+6ln t +-1.(ⅱ) 由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +>1,故t 3-3t 2+6ln t +-1>0.(ⅲ) 由(ⅰ)(ⅱ)(ⅲ)可得(x 1-x 2)[f'(x 1)+f'(x 2)]-2(f (x 1)-f (x 2))>0.所以,当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有>.例6.(2021·江苏苏州市·高三)已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值;(2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤.【答案】(1)1a =;(2)证明见解析.【详解】(1)因为1()(1)ax f x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a ee +-=.设()(1)2x h x x e e =+-, 由于()(2)0x h x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =.(2)设()1t u t e t =--,则()1t u t e '=-,当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax ax x xe x b e x x x --≤--=对(0,)x ∈+∞恒成立.设ln 1()ax xe x g x x --=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=, 当且仅当()ln 0x ax x ϕ=+=时等号成立.由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增,又()()1a a a e ae a a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ,即方程()ln 0x ax x ϕ=+=有唯一解()0,1a x e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1a x e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x --≤--=对(0,)x ∈+∞恒成立,所以b a ≤. 例7.(2020·江苏高考·T19)已知关于x 的函数y=f(x),y=g(x)与h(x)=kx+b(k,b ∈R)在区间D 上恒有f(x)≥h(x)≥g(x).(1)若f(x)=x 2+2x,g(x)=-x 2+2x,D=(-∞,+∞).求h(x)的表达式;(2)若f(x)=x 2-x+1,g(x)=kln x,h(x)=kx-k,D=(0,+∞).求k 的取值范围;(3)若f(x)=x 4-2x 2,g(x)=4x 2-8,h(x)=4(t 3-t)x-3t 4+2t 2(0<|t|≤),D=[m,n]⊆[-,],求证:n-m ≤. 【解析】(1)由f(x)=g(x)得x=0.又f'(x)=2x+2,g'(x)=-2x+2,所以f'(0)=g'(0)=2,所以,函数h(x)的图象为过原点,斜率为2的直线,所以h(x)=2x.经检验:h(x)=2x 符合题意.(2)h(x)-g(x)=k(x-1-ln x),设φ(x)=x -1-ln x,则φ'(x)=1-=,φ(x)≥φ(1)=0,所以当h(x)-g(x)≥0时,k ≥0.设m(x)=f(x)-h(x)=x 2-x+1-(kx-k)=x 2-(k+1)x+(1+k)≥0,当x=≤0时,m(x)在(0,+∞)上递增,所以m(x)>m(0)=1+k ≥0,所以k=-1.当x=>0时,Δ≤0,即(k+1)2-4(k+1)≤0,(k+1)(k-3)≤0,-1≤k≤3.综上,k∈[0,3].(3)①当1≤t≤时,由g(x)≤h(x),得4x2-8≤4(t3-t)x-3t4+2t2,整理得x2-(t3-t)x+≤0.(*)令Δ=(t3-t)2-(3t4-2t2-8),则Δ=t6-5t4+3t2+8.记φ(t)=t6-5t4+3t2+8(1≤t≤),则φ'(t)=6t5-20t3+6t=2t(3t2-1)(t2-3)<0恒成立, 所以φ(t)在[1,]上是减函数,则φ()≤φ(t)≤φ(1),即2≤φ(t)≤7所以不等式(*)有解,设解集为,因此n-m≤x2-x1=≤.②当0<t<1时,f(-1)-h(-1)=3t4+4t3-2t2-4t-1.设v(t)=3t4+4t3-2t2-4t-1,v'(t)=12t3+12t2-4t-4=4(t+1)(3t2-1),令v'(t)=0,得t=.当t∈时,v'(t)<0,v(t)是减函数;当t∈时,v'(t)>0,v(t)是增函数;v(0)=-1,v(1)=0,则当0<t<1时,v(t)<0,(或证:v(t)=(t+1)2(3t+1)(t-1)<0)则f(-1)-h(-1)<0,因此-1∉(m,n).因为[m,n]⊆[-,],所以n-m≤+1<.③当-≤t<0时,因为f(x),g(x)均为偶函数,因此n-m≤也成立.综上所述,n-m≤.例8.(2020届安徽省马鞍山市高三)已知函数.(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.【答案】(1);(2)见解析【解析】(1)由题意知,令,则,当时,在上单调递减, 当时,在上单调递增, 又,∵在定义域内无极值点,∴ 又当时,在和上都单调递增也满足题意,所以(2),令,由(1)可知在上单调递増,又,所以存在唯一的零点,故在上单调递减,在上单调递増,∴由知 即当时,恒成立.例9.(2021·安徽高三)已知函数()2ln ,f x x ax x =+-其中0.a ≥(1)讨论()f x 的单调性;(2)若当2x >时()31,12f x x <+恒成立,求a 的取值范围. 【答案】(1)当18a ≥时,函数()f x 在()0,∞+内单增;当108a <<,()f x 在1181180,,4,4a a a a -⎛--+⎛⎫ ⎪ ⎪⎝⎭⎝⎭∞内单增,在11811844a a a a -+-⎛ ⎝⎭内单减;当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减; (2)7ln20,4-⎡⎤⎢⎥⎣⎦. 【详解】(1)()212121,0ax x f x ax x x x-+=+'-=> 若()()110,21,x a f x ax f x x x-==+-=-在(0,1)内单增,在()1,+∞内单减. 若0,a >由2210ax x -+=知, 18a ∆=-.当Δ180,a =-≤即18a ≥时,2210,ax x -+≥此时()f x 在()0,∞+内单增. 当1Δ180,08a a =-><<时,1184a x a-=,此时()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 综上所述:当18a ≥时,函数()f x 在()0,∞+内单增. 当108a <<,()f x 在1181180,,4,4a a a a -⎛-+-+⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∞内单增,在118118,44a a a a --+-⎛⎫ ⎪ ⎪⎝⎭内单减. 当0a =时,()f x 在(0,1)内单增,在()1,+∞内单减.(2)()3112f x x <+即231ln 1,2x ax x x +-<+ 即2311ln 2ax x x x <++- 即22111ln 2x a x x x x <++-,2x >,令()22111ln ,2,2x g x x x x x x=++-> 则()23311212ln 2x g x x x x -=---'33264ln ,22x x x x x--+=> 令()()324264ln ,2,320h x x x x x h x x x=--+>=-+>'. 所以()h x 在2x >时单增,()()()24ln222ln410h x h >=-=->,因此()0g x '>, ()g x 在2x >时单增,()()7ln224g x g ->=,于是7ln2.4a -≤ 故a 的取值范围是7ln20,.4-⎡⎤⎢⎥⎣⎦例10.(2020届山西省孝义市一模)已知函数. (1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).【解析】(1)由可得的定义域为,且, 若,则,函数在上单调递增; 若,则当时,,在上单调递增, 当时,,在上单调递减. 综上,当时,函数在上单调递增; 当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立, 即,不等式恒成立.∵当时,,∴, 即证当时,大于的最大值.又∵当时,,∴,综上所述,.【总结提升】不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合( 图象在 上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法 ① 求得的范围. 【压轴训练】1.(2021·长宁区·上海市延安中学高三)设函数()f x 的定义域为R ,满足()()22f x f x +=,且当(]0,2x ∈时,()194f x x x =+-.若对任意(],x m ∈-∞,都有()23f x ≥-,则m 的取值范围是( )A .215⎛⎤-∞ ⎥⎝⎦,B .163⎛⎤-∞ ⎥⎝⎦,C .184⎛⎤-∞ ⎥⎝⎦,D .194⎛⎤-∞ ⎥⎝⎦,【答案】D【详解】当(]0,2x ∈时,()194f x x x =+-的最小值是1,4-由()()22f x f x +=知,当(]2,4x ∈时,()()192224f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,2-当(]4,6x ∈时,()()194444f x x x ⎡⎤=-+-⎢⎥-⎣⎦的最小值是1,-要使()23f x ≥-,则()1924443x x -+-≥--,解得:194x ≤或16.3x ≥2.(2020·河津中学高三)若函数2()cos sin 3f x a x x x ⎛⎫=-+ ⎪⎝⎭(其中a 为参数)在R 上单调递增,则a 的取值范围是( ) A .10,3⎡⎤⎢⎥⎣⎦B .11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭C .11,33⎡⎤-⎢⎥⎣⎦D .1,03⎡⎤-⎢⎥⎣⎦【答案】C【详解】函数1()sin sin 23f x a x x x =-+在R 上单调递增,等价于2245()cos cos21cos cos 0333f x a x x x a x =-+=-++'在R 上恒成立.设cos x t =,则245()033g t t at =-++在[1,1]-上恒成立,所以45(1)0,3345(1)0,33g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩解得.3.(2021·全国高三专题练习)已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .2【答案】B【详解】设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212ln x kx x x x >-,等价于1221ln 1x kx x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=.所以0k ≤,k 的最大值为0.4.(2019·天津高考模拟)已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩ 若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( )A .13,3e ⎡⎤-⎢⎥⎣⎦ B .[3,3ln 5]+ C .[3,4ln 2]+D .13,5e ⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x a x a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a,① 当2a x ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相切,此时2()46,1f x x x x =-+>,()2,2ag x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;② 同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +, 可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+, 综上所述可得342a In ≤≤+,故选C.5.(2020·广东佛山市·高三)(多选)命题:p 已知ABC 为锐角三角形,不等式cos cos log 0sin CAB≥恒成立,命题2:2q x x ax +在[1,2]x ∈上恒成立,在[1,2]上恒成立,则真命题的为( ) A .p q ∨ B .p q ∧C .p q ⌝∨D .p q ∧⌝【答案】AD 【详解】因为为锐角三角形,所以0,0,0222A B C πππ<<<<<<,所以2A B π+>,则022A B ππ>>->,所以0cos cos()sin 12A B B π<<-=<,所以cos 01sin AB<<,又0cos 1C <<,所以不等式cos cos log 0sin CA B≥恒成立,故命题p 是真命题;命题2:2q x x ax +在[1,2]x ∈上恒成立()min2x a ⇔+,在[1,2]上恒成立,故命题q 是假命题所以p q ∨,p q ∧⌝是真命题.6.(2020·福清西山学校高三)(多选)记函数()f x 与()g x 的定义域的交集为I ,若存在0x I ∈,使得对任意x I ∈,不等式()()fx g x -⎡⎤⎣⎦()00x x -≥恒成立,则称()()(),f x g x 构成“相关函数对”.下列所给的两个函数构成“相关函数对”的有( ) A .()xf x e =,()1g x x =+B .()ln f x x =,()1g x x= C .()f x x =,()2g x x =D .