简单51单片机数字时钟设计

合集下载

基于C51单片机的数字时钟课程设计(C语言,带闹钟).

基于C51单片机的数字时钟课程设计(C语言,带闹钟).

单片机技术课程设计数字电子钟学院:班级:姓名:学号:教师:摘要电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。

所以设计一个简易数字电子钟很有必要。

本电子钟采用AT89C52单片机为核心,使用12MHz 晶振与单片机AT89C52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管(两个四位一体数码管)显示小时、分钟和秒的要求,并在计时过程中具有定时功能,当时间到达提前定好的时间进行蜂鸣报时。

该电子钟设有四个按键KEY1、KEY2、KEY3、KEY4和KEY5键,进行相应的操作就可实现校时、定时、复位功能。

具有时间显示、整点报时、校正等功能。

走时准确、显示直观、运行稳定等优点。

具有极高的推广应用价值。

关键词:电子钟 AT89C52 硬件设计软件设计目录一、数字电子钟设计任务、功能要求说明及方案介绍 (4)1.1 设计课题设计任务 (4)1.2 设计课题的功能要求说明 (4)1.3 设计课的设计总体方案介绍及工作原理说明 (4)二、设计课题的硬件系统的设计 (5)2.1硬件系统各模块功能简要介绍 (5)2.1.1 AT89C52简介 (5)2.1.2 按键电路 (6)三、设计课题的软件系统的设计 (6)3.1 使用单片机资源的情况 (6)3.2 软件系统个模块功能简要介绍 (7)3.3 软件系统程序流程框图 (7)3.4 软件系统程序清单 (7)四、设计课题的设计结论、仿真结果、误差分析 (9)4.1 设计结论及使用说明 (9)4.2 仿真结果 (10)结束语 (12)参考文献 (12)附录 (13)附录A:程序清单 (13)一、数字电子钟设计任务、功能要求说明及方案介绍1.1 设计课题设计任务设计一个具有特定功能的电子钟。

具有时间显示,并有时间设定,时间调整功能。

1.2 设计课题的功能要求说明设计一个具有特定功能的电子钟。

该电子钟上电或按键复位后能自动显示系统提示符“d.1004-22”,进入时钟准备状态;第一次按电子钟启动/调整键,电子钟从12时59分0秒开始运行,进入时钟运行状态;按电子钟S5键,则电子钟进入时钟调整状态,此时可利用各调整键调整时间,调整结束后可按S5键再次进入时钟运行状态。

基于51单片机的多功能电子钟设计

基于51单片机的多功能电子钟设计

基于51单片机的多功能电子钟设计1. 本文概述随着现代科技的发展,电子时钟已成为日常生活中不可或缺的一部分。

本文旨在介绍一种基于51单片机的多功能电子钟的设计与实现。

51单片机因其结构简单、成本低廉、易于编程等特点,在工业控制和教学实验中得到了广泛应用。

本文将重点阐述如何利用51单片机的这些特性来设计和实现一个具有基本时间显示、闹钟设定、温度显示等功能的电子钟。

本文的结构安排如下:将详细介绍51单片机的基本原理和特点,为后续的设计提供理论基础。

接着,将分析电子钟的功能需求,包括时间显示、闹钟设定、温度显示等,并基于这些需求进行系统设计。

将详细讨论电子钟的硬件设计,包括51单片机的选型、时钟电路、显示电路、温度传感器电路等。

软件设计部分将介绍如何通过编程实现电子钟的各项功能,包括时间管理、闹钟控制、温度读取等。

本文将通过实验验证所设计的电子钟的功能和性能,并对实验结果进行分析讨论。

通过本文的研究,旨在为电子钟的设计提供一种实用、经济、可靠的方法,同时也为51单片机的应用提供一个新的实践案例。

2. 51单片机概述51单片机,作为一种经典的微控制器,因其高性能、低功耗和易编程的特性而被广泛应用于工业控制、智能仪器和家用电器等领域。

它基于Intel 8051微处理器的架构,具备基本的算术逻辑单元(ALU)、程序计数器(PC)、累加器(ACC)和寄存器组等核心部件。

51单片机的核心是其8位CPU,能够处理8位数据和执行相应的指令集。

51单片机的内部结构主要包括中央处理单元(CPU)、存储器、定时器计数器、并行IO口、串行通信口等。

其存储器分为程序存储器(ROM)和数据存储器(RAM)。

程序存储器通常用于存放程序代码,而数据存储器则用于存放运行中的数据和临时变量。

51单片机还包含特殊功能寄存器(SFR),用于控制IO端口、定时器计数器和串行通信等。

51单片机的工作原理基于冯诺伊曼体系结构,即程序指令和数据存储在同一块存储器中,通过总线系统进行传输。

DIY基于51单片机的旋转LED数字电子钟

DIY基于51单片机的旋转LED数字电子钟

标签:DIY基于51单片机的旋转LED数字电子钟(红外线遥控调时)在网上看到不少老外做的各种旋转LED显示屏,非常COOL,我也动手用洞洞板试做了一个类似的显示屏,结果感觉还不错。

于是再接再励继续努力,将作品进一步改进,完善后制成如今这个样子。

由于刚学51单片机,加上制作电路板软件也是从零开始,的确花了我不少的时间和精力。

不过也就是在这艰难的独立制作中,真正学到了不少实在的东西。

本项目的关键是如何解决高速旋转的电路板如何供电,如何调时的问题。

我采用电机电刷的原理,将旋转轴钻空,通过一只插头将电源的从反面引到前面的电路板上,而这个旋转的插头又与固定在背板上的两个铜片接触的。

调时的问题有些困难,一是让电路板在旋转前与PC机相接,由电脑传送调时数据,这虽然可行但不方便。

还有就是用遥控方法,但此方案在调试方面有很大的困难。

显示方式上,我采用平衡式的两排LED,这除了在旋转时能较好的保持平衡外,主要能利用两边交替显示方式,比单排要快一倍。

本装置不仅是一个时钟,它还可以动态显示汉字及图案,这就看如何发挥了。

其具体制作过程如下:一。

旋转电机的制作从制作成本与方便考虑,选用旧电脑用的大软驱上的直流无刷电机,只是对局部进行改造。

就是这种古董软驱软驱上的直流无刷电机拆开后的电机仔细拆开直流电机,将带圆盘的铝轴从中开孔,让它刚好能插入一个插头。

将旋转轴加工成这样装配好以后按拆开时的顺序,反序将轴安装直流电机上。

电机装配完成后用两片铜片做的电刷电刷装好后的侧面图将电路板上较突出的元件改焊在反面,电机的电源接法。

从电路板标注的符号看,“+”为电源正,“G”为电源负,“C”与“M”端分别与电源正相连匀可使电机运转将一张旧唱片按电机座的位置开