()f x x =,【答案】BD【详解】根据函数的新定义,可得两个函数的图象有一个交点,且交点的两侧图象一侧满足()()f x g x >,另一侧满足()()f x g x <,对于A 中,令()()()1xx f x g x e x ϕ=-=--,可得()1xx e ϕ'=-,当0x >时,()10xx e ϕ'=->,函数单调递增;当0x <时,()10x x e ϕ'=-<,函数单调递减,所以当0x =时,函数()x ϕ 取得最小值,最小值为()00ϕ=,即()0x ϕ≥,所以()()f x g x ≥恒成立,不符合题意;对于B 中,令()()()1ln ,0x f x g x x x x ϕ=-=->,可得()2110x x xϕ'=+>,所以函数()x ϕ单调递增,又由()()11ln110,ln 0e e eϕϕ=-<=->,设0x x =满足()00x ϕ=,且01x e <<,则对任意(0,)x ∈+∞,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意;对于C 中,函数()f x x =,()2g x x =,根据一次函数和二次函数的性质,可得函数()y f x =的图象由两个交点,此时不满足题意;对于D 中,令()()()1()2x x f x g x x ϕ=-=,可得()1211()ln 2022x x x ϕ-'=+>,所以()x ϕ在定义域[0,)+∞单调递增,又由()()1010,102ϕϕ=-<=>,所以方程()0x ϕ=只有一个实数根,设为0x ,则满足对任意x I ∈,不等式()()f x g x -⎡⎤⎣⎦()00x x -≥恒成立,符合题意. 7.(2020·浙江高三月考)已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln x x x a a -≤-恒成立,则a 的最小值为______.【答案】3e【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=,∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞,∴[)3,1,x e x a ∈+∞,∴33x x e ae x x a ⇔≤⇔≤恒成立,令()3x xg x e=,只需max ()a g x ≥,()33x xg x e -'=,∴1[,1),()0,()3x g x g x ∈'>单调递增,∴(1,),()0,()x g x g x ∈+∞'<单调递减,1x ∴=时,()g x 的最大值为3e ,∴3a e≥, ∴a 的最小值为3e. 8.(2020·全国高三月考)已知函数()()ln 202xaf x ae a x =+->+,若()0f x >恒成立,则实数a 的取值范围为______. 【答案】(),e +∞ 【详解】()ln202x af x ae x =+->+,则()ln ln ln 22x a e a x ++>++,两边加上x 得到()()()ln 2ln ln 2ln 2ln 2x x aex a x x ex ++++>+++=++,x y e x =+单调递增,()ln ln 2x a x ∴+>+,即()ln ln 2a x x >+-,令()()ln 2g x x x =+-,则()11121x g x x x --'=-=++,因为()f x 的定义域为()2,-+∞()2,1x ∴∈--时,()0g x '>,()g x 单调递增,()1,x ∈-+∞,()0g x '<,()g x 单调递减, ()()max ln 11a g x g ∴>=-=,a e ∴>.9.(2021·安徽高三开学考试)已知函数()()11ln f x a x x =+++. (1)讨论函数()f x 的单调性;(2)对任意0x >,求证:()()22e 11exa x f x x +++>.【答案】(1)答案见解析;(2)证明见解析.【详解】(1)由题意得,()f x 的定义域为()0,∞+,()()1111a x f x a x x++'=++=, 当1a ≥-时,()0f x '>恒成立,∴()f x 在()0,∞+上单调递增. 当1a <-时,令()0f x '>,解得11x a <-+;令()0f x '<,解得11x a >-+, ∴()f x 在10,1a ⎛⎫-⎪+⎝⎭上单调递增,在1,1a ⎛⎫-+∞⎪+⎝⎭上单调递减. (2)要证()()22e 11e x a x f x x +++>,即证22e ln 0e x x x ⋅->.令()22e ln e xg x x x =⋅-,则()()22221e e e x x x g x x--'=.令()()221e e x r x x x =--,则()22e e x r x x '=-, 易得()r x '在()0,∞+上单调递增,且()212e e 0r '=-<,()223e 0r '=>,∴存在唯一的实数()01,2x ∈,使得()00r x '=,∴()r x 在()00,x 上单调递减,在()0,x +∞上单调递增.∵()00r <,()20r =, ∴当()0r x >时,2x >;当()0r x <时,02x <<,∴()g x 在()0,2上单调递减,在()2,+∞上单调递增,∴()()21ln 20g x g ≥=->.综上,22e ln 0e x x x ⋅->,即()()22e 11exa x f x x +++>.10.(2020·山东高考模拟)已知函数2()ln 2()f x x a x x a R =+-∈.(1)求()f x 的单调递增区间;(2)若函数()f x 有两个极值点1212,()x x x x <且12()0f x mx -≥恒成立,求实数m 的取值范围.【答案】(1)12a ≥时,增区间为(0,)+∞;0a ≤时,增区间为1()2++∞;102a <<时,增区间为,)+∞;(2)3(,ln 2]2-∞--. 【解析】(1)函数()f x 的定义域为(0,)+∞,222'()22a x x af x x x x-+=+-=,令2220x x a -+=,484(12)a a ∆=-=-,1︒若12a ≥时,0∆≤,'()0f x ≥在(0,)+∞恒成立,函数()f x 在(0,)+∞上单调递增. 2︒若12a <,>0∆,方程2220x x a -+=,两根为1x =2x =,当0a ≤时,20x >,2(,)x x ∈+∞,'()0f x >,()f x 单调递增. 当102a <<时,1>0x ,20x >, 1(0,)x x ∈,'()0f x >,()f x 单调递增,2(,)x x ∈+∞,'()0f x >,()f x 单调递增.综上,12a ≥时,函数()f x 单调递增区间为(0,)+∞, 0a ≤时,函数()f x单调递增区间为1()2+∞, 102a <<时,函数()f x单调递增区间为1(0,2-,1()2++∞. (2)由(1)知,()f x 存在两个极值点1212,()x x x x <时,102a <<且121x x =+,122a x x ⋅=,则1112ax x +=,()1121a x x =-,且1102x <<,2112x <<. 此时()120f x mx ≥-恒成立,可化为()()21111112121ln 21f x x x x x x m x x +--≤=- ()()11111111121ln 11x x x x x x x -+-+--=-1111112ln 1x x x x =-++-恒成立, 设1()12ln 1g x x x x x =-++-,1(0,)2x ∈,2221(1)1'()122ln 2ln (1)(1)x g x x xx x --=-++-=+--2(2)2ln (1)x x x x -=+-, 因为102x <<,所以(2)0x x -<,2ln 0x <,所以)'(0g x <,故()g x 在1(0,)2单调递减,13()ln 222g x g ⎛⎫>=-- ⎪⎝⎭,所以实数m 的取值范围是3(,ln 2]2-∞--.11.(2021·黑龙江哈尔滨市·哈尔滨三中高三)已知()()ln 0f x x mx m =->. (1)若()y f x =在点()()1,1f 处的切线平行于x 轴,求其单调区间和极值;(2)若不等式()21112f x xmx ++≤对于任意的0x >恒成立,求整数m 的最小值. 【答案】(1)增区间为()0,1,减区间为()1,+∞,()f x 的极大值为1-,无极小值;(2)2. 【详解】(1)()1f x m x'=-,则()110f m '=-=,1m ∴=, ()ln f x x x ∴=-,定义域为(0,)+∞,()111xf x x x-'=-=令()0f x '>,得01x <<;令()0f x '<,得1x >()f x ∴的增区间为()0,1,减区间为()1,+∞,且()f x 的极大值为()11f =-,无极小值.(2)因为0m >,所以()21112f x xmx ++≤对于任意的0x >恒成立,可化为21ln 122x x m x x ++≥+,设()2ln 12x x h x x x++=+,则()()()()()()2222212(ln 1)(22)12ln 22x x x x x x x x x x h x x x x x ⎛⎫++-+++ ⎪-++⎝⎭'==++, 设()2ln g x x x =+,则()2ln g x x x =+单调增,且111112ln 2ln 2ln 4022222g ⎛⎫=+=-=-< ⎪⎝⎭,()10g >,01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00g x =,即 ()00h x '=,所以002ln 0x x +=,所以当012x x <<时,0()()0g x g x <=,()0h x '>, 当01x x <<时,0()()0g x g x >=,()0h x '<,()h x ∴在()00,x 单调递增,在()0,x +∞单调递减()()000022max000001ln 1112,12222x x x h x h x x x x x x +++⎛⎫∴====∈ ⎪++⎝⎭()()021,2m h x ∴≥∈,m ∴的最小整数值为2。
利用导数证明或解决不等式问题
利用导数证明或解决不等式问题
导数在解决不等式问题中起着非常重要的作用,利用导数可以轻松地证明和解决各种
不等式问题。
本文将通过一些具体的例子,来展示导数在不等式问题中的应用。
我们来看一个简单的例子:证明当x>0时,e^x\geq1+x。
我们可以利用导数来证明这
个不等式。
我们计算e^x和1+x的导数,分别为e^x和1。
然后我们发现e^x-1\geq x,这意味着在x>0时,e^x\geq1+x。
这样就利用导数证明了这个不等式。
除了证明不等式,我们还可以利用导数来解决不等式问题。
我们要求解不等式
x^2-5x+6>0。
我们可以通过求解x^2-5x+6的导数来判断x^2-5x+6的增减性。
首先求导得
到2x-5,然后令2x-5=0,解得x=\frac{5}{2}。
这说明在x<\frac{5}{2}时,x^2-5x+6<0,而在x>\frac{5}{2}时,x^2-5x+6>0。
不等式x^2-5x+6>0的解集是x<\frac{5}{2}或
x>\frac{3}{2}。
利用导数解不等式和比较大小
利用导数解不等式和比较大小为了利用导数解不等式和比较大小,需要注意以下两点:1. 利用导数解不等式对于一个一元函数f(x),如果它在 x=a 处连续可导,且在 x=a 的某个邻域内 f'(x)>0,那么当 x>a 时,f(x) 严格单调增加;当x<a 时,f(x) 严格单调减少。
这个性质可以用来解一元不等式。
具体来说,假设要解的不等式是 f(x)>0,可采用以下步骤:1)找出 f(x) 的零点 a。
2)判定 a 的单调性。
3)结合 a 的单调性,确定 f(x) 在何时大于0。
例如,要解不等式 x^2-2x+1>0,可以先求出它的零点 a=1。
在x<1 的邻域内,f'(x)=2x-2>0,因此 x<1 时,f(x) 严格单调增加;在 x>1 的邻域内,f'(x)=2x-2>0,因此 x>1 时,f(x) 严格单调增加。
因此,f(x)>0 的解集为 (-∞,1)∪(1,+∞)。
2. 比较大小对于两个函数 f(x) 和 g(x),如果它们在某个区间内连续可导,且在该区间内 f'(x)>g'(x),则在该区间内 f(x) 严格大于 g(x)。
具体来说,假设要比较 f(x)=x^3 和 g(x)=x^2,可采用以下步骤:1)求出它们的导数 f'(x)=3x^2 和 g'(x)=2x。
2)找出 f'(x)-g'(x) 的零点 a=0。
3)判定 a 的单调性。
4)结合 a 的单调性,确定 f(x) 和 g(x) 在何时大小关系。
在 x<0 的邻域内,f'(x)-g'(x)=3x^2-2x<0,因此 x<0 时,f(x) 小于 g(x);在 0<x<1 的邻域内,f'(x)-g'(x)=3x^2-2x>0,因此0<x<1 时,f(x) 大于 g(x);在 x>1 的邻域内,f'(x)-g'(x)=3x^2-2x>0,因此 x>1 时,f(x) 大于 g(x)。
利用导数证明或解决不等式问题
利用导数证明或解决不等式问题导数是微积分中的重要概念,在解决不等式问题中,导数可以发挥很大的作用。
下面我们将以一些具体的例子来说明如何利用导数证明或解决不等式问题。
例子1:证明不等式x^2≥0在实数域中恒成立。
解析:对于任意实数x,在实数域中,不管x取何值,其平方x^2都大于等于0。
我们可以通过导数来证明这个不等式。
对x^2进行求导,得到导函数2x。
我们知道,导数表示函数的变化率,对于x^2来说,导函数2x表示了函数的斜率,也就是说,无论x取何值,函数x^2的斜率总为正数或者0。
因为函数的斜率总是非负的,所以x^2≥0在实数域中恒成立。
例子2:求函数f(x)=x^3-3x^2+2x的极值点。
解析:要求函数f(x)的极值点,我们可以先求出函数的导数f'(x),然后将f'(x)=0进行求解。
导数为0的点即为极值点。
将f'(x)=3x^2-6x+2=0进行求解,可以得到x=1或者x=2。
接下来,我们可以求出函数在x=1和x=2处的函数值,并比较求出极值点。
f(1)=1^3-3*1^2+2*1=0f(2)=2^3-3*2^2+2*2=0对f(x)进行求导,得到导函数f'(x)=3x^2-6。
接下来,我们可以将x轴上的一些点带入函数f'(x)进行判断。
当x<−√2时,f'(x)>0;当−√2<x<√2时,f'(x)<0;当x>√2时,f'(x)>0。
由此可见,函数f(x)=x^3-6x在区间(−∞,−√2),(−√2,√2),(√2,+∞)上是单调的。
第五节 利用导数研究不等式恒成立问题
范围.
由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,
g(x)在(1,x2)上单调递减,此时g(x)<g(1)=0.
[关键4:利用导数研究函数单调性,求函数值域]
综上,a的取值范围是(-∞,2].
考法一 分离参数法解决不等式恒成立问题
[例1] (2019·石家庄质量检测)已知函数f(x)=axex-(a+ 1)(2x-1).
考法二 等价转化法解决不等式恒成立问题
[例2] (2019·合肥六校联考)已知函数f(x)=(x+a- 1)ex,g(x)=12x2+ax,其中a为常数.
(1)当a=2时,求函数f(x)在点(0,f(0))处的切线方程; (2)若对任意的x∈[0,+∞),不等式f(x)≥g(x)恒成 立,求实数a的取值范围.
(1)若a=1,求函数f(x)的图象在点(0,f(0))处的切线方程; (2)当x>0时,函数f(x)≥0恒成立,求实数a的取值范围.
[解] (1)若a=1,则f(x)=xex-2(2x-1). 即f′(x)=xex+ex-4, 则f′(0)=-3,f(0)=2, 所以所求切线方程为3x+y-2=0.
(1)在a=0时,求f(x)的单调区间; (2)若 f(x)>0在(0,+∞)上恒成立,求实数a的取值范围. 解:(1)a=0时,f(x)=(x-1)ln x, f′(x)=ln x+(x-1)·1x=ln x-1x+1,设 g(x)=ln x-1x+1, 则g′(x)=x+x2 1>0,∴g(x)在(0,+∞)上单调递增,而g(1)=0, ∴ x∈(0,1)时,g(x)<0,即f′(x)<0, x∈(1,+∞)时,g(x)>0,即f′(x)>0, ∴f(x)的单调递减区间为(0,1),单调递增区间为(1,+∞).
2.13.2利用导数研究不等式的恒成立、能成立问题
第二章
考点 层级突破
课时 分组冲关
②当 a>1 时,令 g'(x)=0,得 x=ln a,
当 x 变化时,g(x),g′(x)的变化情况如下表:
x
(0,ln a) ln a (ln a,+∞)
g′(x)
-
0
+
g(x) 单调递减 极小值 单调递增
故存在 x=ln a,使得 g(ln a)<g(0)=0.
第二章
考点 层级突破
课时 分组冲关
[解] (1)f′(x)=(ex-2a)+xex-2ax=(x+1)(ex-2a),x∈R. ①若 a≤0,由 f′(x)=0 解得 x=-1. ∴当 x<-1 时,f′(x)<0,当 x>-1 时,f′(x)>0, ∴当 x=-1 时,f(x)取得极小值 f(-1)=a-1e=0,解得 a=1e(舍 去); ②若 a>0,由 f′(x)=0 解得 x=-1 或 x=ln (2a),
当 x≥1 时,g′(x)<0,得 g(x)在[1,+∞)上单调递减,有 g(x)≤g(1)
=e+1 1,而由(1)知,ef+x1≥ef+11=e+1 1. 所以,当 x≥1 时,xexe++11fx≥ex-1.
第二章
考点 层级突破
课时 分组冲关
(3)f(x)=x-ln x≥(1-m)x+m,即 ln x-m(x-1)≤0, 记 h(x)=ln x-m(x-1),则 h(x)≤0 对任意 x∈(0,+∞)恒成立, 求导得 h′(x)=1x-m(x>0) 若 m≤0,则 h′(x)>0,得 h(x)在(0,+∞)上单调递增, 又 h(1)=0,故当 x>1 时,h(x)>0,不合题意; 若 m>0,得 h(x)在0,m1 上单调递增,在m1 ,+∞单调递减. h(x)max=hm1 =-ln m-1+m≤0,故 f(m)≤1, 由(1)知 f(m)≥1,则 m 只能等于 1.
利用导数研究不等式恒成立(能成立)问题
利用导数研究不等式恒成立(能成立)问题1.设函数f (x )=(1+x -x 2)e x (e =2.718 28…是自然对数的底数).(1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1+2x 2恒成立,求实数a 的取值范围.解:(1)f ′(x )=(2-x -x 2)e x =-(x +2)(x -1)e x .当x <-2或x >1时,f ′(x )<0;当-2<x <1时,f ′(x )>0.所以f (x )在(-∞,-2),(1,+∞)上单调递减,在(-2,1)上单调递增.(2)设F (x )=f (x )-(ax +1+2x 2),F (0)=0,F ′(x )=(2-x -x 2)e x -4x -a ,F ′(0)=2-a ,当a ≥2时,F ′(x )=(2-x -x 2)e x -4x -a ≤-(x +2)·(x -1)e x -4x -2≤-(x +2)(x -1)e x -x -2=-(x +2)·[(x -1)e x +1],设h (x )=(x -1)e x +1,h ′(x )=x e x ≥0,所以h (x )在[0,+∞)上单调递增,h (x )=(x -1)e x +1≥h (0)=0,即F ′(x )≤0在[0,+∞)上恒成立,F (x )在[0,+∞)上单调递减,F (x )≤F (0)=0,所以f (x )≤ax +1+2x 2在[0,+∞)上恒成立.当a <2时,F ′(0)=2-a >0,而函数F ′(x )的图象在(0,+∞)上连续且x →+∞,F ′(x )逐渐趋近负无穷,必存在正实数x 0使得F ′(x 0)=0且在(0,x 0)上F ′(x )>0,所以F (x )在(0,x 0)上单调递增,此时F (x )>F (0)=0,f (x )>ax +1+2x 2有解,不满足题意. 综上,a 的取值范围是[2,+∞).2.设函数f (x )=2ln x -mx 2+1.(1)讨论函数f (x )的单调性;(2)当f (x )有极值时,若存在x 0,使得f (x 0)>m -1成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2mx =-2(mx 2-1)x, 当m ≤0时,f ′(x )>0,∴f (x )在(0,+∞)上单调递增;当m >0时,令f ′(x )>0,得0<x <m m , 令f ′(x )<0,得x >m m , ∴f (x )在⎝⎛⎭⎫0,m m 上单调递增,在⎝⎛⎭⎫m m ,+∞上单调递减. (2)由(1)知,当f (x )有极值时,m >0,且f (x )在⎝⎛⎭⎫0,m m 上单调递增,在⎝⎛⎭⎫m m ,+∞上单调递减.∴f (x )max =f ⎝⎛⎭⎫m m =2ln m m -m ·1m +1=-ln m , 若存在x 0,使得f (x 0)>m -1成立,则f (x )max >m -1.即-ln m >m -1,ln m +m -1<0成立.令g (x )=x +ln x -1(x >0),∵g ′(x )=1+1x>0,∴g (x )在(0,+∞)上单调递增, 且g (1)=0,∴0<m <1.∴实数m 的取值范围是(0,1).3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1.(1)求函数y =f (x )的图象在x =1处的切线方程;(2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围.解:(1)∵f ′(x )=1x,∴f ′(1)=1. 又∵f (1)=0,∴所求切线的方程为y -f (1)=f ′(1)(x -1),即为x -y -1=0.(2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0.①当a ≥1时,f (x )<g (x )≤ag (x );②当a ≤0时,f (x )>0,ag (x )≤0,不满足不等式f (x )≤ag (x );③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1x-a (x >1),令φ′(x )=0,得x =1a, 当x 变化时,φ′(x ),φ(x )的变化情况如下表:∴φ(x )max =φ⎝⎛⎭⎫1a >φ(1)=0,不满足不等式.综上所述,实数a 的取值范围为[1,+∞).4.已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1).(1)求函数f (x )的极小值;(2)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 是自然对数的底数),求实数a 的取值范围.解:(1)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a .∵当a >1时,ln a >0,函数y =(a x -1)ln a 在R 上是增函数,当0<a <1时,ln a <0,函数y =(a x -1)ln a 在R 上也是增函数,∴当a >1或0<a <1时,f ′(x )在R 上是增函数,又∵f ′(0)=0,∴f ′(x )>0的解集为(0,+∞),f ′(x )<0的解集为(-∞,0),故函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0),∴函数f (x )在x =0处取得极小值1.(2)∵存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1,∴只需f (x )max -f (x )min ≥e -1即可.由(1)可知,当x ∈[-1,1]时,f (x )在[-1,0]上是减函数,在(0,1]上是增函数, ∴当x ∈[-1,1]时,f (x )min =f (0)=1,f (x )max 为f (-1)和f (1)中的较大者.f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a-2ln a , 令g (a )=a -1a-2ln a (a >0), ∵g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0, ∴g (a )=a -1a-2ln a 在(0,+∞)上是增函数. 而g (1)=0,故当a >1时,g (a )>0,即f (1)>f (-1);当0<a <1时,g (a )<0,即f (1)<f (-1).∴当a >1时,f (1)-f (0)≥e -1,即a -ln a ≥e -1.由函数y =a -ln a 在(1,+∞)上是增函数,解得a ≥e ;当0<a <1时,f (-1)-f (0)≥e -1,即1a+ln a ≥e -1, 由函数y =1a +ln a 在(0,1)上是减函数,解得0<a ≤1e. 综上可知,所求实数a 的取值范围为⎝⎛⎦⎤0,1e ∪[e ,+∞).。
专题12利用导数研究不等式恒成立问题(原卷版)
专题12利用导数研究不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x ,使得f (x )>0,只需f (x )min >0.类型2:任意x ,使得f (x )<0,只需f (x )max <0.类型3:任意x ,使得f (x )>k ,只需f (x )min >k .类型4:任意x ,使得f (x )<k ,只需f (x )max <k .类型5:任意x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.类型6:任意x ,使得f (x )<g (x ),只需h (x )max =[f (x )-g (x )]max <0.(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决. 可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .(1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值 即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.典例1.已知函数f (x )=ax +ln x +1,若对任意的x >0,f (x )≤x e 2x 恒成立,求实数a 的取值范围.典例2.设函数f (x )=ln x +k x,k ∈R. (1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.典例3.已知函数f (x )=13x 3+x 2+ax . (1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=x e x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围. 典例4.已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数. (1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.专项突破练一、单选题1.若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是() A .27a <- B .25a >- C .29a ≥ D .29a >2.已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是()A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-3.已知函数()32183833f x x x x =-+-,()lng x x x =-,若()120,3x x ∀∈,,()()12g x k f x +≥恒成立,则实数k 的取值范围是()A .[)2ln 2,++∞B .[)3,∞-+C .5,3⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞4.已知不等式()()23ln 1231x x a -+≤+对任意[]0,1x ∈恒成立,则实数a 的最小值为()A .1ln 22-B .113ln 622--C .13-D .113ln 622+ 5.若关于x 的不等式sin x x ax -≥,对[]0,x π∈恒成立,则实数a 的取值范围是() A .(],1-∞- B .(],1-∞C .4,π⎛⎫-∞- ⎪⎝⎭D .4,∞π⎛⎤- ⎥⎝⎦ 6.若关于x 的不等式()()22e222ln 1x a x a a x -+-+>+-在()2,+∞上恒成立,则实数a 的取值范围为() A .1,e ⎡-+∞⎫⎪⎢⎣⎭ B .()1,-+∞C .[)1,-+∞D .[)2,-+∞ 7.已知函数()2sin f x x x =+,若ln (1)0a f x f x ⎛⎫++-≥ ⎪⎝⎭对(]0,2x ∈恒成立,则实数a 的取值范围为() A .[)1,+∞ B .[)2,+∞C .[]1,2D .()1,+∞ 8.已知不等式22ln 0ax x +-≥恒成立,则a 的取值范围为()A .21,e ⎡⎫+∞⎪⎢⎣⎭B .22,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤ ⎥⎝⎦D .220,e ⎛⎤ ⎥⎝⎦9.若函数()ln f x x =,g (x )=313x 对任意的120x x >>,不等式112212()()()()x f x x f x m g x g x ->-恒成立,则整数m 的最小值为()A .2B .1C .0D .-1二、多选题 10.已知函数22,0(),0x x x f x e x ⎧+<=⎨≥⎩,满足对任意的x ∈R ,()f x ax ≥恒成立,则实数a 的取值可以是() A.-B.CD.11.设函数()()e 1x f x ax a +=-+∈N ,若()0f x >恒成立,则实数a 的可能取值是()A .1B .2C .3D .4 12.已知函数()312x f x x +=+,()()42e x g x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是()A .6e B.(2e C.(2e D .2e13.已知()2121()1e 2x f x a x -=--,若不等式11ln 1f f x x ⎛⎫⎛⎫> ⎪ ⎪-⎝⎭⎝⎭在(1,)+∞上恒成立,则a 的值可以为() A.B .1- C .1 D三、填空题 14.已知函数2()2ln f x x x a =--,若()0f x ≥恒成立,则a 的取值范围是________. 15.当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.16.已知函数()2f x x a =+,()ln 2g x x x =-,如果对任意的1x ,2122x ⎡⎤∈⎢⎥⎣⎦,,都有()()12f x g x ≤成立,则实数a 的取值范围是_________.17.已知不等式[]1ln(1)x e x m x x -->-+对一切正数x 都成立.则实数m 的取值范围是___________.四、解答题18.设()()32114243f x x a x ax a =-+++,其中a R ∈.(1)若()f x 有极值,求a 的取值范围;(2)若当0x ≥,()0f x >恒成立,求a 的取值范围.19.已知函数()ln 32a f x ax x =--,其中0a ≠. (1)求函数()f x 的单调区间;(2)若()310xf x x +-≥对任意[)1,x ∞∈+恒成立,求实数a 的取值范围. 20.已知函数2()(2)e (1)(R,R)x f x x a x m a m =----∈∈.(1)若12a =,求()f x 的单调区间; (2)若()0,()2ln 2e x a f x x x =≥+-对一切,()0x ∈+∞恒成立,求m 的取值范围. 21.已知函数()()()21e ,12x f x x g x ax a R =-=+∈. (1)求()f x 的图象在0x =处的切线方程;(2)当[)0,x ∈+∞时,()()f x g x ≥恒成立,求a 的取值范围. 22.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围. 23.已知函数()()ln 1ln f x ax a x =-+的图像在点()()1,1f 处的切线方程为4y x b =+. (1)求a ,b 的值;(2)当4k ≥时,证明:()()1f x k x <-对()1,x ∈+∞恒成立.24.已知函数()()21ln R f x ax x a =--∈.(1)讨论函数()f x 的单调性;(2)若()f x 在x =()()0,,1x f x bx ∈+∞≥-恒成立,求实数b 的取值范围. 25.已知函数()e (2)1x f x a x =---.(1)当a =1时,求曲线在点()()1,1f 处的切线方程;(2)若2()()g x f x x =-,且()0g x ≥在[)0,∞+上恒成立,求a 的取值范围.26.已知函数()e x f x =.(1)证明:()1f x x ≥+;(2)当[]0,x π∈时,不等式()()sin 21ln 1x f x m x --≤+⎡⎤⎣⎦恒成立,求实数m 的取值范围.27.已知函数()()ln 0x f x e a x a =->.(1)当2a =时,直线2y kx =+与曲线()y f x =相切,求实数k 的值;(2)当0x >时,()ln f x a a >,求a 的取值范围.28.已知函数2()e (1)=+-+x f x a x x .(1)当1a =时,求()f x 的单调区间;(2)若不等式()2f x ≥恒成立,求实数a 的取值范围.29.设函数()()321f x x a x ax =+++.(1)0a =时,求()f x 在区间[]1,2-上的最大值与最小值.(2)0a >时,()f x 有两个不同的极值点1x ,2x ,且对不等式()()120f x f x +≤恒成立,求实数a 的取值范围? 30.已知函数()()()1e x f x a x a =--∈R ,()ln e k x x =-,e 为自然对数的底数.(1)讨论()f x 的单调性;(2)当1x >时,不等式()()f x k x ≤恒成立,求a 的取值范围.31.已知函数()()2ln 2f x x ax a =-+∈R .(1)讨论()f x 的单调性;(2)若()()20f x a x --≥在[]1,e x ∈上恒成立,求实数a 的取值范围. 32.已知函数()ln 1f x ax x =++.(1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围;(2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围.33.已知函数21()e sin 12x f x kx x =---,函数()21cos 12g x x x =+-.(1)求函数()g x 的单调区间.(2)0x ≥时,不等式()0f x ≥恒成立,求实数k 的取值范围. 34.已知函数12()(1)e -=--x f x a x x (其中a R ∈,e 为自然对数的底数).(1)当2e a >时,讨论函数f (x )的单调性;(2)当1x >时,2()ln(1)3f x x x x >--+-,求a 的取值范围. 35.已知函数()e ln 1x f x mx x =--.(1)当1m =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)若(x)x f ≥恒成立,求实数m 的取值范围.。
导数的应用——利用导数证明不等式
导数的应用——利用导数证明不等式导数是微积分中的重要概念,它不仅在数学中有广泛的应用,还能帮助我们解决一些实际问题。
利用导数来证明不等式是导数的另一个重要应用之一、在本文中,我们将探讨如何使用导数来证明一些不等式。
在开始之前,我们需要回顾一下导数的定义。
对于函数f(x),如果在特定点x处的导数存在,那么导数的定义为:f'(x) = lim(h->0) (f(x+h)-f(x))/h其中,f'(x)表示函数f(x)在点x处的导数。
证明不等式的基本方法是比较函数在一些区间内的导数大小关系。
如果可以证明在这个区间内,一个函数的导数始终大于另一个函数的导数,那么我们可以推断出,这个区间内的一个函数始终大于另一个函数,从而得到不等式的证明。
下面将通过一些具体的例子来说明如何利用导数证明不等式。
例1:证明当x>0时,e^x>1+x首先,我们定义函数f(x)=e^x-(1+x),我们需要证明当x>0时,f(x)>0。
对于上述函数,我们可以计算它的导数f'(x)=e^x-1、现在我们只需要证明当x>0时,f'(x)>0即可。
对于x>0,显然有e^x>1,因此f'(x)=e^x-1>1-1=0,即f'(x)>0。
由此可知,当x>0时,f(x)是递增函数。
由此得到,f(x)>f(0),即e^x-(1+x)>1-(1+0)=0。
因此,当x>0时,e^x>1+x。
例2:证明当 x>-1 时,(1+x)^n>1+nx在这个例子中,我们需要证明当 x>-1 时,(1+x)^n>1+nx,其中 n是正整数。
我们定义函数 f(x) = (1+x)^n-(1+nx),我们需要证明当 x>-1 时,f(x)>0。
同样地,我们计算这个函数的导数f'(x)=n(1+x)^(n-1)-n。
利用导数证明不等式的四种常用方法
利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。
举例说明:证明当x>0时,e^x>1+x。
我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。
通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。
即e^x>1+x。
方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。
举例说明:证明(1+x)^n > 1+nx,其中n为自然数。
我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。
令f'(x) = 0,可得x = -1/(n-1)。
我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。
当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。
所以在此区间上(1+x)^n > 1+nx。
同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。
方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。
举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。
我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。
计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。
利用导数证明不等式的九大题型
利用导数证明不等式的九大题型
题型一:构造函数法
把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键。
这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二:通过对函数的变形,利用分析法,证明不等式
【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:
题型三:求最值解决任意、存在性变量问题
解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:
题型四:分拆成两个函数研究
【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.
【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为
要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质.
题型五:设而不求
当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.。
一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)(解析版)高考数学高分必刷必过题
专题04一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)构造函数法解决导数不等式问题①构造()()n F x x f x =或()()n f x F x x=(n Z ∈,且0n ≠)型②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型③构造()()sin F x f x x =或()()sin f x F x x =型④构造()()cos F x f x x =或()()cos f x F x x=型⑤根据不等式(求解目标)构造具体函数①构造()()n F x x f x =或()()nf x F x x =(n Z ∈,且0n ≠)型1.(2022·安徽师范大学附属中学高二期中)已知定义在R 上的函数()f x 满足()()0xf x f x '+>,且(2)3f =,则()e e 6xxf >的解集为()A .(ln 2,)+∞B .(0,)+∞C .(1,)+∞D .(0,1)【答案】A令()()F x xf x =,可得()()()0F x xf x f x ''=+>,所以()F x 在R 上是增函数,可得(e )e (e )x x x F f =,(2)3f =,(2)2(2)6F f ==,由(e )6ex x f >,可得(e )(2)xF F >,可得:e 2x >,所以ln 2x >,所以不等式的解集为:(ln 2,)+∞,故选:A .2.(2022·河北·沧县中学高二阶段练习)已知定义在()(),00,∞-+∞U 上的偶函数()f x ,在0x >时满足:()()0xf x f x '+>,且()10f =,则()0f x >的解集为()A .()(),11,-∞-⋃+∞B .()(),10,1-∞-⋃C .()0,1D .()1,+∞【答案】A 令()()F x xf x =,所以()()()()()F x x f x xf x F x -=--=-=-所以()F x 是奇函数,在0x >时,()()()0F x xf x f x ''+=>,则在0x >时,()F x 单调递增,由()10f =,可得(1)1(1)0F f =⨯=,(1)(1)0F F -=-=,所求()()0F x f x x =>,等价于()00F x x >⎧⎨>⎩或()00F x x <⎧⎨<⎩,解得1x >或1x <-,所以解集为:()(),11,-∞-⋃+∞.故选:A .3.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)已知()'f x 是偶函数()()R f x x ∈的导函数,(1)1f =.若0x >时,3()()0f x xf x '+>,则使得不等式3(2022)(2022)1x f x -->成立的x 的取值范围是()A .(2021,)+∞B .(,2021)-∞C .(2023,)+∞D .(,2023)-∞【答案】C构造函数()()3g x x f x =,其中R x ∈,则()()()()()33g x x f x x f x g x -=--=-=-,所以,函数()g x 为R 上的奇函数,当0x >时,()()()()()232330g x x f x x f x x f x xf x '''=+=>⎡⎤⎣⎦+,所以,函数()g x 在()0,∞+上为增函数,因为()11f =,则()()111g f ==,由()()3202220221x f x -->得()()20221g x g ->,可得20221x ->,解得2023x >.故选:C4.(2022·河北·邢台市第二中学高二阶段练习)定义在()0,8上的函数()f x 的导函数为()f x ¢,且()()2xf x f x '<,112f ⎛⎫= ⎪⎝⎭,则不等式()24f x x <的解集为()A .1,82⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭【答案】A 设()()2f xg x x=,08x <<,则()()()320xf x f x g x x '-'=<,则()g x 在()0,8上单调递减,由()24f x x <,得:()24f x x<,而21124212f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭,所以()12g x g ⎛⎫< ⎪⎝⎭,则182x <<.故不等式()24f x x <的解集为1,82⎛⎫ ⎪⎝⎭.故选:A5.(2022·福建省德化第一中学高二阶段练习)若()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,且()30f -=,则不等式()0xf x >的解集为()A .()()3,00,3-B .()(),33,-∞-+∞C .()(),30,3-∞-⋃D .()()3,03,-⋃+∞【答案】C设()()g x xf x =,则()g x 的定义域为R而()()()()g x xf x xf x g x -=--=-=-,故()g x 为R 上的奇函数,且()()()g x f x xf x ''=+,当0x <时,因为()()0f x xf x '+<,故()0g x ¢<,故()g x 在(),0-∞上为减函数,故()g x 为()0,+∞上的减函数,而()30f -=,故()30g -=,所以()30g =又()0xf x >即为()0g x >,故()00x g x <⎧⎪⎨>⎪⎩或()00x g x >⎧⎪⎨>⎪⎩,故()()03x g x g <⎧⎪⎨>-⎪⎩或()()03x g x g >⎧⎪⎨>⎪⎩,故3x <-或03x <<,故选:C.6.(2022·宁夏吴忠·高二期中(理))()f x 是定义在R 上的奇函数,且()20f =,当0x >时,有()()20xf x f x x '-<恒成立,则()0f x x>的解集为()A .()()2,02,-+∞B .()(),22,-∞+∞C .()()2,00,2-D .()(),20,2-∞- 【答案】C 设函数()()f x g x x=,则()()()2xf x f x g x x'-'=,由题知,当0x >时,()0g x ¢<,∴()()f x g x x=在()0,+∞上单调递减,∵函数()f x 是定义在R 上的奇函数,()()f x f x ∴-=-∴()()()()f x f x g x g x x x---===--,∴函数()g x 是定义在R 上的偶函数,∴()g x 的单调递增区间为(),0-∞,∵()20f =,∴()(2)202f g ==,()20g -=∴当2x <-或2x >时,()0g x <,当20x -<<或02x <<时,()0g x >,∴()()0f x g x x=>的解集为()()2,00,2- .故选:C.7.(2022·西藏·拉萨中学高三阶段练习(文))设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 设()()f x F x x =,则()()()2xf x f x F x x '-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.8.(2022·全国·高三专题练习)已知函数()f x 的定义域为()(),00,∞-+∞U ,图象关于y 轴对称,且当0x <时,()()f x f x x'>恒成立,设1a >,则()411af a a ++,(,()411a a f a ⎛⎫+⎪+⎝⎭的大小关系为()A .()(()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭B .()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭C .(()()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭D .(()()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭【答案】B解:∵当0x <时,()()f x f x x'>恒成立,∴()()xf x f x '<,∴()()0xf x f x '-<,令()()f x g x x =,∴()()()2xf x f x g x x'-'=,∴()0g x '<,∴()g x 在(),0∞-上单调递减,∵()()f x f x -=,∴()()g x g x -=-,∴()g x 为奇函数,在()0,∞+上单调递减.∵比较()411af a a ++,(,()411a a f a ⎛⎫+ ⎪+⎝⎭的大小,∴()()41411af a ag a a +=++,((4ag =,()441411a a a f ag a a ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭∵1a >,∴)2110a +->,∴1a +>4411a aa a <++.∴411a a a +>>+,∴()(411a g a g g a ⎛⎫+<< ⎪+⎝⎭,∴()(441441a ag a ag ag a ⎛⎫+<< ⎪+⎝⎭,即()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭.故选:B .9.(2022·四川雅安·三模(理))定义在R 上的偶函数()f x 的导函数为()'f x ,且当0x >时,()2()0xf x f x '+<.则()A .2(e)(2)4ef f >B .9(3)(1)>f f C .4(2)9(3)-<-f f D .2(e)(3)9e f f ->【答案】D令()()2g x x f x =,因为()f x 是偶函数,所以()g x 为偶函数,当0x >时,()()()()()2220g x xfx x f x x f x xf x '''=+=+<⎡⎤⎣⎦,所以()g x 在()0,+∞单调递减,在(),0-∞单调递增,则()()e 2g g <,即()()22e e 22f f <,则2(e)(2)4ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()23g g ->-,即4(2)9(3)f f ->-,故C 错误;()()()e 33g g g >=-,即()()2e e 93f f >-,则2(e)(3)9e f f ->,故D 正确.故选:D.②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型1.(2022·广东·深圳市南山外国语学校(集团)高级中学高二期中)设定义在R 上的函数()f x 的导函数为()f x ',已知()()f x f x '<,且()12e f =,则满足不等式()2e af a <的实数a 的取值范围为()A .()0,∞+B .(),0∞-C .()1,+∞D .(),1-∞【答案】C设()()e x f x g x =,则2()e ()e ()()()(e )e x x x xf x f x f x f xg x ''--'==,因为()()f x f x '<,e 0x >,所以()0g x '<,()g x 是减函数,(1)2e (1)2e ef g ===,不等式()2e af a <化为()2e af a <,即()(1)g a g <,所以1a >.故选:C .2.(2022·安徽省芜湖市教育局模拟预测(文))已知定义在R 上的函数()f x 满足()()20f x f x '->,则下列大小关系正确的是()A .()()2312e 1e 2f f f ⎛⎫>> ⎪⎝⎭B .()()231e 12e 2f f f ⎛⎫>> ⎪⎝⎭C .()()231e 1e 22f f f ⎛⎫>> ⎪⎝⎭D .()()3212e e 12f f f ⎛⎫>> ⎪⎝⎭【答案】A 构造函数()()2e x f x g x =,其中R x ∈,则()()()220e xf x f xg x '-'=>,所以,函数()g x 为R 上的增函数,所以,()()1122g g g ⎛⎫<< ⎪⎝⎭,即()()241122e e ef f f ⎛⎫⎪⎝⎭<<,因此,()()321e e 122ff f ⎛⎫<< ⎪⎝⎭.故选:A.3.(2022·江西·南昌市八一中学三模(文))记定义在R 上的可导函数()f x 的导函数为()f x ',且()()0f x f x '->,()11f =,则不等式()1e xf x ->的解集为______.【答案】()1,+∞设()()xf xg x =e,()()()()()()20x xxx f x f x f x f x g x ''--'==>e e e e ,所以函数()g x 单调递增,且()()111e ef g ==,不等式()()()()11>e 1e e x x f x f x g x g -⇔>⇔>,所以1x >.故答案为:()1,+∞.4.(2022·甘肃·玉门油田第一中学高二期中(理))已知定义在R 上的可导函数()f x 的导函数为()f x ¢,满足()()f x f x '<,且()3f x +为偶函数,()61f =,则不等式()e xf x >的解集为______.【答案】(),0-∞设()()exf xg x =,则()()()exf x f xg x '-'=,又()()f x f x '<,所以()0g x ¢<,即()g x 在R 上是减函数,因为()3f x +为偶函数,所以()3f x +图象关于y 轴对称,而()3f x +向右平移3个单位可得()f x ,所以()f x 对称轴为3x =,则()()061f f ==,所以()()0001e f g ==,不等式()e xf x >等价于()()()10e xf xg x g =>=,故0x <,所以不等式()e xf x >的解集为(),0-∞.故答案为:(),0-∞5.(2022·福建省龙岩第一中学高二阶段练习)已知函数()f x 的导函数为()f x ',()()3f x f x '+<,()03f =,则()3f x >的解集为___________.【答案】(),0∞-因为()()3f x f x '+<,所以()()3x xe f x f x e '+<⎡⎤⎣⎦,令()()3x F x e f x =-⎡⎤⎣⎦,则()()()3x x F x e f x e f x ''=-+⎡⎤⎣⎦,()()30x e f x f x '=+-<⎡⎤⎣⎦,所以()F x 是减函数,又()()00030F e f =-=⎡⎤⎣⎦,()3f x >即()30f x ->,()30x e f x ->⎡⎤⎣⎦,所以()()0F x F >,所以0x <,则()3f x >的解集为(),0∞-故答案为:(),0∞-6.(2022·全国·高三专题练习)若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________.【答案】1,3⎛+∞⎫⎪⎝⎭构造()3()x f x F e x =,则()3363()3()()3()x x x xe f x e f x F f x f x e x e ''-=-=',函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭,则不等式3()x f x e >⇔3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭,根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.故答案为:1,3⎛+∞⎫⎪⎝⎭③构造()()sin F x f x x =或()()sin f x F x x=型1.(2022·山西·临汾第一中学校高二期末)若函数()f x 的导函数为()f x ',对任意()0,x π∈,()()sin cos f x x f x x '<恒成立,则()A3546f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C3546f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【答案】B因为任意()()()0,,sin cos x f x x f x x <'∈π恒成立,即任意()()()0,,sin cos 0x f x x f x x '∈-<π恒成立,所以()()()()2sin cos 0sin sin f x f x x f x xx x ''⎡⎤-=<⎢⎥⎣⎦,()0,x π∈所以()sin f x x在()0,π上单调递减,因为56π34>π,所以536453sin sin 64f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ππππ,即536412f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭ππ5364f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ππ,故选:B2.(2022·江苏江苏·高二阶段练习)函数()f x 的定义域是()0,π,其导函数是()f x ',若()()sin cos f x x f x x <-',则关于x()πsin 4x x f ⎛⎫< ⎪⎝⎭的解集为______.【答案】π,π4⎛⎫⎪⎝⎭()()sin cos f x x f x x <-'变形为()()sin cos 0f x x f x x +<',()πsin 4x x f ⎛⎫< ⎪⎝⎭变形为()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭,故可令g (x )=f (x )sin x ,()0,πx ∈,则()()()sin cos 0g x f x x f x x =+''<,∴g (x )在()0,π单调递减,不等式()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭即为g (x )<g (π4),则π,π4x ⎛⎫∈ ⎪⎝⎭,故答案为:π,π4⎛⎫⎪⎝⎭.3.(2022·全国·高三专题练习)函数()f x 定义在0,2π⎛⎫ ⎪⎝⎭上,6f π⎛⎫= ⎪⎝⎭其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()f x >的解集为_____________.【答案】,62ππ⎛⎫⎪⎝⎭解:()()cos sin f x x f x x'< ()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x=,则()()()2sin cos f x x f x xg x sin x'-'=,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递增,∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>==即()6x g g π⎛>⎫⎪⎝⎭,26x ππ∴<<故不等式的解集为,62ππ⎛⎫⎪⎝⎭.故答案为:,62ππ⎛⎫⎪⎝⎭.4.(2022·全国·高三专题练习)设奇函数()f x 定义在(,0)(0,)ππ- 上,其导函数为()'f x ,且()02f π=,当0πx <<时,()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6f x f x π<的解集为.【答案】(,0)(,)66πππ- 设()()sin f x g x x =,∴2()sin ()cos ()sin f x x f x x g x x'='-,∵()f x 是定义在(,0)(0,)ππ- 上的奇函数,∴()()()()sin()sin f x f x g x g x x x--===-,∴()g x 是定义在(,0)(0,)ππ- 上的偶函数,∵当0πx <<时,()sin ()cos 0f x x f x x '-<,∴()0g x '<,∴()g x 在(0,)π上单调递减,()g x 在(,0)π-上单调递增,∵()02f π=,∴(2(02sin 2f g πππ==,∵()2()sin 6f x f x π<,∴()()6g x g π<,(0,)x π∈,或,(,0)x π∈-,∴6x ππ<<或06x π-<<.∴关于x 的不等式()2()sin 6f x f x π<的解集为(,0)(,)66πππ- .④构造()()cos F x f x x =或()()cos f x F x x=型1.(2022·重庆·高二阶段练习)已知定义在区间,22ππ⎛⎫- ⎪⎝⎭上的奇函数()y f x =,对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是()f x 的导函数),则下列不等式中成立的是()A.63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.63f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭C.43f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D64ππ⎛⎫⎛⎫> ⎪ ⎝⎭⎝⎭【答案】B 构造函数()()cos f x g x x =,其中,22x ππ⎛⎫∈- ⎪⎝⎭,则()()()()()cos cos f x f x g x g x x x --==-=--,所以,函数()()cos f x g x x=为奇函数,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()()2cos sin 0cos f x x f x x g x x'+'=>,所以,函数()g x 在0,2π⎡⎫⎪⎢⎣⎭上为增函数,故该函数在,02π⎛⎤- ⎥⎝⎦上也为增函数,由题意可知,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上连续,故函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上为增函数.对于A 选项,63g g ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭<,则63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,A 错;对于B 选项,63g g ππ⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫-- ⎪ ⎝⎭>,则63f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,B 对;对于C 选项,43g g ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭43122f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭>,则43f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,C 错;对于D 选项,64g g ππ⎫⎫⎛⎛< ⎪ ⎝⎝⎭⎭64f f ππ⎛⎫⎛⎫⎪ ⎪<64ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,D 错.故选:B.2.(2022·福建龙岩·高二期中)设函数()f x '是定义在()0,π上的函数()f x 的导函数,有()()cos sin 0f x x f x x '->,若π6a f ⎛⎫=⎪⎝⎭,1π23b f ⎛⎫=⎪⎝⎭,23π24c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c的大小关系是()A .a b c >>B .b c a>>C .c b a >>D .c a b>>【答案】C因为()()cos sin 0f x x f x x '->,所以设()()cos F x f x x =⋅,则()()()cos sin 0F x f x x f x x ''=⋅->,所以()()cos F x f x x =⋅在()0,π上为增函数,又因为ππ266a f F ⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,1ππ233b f F ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,23π3π244c f F ⎛⎫⎛⎫=-= ⎪ ⎝⎭⎝⎭,ππ3π634<<,所以ππ3π634F F F ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a b c <<故选:C3.(2022·广东·广州市第四中学高二阶段练习)设函数()f x '是定义在()0π,上的函数()f x的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫==⎪⎝⎭,,34c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c >>B .b c a >>C .c a b >>D .c b a>>【答案】C解:设()()cos g x f x x =,则()()cos ()sin g x f x x f x x ''=-,又因为()cos ()sin 0f x x f x x '->,所以()0g x '>,所以()g x 在(0,)π上单调递增,又0cos(22a f ππ==,1(cos (2333b f f πππ==,333()cos ()2444c f f πππ==,因为3324πππ<<,所以33cos()cos ()cos (332244f f f ππππππ<<,所以c a b >>.故选:C .4.(2022·广西玉林·高二期中(文))函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,()f x '是它的导函数,且()()tan x f x f x '⋅>在定义域内恒成立,则()A .43f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()cos116f f π⎛⎫⋅> ⎪⎝⎭D 46ππ⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭【答案】D因为0,2x π⎛⎫∈ ⎪⎝⎭,所以sin 0cos 0x x >>,,由()()tan x f x f x '⋅>可得()cos ()sin f x x f x x '<,即()cos ()sin 0f x x f x x '-<,令()cos (),0,2g x x f x x π⎛⎫=⋅∈ ⎪⎝⎭,则()()cos ()sin 0g x f x x f x x ''=-<,所以函数()g x 在0,2π⎛⎫ ⎪⎝⎭上为减函数,则(1)643g g g g πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则cos cos cos(1)(1)cos 664433f f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2cos(1)(1)643f f πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D5.(2022·全国·高三专题练习)定义域为,22ππ⎛⎫- ⎝⎭的函数()f x 满足()()0f x f x +-=,其导函数为()f x ',当02x π≤<时,有()()cos sin 0f x x f x x '+<成立,则关于x的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .,42ππ⎛⎫ ⎪⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B∵()()0f x f x +-=且,22x ππ⎛⎫∈- ⎪⎝⎭,∴()f x 是奇函数,设()()cos f x g x x =,则02x π≤<时,2()cos ()sin ()0cos f x x f x x g x x '+'=<,∴()g x 在0,2π⎡⎫⎪⎢⎣⎭是减函数.又()f x 是奇函数,∴()()cos f x g x x =也是奇函数,因此()g x 在(,0]2π-是递减,从而()g x 在,22ππ⎛⎫- ⎝⎭上是减函数,不等式()cos 4f x f x π⎛⎫<⋅ ⎪⎝⎭为()4cos cos 4f f x x ππ⎛⎫ ⎪⎝⎭<,即()4g x g π⎛⎫< ⎪⎝⎭,∴42x ππ<<.故选:B .6.(2022·全国·高三专题练习)已知奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,其图象是一段连续不断的曲线,当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,则关于x 的不等式()π2cos 3f x f x ⎛⎫< ⎪⎝⎭的解集为()A .ππ23⎛⎫- ⎪⎝⎭,B .ππ23⎛⎫-- ⎪⎝⎭,C .ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,D .πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,【答案】A 设()()cos f x g x x=,则()()()2cos sin cos f x x f x xg x x'+'=当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,此时()0g x '>所以()()cos f x g x x =在02π⎛⎫- ⎪⎝⎭上单调递增.又()f x 为奇函数,则()00f =,则()()cos f x g x x=为奇函数,又()00g =则()()cos f x g x x =在02π⎛⎫ ⎪⎝⎭,上单调递增,所以()g x 在ππ,22⎛⎫- ⎝⎭上单调递增.当ππ,22x ⎛⎫∈- ⎪⎝⎭,恒有cos 0x >()π2cos 3f x f x ⎛⎫< ⎪⎝⎭可化为()π3πcos cos 3f f x x ⎛⎫ ⎪⎝⎭<,即()3g x g π⎛⎫< ⎪⎝⎭,由()()cos f x g x x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以23x ππ-<<故选:A⑤根据不等式(求解目标)构造具体函数1.(2022·重庆·高二阶段练习)定义在R 上的函数()f x 满足()()260f x f x -'-<,且()21e 3=-f ,则满足不等式()2e 3>-x f x 的x 的取值有()A .1-B .0C .1D .2【答案】D 构造函数()()23e x f x F x +=,则()()()226e xf x f x F x '--'=,因为()()260f x f x -'-<,所以()0F x '<,所以()()23exf x F x +=单调递减,又()21e 3=-f ,所以()()21311e f F +==,不等式()2e 3>-xf x 变形为()231e xf x +>,即()()1F x F >,由函数单调性可得:1x >故选:D2.(2022·黑龙江·哈尔滨市第六中学校高二期中)已知()f x '是定义域为R 的函数()f x 的导函数.若对任意实数x 都有()()2f x f x '>-,且()13f =,则不等式()12e x f x -->的解集为()A .(),1-∞B .()1,+∞C .(),e -∞D .()e,+∞【答案】B解:不等式1()2e x f x -->,等价于不等式1()21e x f x -->,构造函数1()2()e x f x g x --=,则1()(()2)()e x f x f x g x -'--'=,若对任意实数x 都有()()2f x f x '>-,则()0g x '>,()g x 在R 上单调递增,又()0(1)211e f g -==,故1()21e x f x -->即()()1g x g >,故不等式的解集是(1,)+∞,故选:B .3.(2022·黑龙江·哈师大附中高二期中)已知定义在R 上的函数()f x 满足()2f x '>-,则不等式()()2122f x f x x -->--的解集为()A .(),1-∞-B .()1,0-C .()0,1D .()1,-+∞【答案】D设()()2g x f x x =+,则()()2g x f x ''=+.因为定义在R 上的函数()f x 满足()2f x '>-,所以()()20g x f x ''=+>,所以函数()g x 在R 上单调递增.又不等式()()2122f x f x x -->--可化为()()()24121f x x f x x +>-+-,即()()21g x g x >-,所以21x x >-,解得1x >-.所以不等式()()2122f x f x x -->--的解集为()1,-+∞.故选:D.4.(2022·江苏·海门中学高二阶段练习)已知R 上的函数()f x 满足()13f =,且()2f x '<,则不等式()21f x x <+的解集为()A .(,1)-∞B .()3,+∞C .()1,+∞D .(2,)+∞【答案】C解:令()()21F x f x x =--,则()()2F x f x ''=-,又()f x 的导数()'f x 在R 上恒有()2f x '<,()()20F x f x ''∴=-<恒成立,()()21F x f x x ∴=--是R 上的减函数,又()()11210F f =--= ,∴当1x >时,()()10F x F <=,即()210f x x --<,即不等式()21f x x <+的解集为(1,)+∞;故选:C .5.(2022·陕西渭南·二模(理))设函数()f x 的定义域为()0,∞+,()'f x 是函数()f x 的导函数,()(ln )()0f x x x f x '+>,则下列不等关系正确的是()A .2(3)log 3(2)f f >B .()ln 033f ππ<C .(3)2(9)f f >D .21(0e )f <【答案】A函数()f x 的定义域为()0,∞+,则1()(ln )()0()()ln 0f x x x f x f x f x x x''+>⇔+>,令()()ln g x f x x =,0x >,则1()()()ln 0g x f x f x x x'=+>,即()g x 在()0,∞+上单调递增,对于A ,(3)(2)g g >,即2(3)ln 3(2)ln 2(3)log 3(2)f f f f >⇔>,A 正确;对于B ,((1)3g g π>,即(3)ln (1)ln103f f π>=,B 不正确;对于C ,(3)(9)g g <,即(3)ln 3(9)ln 92(9)ln 3(3)2(9)f f f f f <=⇔<,C 不正确;对于D ,21()(1)e g g <,即2211()ln (1)ln10e e f f <=,有22112()0()0e e f f -<⇔>,D 不正确.故选:A6.(2022·安徽·南陵中学模拟预测(文))已知函数()2224ln f x x x x ax =++-,若当0m n >>时,()()n f m f m n ->-,则实数a 的取值范围是()A .()0,9B .(],9-∞C .(],8∞-D .[)8,+∞【答案】B()()n f m f m n ->-,即()()f m m f n n ->-,令224l (n )()x x x ax g x f x x -+==+-,由题意得()g x 在(0,)+∞上单调递增,即4()410g x x a x '=++-≥,即441a x x≤++在(0,)+∞上恒成立由基本不等式得44119x x++≥+=,当且仅当44x x =即1x =时等号成立,则9a ≤故选:B7.(2022·安徽·高二阶段练习)已知()()21lg 20221lg 20222n n -+>,求满足条件的最小正整数n的值为___________.【答案】3解:由()()21lg 20221lg 20222n n -+>,两边取对数得()()()21ln 1lg 2022lg 2022lg 2n n -⋅+>⋅,因为n 是正整数,所以()()()ln lg 20221ln 211lg 202221n n +-+>-,令()()()ln 11x f x x x +=>,则()()()2ln 111xx x f x x x -++'=>,令()()ln 11x h x x x =-++,则()()201x h x x -'=<+,所以()h x 在()1,+∞上递减,则()()11ln 202h x h <=-=<,即()0f x '<,所以()f x 在()1,+∞上递减,所以lg 202221n <-,解得()11lg 20222n >+,因为3lg 20224<<,所以最小正整数n 的值为3.故答案为:38.(2022·浙江·高二期中)已知定义在R 上的可导函数()f x 是奇函数,其导函数为()'f x ,当0x <时,(1)()()0x f x xf x '-+>,则不等式()0f x <的解集为_______________.【答案】(0,)+∞()2e e(1)()()()()()e e e e x xx x x x x x x x f x xf x f x f x f x '--+⎡⎤=+'='⎢⎥⎣⎦,因为(1)()()0x f x xf x '-+>,所以()0e x xf x '⎡⎤>⎢⎥⎣⎦,即函数()e x x y f x =在(,0)-∞时单调递增的.因为()f x 的定义域是R ,且e x x在R 上都有意义,所以()e xx y f x =的定义域也是R ,所以在(,0)-∞时00()(0)0e ex x f x f <=,而e xx在(,0)-∞小于0恒成立,即在(,0)-∞时()0f x >.因为()f x 是奇函数,所以在(0,)+∞时()0f x <恒成立.所以()0f x <的解集为(0,)+∞.故答案为:(0,)+∞.9.(2022·四川·成都实外高二阶段练习(理))已知定义在R 上的可导函数()f x 为偶函数,且满足()21f =,若当0x ≥时,()f x x '>,则不等式()2112f x x <-的解集为___________.【答案】(2,2)-设21()()2g x f x x =-,则()()0g x f x x ''=->,0x ≥时,()g x 是增函数,又()f x 是偶函数,所以2211()()()()()22g x f x x f x x g x -=---=-=,()g x 是偶函数,21(2)(2)212g f =-⨯=-,不等式()2112f x x <-即为()(2)g x g <,由()g x 是偶函数,得()(2)g x g <,又0x ≥时,()g x 递增,所以2x <,22x -<<.故答案为:(2,2)-.10.(2022·四川·成都实外高二阶段练习(文))已知定义在R 上的可导函数()f x 满足()21f =,且()f x 的导函数()f x '满足:()1f x x '>-,则不等式()2112f x x x <-+的解集为___________.【答案】(),2∞-因为()1f x x '>-,所以()10f x x '-+>构造()()212F x f x x x =-+,则()()10F x f x x ''=-+>,即()()212F x f x x x =-+在R 上单调递增,因为()21f =,所以()()22221F f =-+=()2112f x x x <-+变形为()2112f x x x -+<,即()()2F x F <,由()F x 的单调性可知:2x <.故答案为:(),2∞-。
利用导数证明不等式的几种方法
利用导数证明不等式的几种方法导数是微积分的一个重要概念,它可以用来研究函数的变化趋势和性质。
在证明不等式时,利用导数是一种常见的方法。
下面将介绍几种常用的利用导数证明不等式的方法。
一、极值点法这种方法的基本思路是通过求函数的导数,并找出函数的极值点,来确定不等式的成立条件。
具体步骤如下:1.求函数的导数。
2.找出导数存在的区间。
3.求出导数的零点即函数的极值点。
4.判断在极值点附近函数的变化情况,从而确定不等式的成立条件。
例如,我们要证明一个函数f(x)在区间[a,b]上是单调递增的。
则可以通过求函数的导数f'(x),找出f'(x)的零点,然后判断f'(x)的符号来确定f(x)的变化趋势。
这种方法的特点是简单直观,容易理解和操作。
但是要求函数的导数存在,在一些特殊情况下可能无法使用。
二、Lagrange中值定理法Lagrange中值定理是微积分中的一个重要定理,它表明:如果一个函数在区间 [a, b] 上连续,并且在 (a, b) 上可导,则在 (a, b) 存在一个点 c,使得函数在 c 处的导数等于函数在 [a, b] 上的平均变化率。
利用这个定理,可以通过求函数在区间两个点处的导数差值,来推导出不等式。
具体步骤如下:1.假设函数在区间[a,b]上连续,并且在(a,b)上可导。
2.设点a和点b为函数的两个不同取值,即f(a)和f(b)。
3. 由Lagrange中值定理,存在点 c 在 (a, b) 上,使得 f'(c) = (f(b) - f(a)) / (b - a)。
4.判断f'(c)的符号,从而确定不等式的成立条件。
Lagrange中值定理法的优点是具有普适性,可以应用于各种函数。
但是要求函数在区间上连续,在一些特殊情况下可能无法使用。
三、Cauchy中值定理法Cauchy中值定理是微积分中的另一个重要定理,它是Lagrange中值定理的推广形式。
第04讲 利用导数研究不等式恒成立问题 (精讲+精练)(学生版)
第04讲 利用导数研究不等式恒成立问题 (精讲+精练)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析 高频考点一:分离变量法 高频考点二:分类讨论法 高频考点三:等价转化法 第四部分:高考真题感悟第五部分:第04讲 利用导数研究不等式恒成立问题(精练)1、分离参数法用分离参数法解含参不等式恒成立问题,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式; 步骤:①分类参数(注意分类参数时自变量x 的取值范围是否影响不等式的方向)②转化:若()a f x >)对x D ∈恒成立,则只需max ()a f x >;若()a f x <对x D ∈恒成立,则只需min ()a f x <. ③求最值.2、分类讨论法如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(0a >,0∆<或0a <,0∆<)求解.3、等价转化法当遇到()()f x g x ≥型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数()()()F x f x g x =-或者“右减左”的函数()()()H x g x f x =-,进而只需满足min ()0F x ≥,或者max ()0H x ≤,将比较法的思想融入函数中,转化为求解函数的最值的问题.1.(2022·全国·高二)设a 为正实数,函数322()34f x x ax a =-+,若(,2)x a a ∀∈,()0f x <,则a 的取值范围是( )A .[2,)+∞B .(2,)+∞C .(0,2]D .2(0,)32.(2022·全国·高二)若不等式4342x x a ->-对任意实数x 都成立,则实数a 的取值范围是( ) A .27a <-B .25a >-C .29a ≥D .29a >3.(2022·全国·高二)已知函数()22f x ax x a =-+,对[]1,2x ∀∈都有()0f x ≤成立,则实数a 的取值范围是( )A .(],0-∞B .4,5⎛⎤-∞ ⎥⎝⎦C .(],1-∞D .[]1,0-高频考点一:分离变量法1.(2022·全国·高三专题练习)设a R ∈,若不等式ln ax x >在()1,x ∞∈+上恒成立,则实数a 的取值范围是( ) A .()0,∞+B .1,e ⎛⎫+∞ ⎪⎝⎭C .()1,∞+D .()e,+∞2.(2022·内蒙古乌兰察布·高二期末(文))已知函数2()ln 2a f x x x =+,若对任意两个不等的正数1x ,2x ,都有1212()()4f x f x x x -≥-恒成立,则a 的取值范围为( )A .[)4∞+,B .()4.∞+C .(]4∞-,D .()4∞-,3.(2022·全国·高三专题练习)已知对(0,)x ∀∈+∞,不等式ln 1ax x ≥-恒成立,则实数a 的最小值是( ) A .eB .2eC .21e D .1e4.(2022·河南·高二阶段练习(理))已知当0x >时,()21e 1x x a x -≤--恒成立,则实数a 的取值范围是( )A .(],e 1-∞-B .(],1-∞C .(]2,e 1--D .(],2-∞-5.(2022·湖南·临澧县第一中学高二阶段练习)已知函数()ln af x x x=+(a 为常数) (1)讨论函数()f x 的单调性; (2)不等式()1f x ≥在2(]0,x ∈上恒成立,求实数a 的取值范围.6.(2022·重庆市育才中学高二阶段练习)已知函数()1ln f x ax x =--,a R ∈. (1)讨论函数()f x 在区间()1,e 的极值;(2)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.7.(2022·四川省泸县第一中学高二阶段练习(理))已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围.8.(2022·河南·三模(文))已知函数()e x f x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-. (1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.高频考点二:分类讨论法1.(2022·广西柳州·三模(文))已知函数()ln f x ax x =-. (1)讨论函数()f x 的单调性;(2)若1x =为函数()f x 的极值点,当[)e,x ∞∈+,不等式()()()1e x f x x m x -+≤-恒成立,求实数m 的取值范围.2.(2022·陕西西安·二模(文))已知函数()()1ln f x a x a x=+∈R . (1)当1a =时,求函数()f x 的单调减区间;(2)若不等式()f x x ≥对(]0,1x ∈恒成立,求实数a 的取值范围.3.(2022·河南·高二阶段练习(文))已知曲线()ln f x m x =+在1x =处的切线方程为()y h x =,且210e f ⎛⎫= ⎪⎝⎭.(1)求()h x 的解析式;(2)若0x ≥时,不等式()20e x ax h x --≥恒成立,求实数a 的取值范围.4.(2022·全国·高三专题练习)已知函数()e xf x =,曲线()y f x =在点()00,x y 处的切线为()yg x =.(1)证明:对于x R ∀∈,()()f x g x ≥; (2)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.5.(2022·四川·树德中学高三开学考试(文))已知a ∈R ,设函数()()ln ln f x a x a x =++. (1)讨论函数()f x 的单调性; (2)若()2ln xf x a x a≤+恒成立,求实数a 的取值范围.6.(2022·贵州黔东南·一模(文))已知函数()22ln f x x a x =-.(1)讨论()f x 的单调性;(2)当x >1时,()1f x >恒成立,求a 的取值范围.高频考点三:等价转化法1.(2022·河南·民权县第一高级中学高三阶段练习(文))已知函数()1ln f x a x x=+,()()1e 1,x g x x mx a m x =+--∈R . (1)讨论f (x )的单调性;(2)当a =1时,若不等式()()f x g x ≤恒成立,求m 的取值范围.2.(2022·江苏·高二课时练习)已知函数()ln f x ax x =+,()()220g x a x a =>.若()()f x g x ≤对一切正实数x 都成立,求实数a 的取值范围.3.(2022·全国·高三专题练习)已知函数()()2ln f x x a x =+,()2g x ax x =+.(1)当0a =时,求函数()f x 的最小值;(2)当0a ≤时,若对任意1≥x 都有()()f x g x ≥成立,求实数a 的取值范围.4.(2022·江西·南昌市实验中学高二阶段练习(理))已知函数()2ln f x x a x =+,()2g x x x =+.(1)若()y f x =在点()()1,1M f 处的切线方程为30x y b -+=,求实数a 、b 的值; (2)若对任意1x >,都有()()f x g x ≤成立,求实数a 的取值范围.5.(2022·山东日照·高三期末)已知函数()ln f x x ax b =-+,中,a b ∈R . (1)当0a >时,求()f x 的单调区间;(2)若[]()1,0,2,ln 1a b x kx x x ϕ=∈=--,对任意实数[]()()1,e ,x f x x ϕ∈≥恒成立,求2k b -的最大值.高频考点四:最值法1.(2022·重庆市朝阳中学高二阶段练习)已知函数321()22f x x x x m =--+,其中.m R ∈(1)若函数()f x 的极小值为0,求实数m 的值; (2)当[1,2]x ∈-时,1()2f x 恒成立,求实数m 的取值范围.2.(2022·重庆市长寿中学校高二阶段练习)已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值3.(2022·江西·模拟预测(文))已知函数()222(0)exmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224ef x f x -≤恒成立,求实数m 的取值范围.4.(2022·河南·高二阶段练习(文))已知函数()32f x x ax bx c =+++在23x =-与1x =处都取得极值.(1)求a ,b 的值;(2)若对任意[]1,2x ∈-,不等式()23f x c <恒成立,求实数c 的取值范围.5.(2022·全国·高三专题练习)已知函数()()()221n l 0f x ax a x a x=-+->. (1)讨论函数()f x 的单调性;(2)若对[]2,3a ∀∈,[]12,1,2x x ∀∈,不等式()()12ln 2m f x f x +>-恒成立,求实数m 的取值范围.6.(2022·全国·高三专题练习)已知曲线()()3,f x ax bx a b =+∈R 在点()()1,1f 处的切线方程是20y +=.(1)求()f x 的解析式;(2)若对任意[]12,2,3x x ∈-,都有()()12f x f x m -,求实数m 的取值范围.1.(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为 A .[]0,1B .[]0,2C .[]0,eD .[]1,e2.(2020·海南·高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.4.(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.一、单选题1.(2022·河南南阳·高二期末(文))若函数()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( ) A .[1,)+∞ B .(1,)+∞ C .[2,)+∞ D .(,2)-∞-2.(2022·全国·高二)函数f (x )=13x 3-x 2+a ,函数g (x )=x 2-3x ,它们的定义域均为[1,+∞),并且函数f (x )的图象始终在函数g (x )图象的上方,那么a 的取值范围是( ) A .(0,+∞)B .(-∞,0)C .4,3⎛-+∞⎫ ⎪⎝⎭D .4,3⎛⎫-∞- ⎪⎝⎭3.(2022·全国·高三阶段练习(理))已知()xae f x x x =-,()0,x ∈+∞,且1x ∀,()20,x ∈+∞,且12x x <,()()12210f x f x x x -<恒成立,则a 的取值范围是( )A .12,e ∞-⎛⎤- ⎥⎝⎦B .2,e ⎡⎫+∞⎪⎢⎣⎭C .(2,e ⎤-∞⎦D .13,e ⎛⎫+∞ ⎪⎝⎭4.(2022·全国·高二)已知函数()()e 10xx a f a x =--≠在[]1,2上是减函数,则实数a 的取值范围是( )A .21,e ⎛⎤-∞ ⎥⎝⎦B .21,e ⎡⎫+∞⎪⎢⎣⎭C .210,e ⎛⎤⎥⎝⎦D .211,e e ⎡⎤⎢⎥⎣⎦5.(2022·重庆市清华中学校高二阶段练习)已知函数()()31e 1x f x x kx =--+,若对任意的()12,0,x x ∈+∞,且12x x ≠,都有()()()()11222112x f x x f x x f x x f x +>+,则实数k 的取值范围是( ) A .e ,3∞⎛⎫- ⎪⎝⎭B .e ,3⎛⎤-∞ ⎥⎝⎦C .1,3⎛⎫-∞ ⎪⎝⎭D .1,3⎛⎤-∞ ⎥⎝⎦6.(2022·山西临汾·二模(理))已知函数22,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩,若()0f x ≥恒成立.则a 的取值范围为( )A .[0,1]B .[0,2e]C .[1,2]D .[2,2e]7.(2022·浙江·义乌市商城学校高二阶段练习)已知m ,n 为实数,不等式ln 0x mx n --≤恒成立,则nm的最小值为( ) A .1-B .2-C .1D .28.(2022·宁夏中卫·一模(理))已知定义域为(0,)+∞的函数()f x 满足2()1()f x f x x x'+=,且2(e)e f =,e 为自然对数的底数,若关于x 的不等式()20f x a x x x--+≤恒成立,则实数a 的取值范围为( ) A .[1,)+∞B .[2,)+∞C .2,e e +⎡⎫+∞⎪⎢⎣⎭D .322,e e e ⎡⎫-+++∞⎪⎢⎣⎭二、填空题 9.(2022·全国·高二课时练习)当(]0,1x ∈时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是______.10.(2022·上海交大附中高二阶段练习)已知()2ln f x x ax a =-+,若对任意1≥x ,都有()0f x ≤,则实数a 的取值范围是______.11.(2022·江苏省石庄高级中学高二阶段练习)已知函数()ln x f x x =.若对任意[)12,,x x a ∞∈+,都有()()121ef x f x -≤成立,则实数a 的最小值是________.12.(2022·河南·民权县第一高级中学高三阶段练习(文))设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x =++在定义域内为严格的凹函数,则实数m 的取值范围为___________. 三、解答题13.(2022·福建省厦门集美中学高二阶段练习)已知函数()ln f x x x =,(1)求过点(0,1)-的函数()f x 的切线方程(2)若对任意0x >,都有ln()x ax x a ≥-成立,求正数a 的取值范围.14.(2022·四川·成都外国语学校高二阶段练习(文))已知函数()()1ln f x x x =+(1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值.15.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知函数()()e ln 1x f x a x =+-+,()'f x 是其导函数,其中a R ∈.(1)若()f x 在(,0)-∞上单调递减,求a 的取值范围;(2)若不等式()()f x f x '≤对(,0)x ∀∈-∞恒成立,求a 的取值范围.16.(2022·四川达州·二模(文))已知()()e 1x f x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.。
导数证明不等式的方法介绍
导数证明不等式的方法介绍利用导数证明不等式方法11.当x>1时,证明不等式x>ln(x+1)设函数f(x)=x-ln(x+1)求导,f(x)'=1-1/(1+x)=x/(x+1)>0所以f(x)在(1,+无穷大)上为增函数f(x)>f(1)=1-ln2>o所以x>ln(x+12..证明:a-a^2>0 其中0F(a)=a-a^2F'(a)=1-2a当00;当1/2因此,F(a)min=F(1/2)=1/4>0即有当003.x>0,证明:不等式x-x^3/6先证明sinx因为当x=0时,sinx-x=0如果当函数sinx-x在x>0是减函数,那么它一定<在0点的值0,求导数有sinx-x的导数是cosx-1因为cosx-1≤0所以sinx-x是减函数,它在0点有最大值0,知sinx再证x-x³/6对于函数x-x³/6-sinx当x=0时,它的值为0对它求导数得1-x²/2-cosx如果它<0那么这个函数就是减函数,它在0点的值是最大值了。
利用导数证明不等式方法2要证x²/2+cosx-1>0 x>0再次用到函数关系,令x=0时,x²/2+cosx-1值为0再次对它求导数得x-sinx根据刚才证明的当x>0 sinxx²/2-cosx-1是减函数,在0点有最大值0x²/2-cosx-1<0 x>0所以x-x³/6-sinx是减函数,在0点有最大值0得x-x³/6利用函数导数单调性证明不等式X-X²>0,X∈(0,1)成立令f(x)=x-x² x∈[0,1]则f'(x)=1-2x当x∈[0,1/2]时,f'(x)>0,f(x)单调递增当x∈[1/2,1]时,f'(x)<0,f(x)单调递减故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得f(0)=0,f(1)=0故f(x)的最小值为零故当x∈(0,1)f(x)=x-x²>0。
高中解题方法利用导数解决不等式系列问题
( 2)对于 f ( x ) g ( x ) 构造函数 h( x ) f ( x ) g ( x ) 利用导数很难利用单调性。也 可以考虑 f ( x ) min g ( x ) max ,分别求两函数的最值。从而判断大小。 例如:(2016 年山东高考题改编)已知 f ( x ) ( x ln x ) 证明: f ( x ) f ( x )
后根本求不出最值(或极限值)那么就需分类讨论法。 上面的习题也可以用分类讨论法:
{ 1 或 1 1 法二(分类讨论法)令 g ( x ) 2ax 2a 1 , x , 由题意得 g ( )0 2 3 2
{a 0 1
g ( x ) 1 a 1 。 或 a 0 g ( )0
2
( e 为自然对数的底数)使得 f ( x ) 0 成立,求实数 a 取值范围。 解:令 g (b) xb x a ln x , b 2,1 g (b) 0 恒成立 g (b) max 0
2
第 2 页
由 g (b) 为 单 调 递 增 的 一 次 函 数 , 所 以 g (b) max g ( 1) x x a ln x 。 得
利用导数如何解决“不等式”问题
函数与不等式的问题是高考命题的热点,在利用导数解决不等式问题主要有两种形式: 一、 f ( x ) g ( x )( f ( x ) g ( x )) 型;在区间 D 上成立的基本方法有 (1)一般优先是考虑构造函数 h( x ) f ( x ) g ( x ) ,然后根据函数的单调性,或者 函数的最值证明函数 h( x ) 0 ,其中一个重要的技巧就是找到函数 h( x ) 在什么地方对于 0, 这往往是解决问题的突破口。 例如:设 f ( x ) ln( x 1) ,求证:当 x 0 时 f ( x ) 证明:令 g ( x ) f ( x )
利用导数证明不等式的方法
利用导数证明不等式的方法导数是微积分中的重要概念,它可以用来研究函数在不同点的变化趋势。
在数学中,不等式是一种比较两个数或两个函数大小关系的方式。
结合导数和不等式的概念,我们可以利用导数来证明不等式。
让我们回顾一下导数的定义。
对于一个函数f(x),在某一点a处的导数f'(a)表示函数在该点处的变化率。
导数可以通过求取函数的极限来计算,也可以通过求取函数的斜率来计算。
导数的正负可以表示函数的增减性,即导数大于0表示函数在该点处递增,导数小于0表示函数在该点处递减。
利用导数证明不等式的方法主要有以下几种:1. 利用导数的正负性:假设我们要证明一个不等式f(x) > g(x),我们可以先求取函数f(x)和g(x)的导数,然后观察导数的正负性。
如果在某一区间上,f'(x) > g'(x),则可以得出在该区间上f(x) > g(x)。
举个例子,我们要证明对于所有的x,函数f(x) = x^2 + 3x + 2大于函数g(x) = 2x + 1。
首先,求取f(x)和g(x)的导数分别为f'(x) = 2x + 3和g'(x) = 2。
然后观察导数的正负性,我们发现在所有的x上,f'(x) > g'(x),因此可以得出对于所有的x,f(x) > g(x)。
2. 利用导数的单调性:如果一个函数在某一区间上是单调递增或单调递减的,那么我们可以根据函数值的大小关系得出不等式的成立。
举个例子,我们要证明对于所有的x大于0,函数f(x) = x^2 + 3x + 2大于函数g(x) = 2x + 1。
首先,求取f(x)和g(x)的导数分别为f'(x) = 2x + 3和g'(x) = 2。
然后观察导数的单调性,我们发现f'(x)是一个递增函数,因此可以得出在x大于0的区间上,f(x)也是一个递增函数。
又因为在x大于0的区间上,f(0) = 2大于g(0) = 1,所以可以得出对于所有的x大于0,f(x) > g(x)。
【公开课】市级公开课--利用导数研究不等式教案
第 1 页 共 3 页利用导数研究不等式教学要求:1.了解函数的单调性与导数的关系,能利用导数研究函数的单调性,能运用导数的有关知识,研究函数最值问题,从数学角度反映实际问题,建立起一个数学模型,转化为函数的最大值与最小值问题.这部分的内容主要是培养学生的数学建模、数学运算及逻辑推理的学科素养,分析问题与解决问题的能力。
2.教学重点:构造辅助函数,把不等式的证明转化为函数的单调性或最值问题3.教学难点:①用单调性来研究不等式问题②根据不等式的结构特征构造可导函数。
4.教学关键:解决恒成立问题与参数问题的关键是对问题进行等价转化5.教学方法:启发、引导、探究法教学过程:一.复习引入1.函数的单调性与其导函数的正负关系2.证明不等式:()π,0,sin ∈<x x x二.问题探究【问题1】已知函数.ln )(x x x f += 求证:在区间)1(∞+,上,函数)(x f 的图象都在函数2)(x x g =的图象下方;证明:设)()()(x f x g x F -=,即x x x x F ln )(2--=,(1>x ) 则x x x F 112)(--='=xx x )12)(1(+- .0)(1'恒成立时,当>>x F x从而)(x F 在),1(∞+上为增函数,∴0)1()(=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <,故在区间),1(∞+上,函数)(x f 的图象在函数2)(x x g =的图象下方。
【问题2】)(x f 是定义在(0,+∞)上的可导函数,且满足)()(x f x f x -'≤0,对任意正数a 、b ,若a < b ,则必有( )(A )af (b )≤bf (a )(B )bf (a )≤af (b ) (C )af (a )≤b f (b ) (D )bf (b )≤a f (a ) 解:构造x x f x F )()(=,0)()()(2'≤-='xx f x xf x F , 故xx f x F )()(=在(0,+∞)上是减函数,或是常数函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知函数f (x )=x 2-ax -a ln x (a ∈R ).
(1)若函数f (x )在x =1处取得极值,求a 的值;
(2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116
.
2.(优质试题·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ).
(1)若函数y =h (x )的单调减区间是⎝⎛⎭⎫12,1,求实数a 的值;
(2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.
3.(优质试题·山西四校联考)已知f (x )=ln x -x +a +1.
(1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围;
(2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12
成立.
4.已知函数f (x )=(2-a )ln x +1x
+2ax . (1)当a <0时,讨论f (x )的单调性;
(2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.
5.(优质试题·福州质检)设函数f (x )=e x -ax -1.
(1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0;
(2)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.
答案精析
1.(1)解 f ′(x )=2x -a -a x
,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1.
(2)证明 由(1)知,f (x )=x 2-x -ln x ,
令g (x )=f (x )-⎝⎛⎭⎫-x 33+5x 22
-4x +116 =x 33-3x 22+3x -ln x -116
, 由g ′(x )=x 2
-3x +3-1x =x 3-1x -3(x -1)=(x -1)3x (x >0),可知g (x )在(0,1)上是减函数, 在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22-4x +116
成立. 2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0),
由h ′(x )=2x 2-ax +1x
(x >0), 若h (x )的单调减区间是⎝⎛⎭⎫12,1,
由h ′(1)=h ′⎝⎛⎭⎫12=0,解得a =3,
而当a =3时,h ′(x )=2x 2-3x +1x =(2x -1)(x -1)x
(x >0). 由h ′(x )<0,解得x ∈⎝⎛⎭⎫12,1,
即h (x )的单调减区间是⎝⎛⎭⎫12,1,
∴a =3.
(2)由题意知x 2-ax ≥ln x (x >0),
∴a ≤x -ln x x
(x >0). 令φ(x )=x -ln x x
(x >0),
则φ′(x )=x 2+ln x -1x 2
, ∵y =x 2+ln x -1在(0,+∞)上是增函数,且x =1时,y =0.
∴当x ∈(0,1)时,φ′(x )<0;
当x ∈(1,+∞)时,φ′(x )>0,
即φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数,
∴φ(x )min =φ(1)=1,故a ≤1.
即实数a 的取值范围为(-∞,1].
3.(1)解 原题即为存在x >0,
使得ln x -x +a +1≥0,
∴a ≥-ln x +x -1,
令g (x )=-ln x +x -1,
则g ′(x )=-1x +1=x -1x
. 令g ′(x )=0,解得x =1.
∵当0<x <1时,g ′(x )<0,g (x )为减函数,
当x >1时,g ′(x )>0,g (x )为增函数,
∴g (x )min =g (1)=0,a ≥g (1)=0.
故a 的取值范围是[0,+∞).
(2)证明 原不等式可化为12x 2+ax -x ln x -a -12
>0(x >1,a ≥0). 令G (x )=12x 2+ax -x ln x -a -12
,则G (1)=0. 由(1)可知x -ln x -1>0,
则G ′(x )=x +a -ln x -1≥x -ln x -1>0,
∴G (x )在(1,+∞)上单调递增,
∴G (x )>G (1)=0成立,
∴12x 2+ax -x ln x -a -12
>0成立, 即12x 2+ax -a >x ln x +12
成立. 4.解 (1)求导可得f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2
, 令f ′(x )=0,得x 1=12,x 2=-1a
, 当a =-2时,f ′(x )≤0,函数f (x )在定义域(0,+∞)内单调递减;
当-2<a <0时,在区间(0,12),(-1a ,+∞)上f ′(x )<0,f (x )单调递减,在区间(12,-1a
)上f ′(x )>0,f (x )单调递增;
当a <-2时,在区间(0,-1a ),(12,+∞)上f ′(x )<0,f (x )单调递减,在区间(-1a ,12
)上f ′(x )>0,f (x )单调递增.
(2)由(1)知当a ∈(-3,-2)时,函数f (x )在区间[1,3]上单调递减,
所以当x ∈[1,3]时,f (x )max =f (1)=1+2a ,f (x )min =f (3)=(2-a )ln 3+13
+6a . 问题等价于:对任意的a ∈(-3,-2),恒有(m +ln 3)a -2ln 3>1+2a -(2-a )ln 3-13
-6a 成立,即am >23
-4a , 因为a <0,所以m <23a
-4, 因为a ∈(-3,-2),
所以只需m ≤(23a
-4)min , 所以实数m 的取值范围为(-∞,-133
]. 5.证明 (1)由a >0及f ′(x )=e x -a 可得,函数f (x )在(-∞,ln a )上单调递减, 在(ln a ,+∞)上单调递增,。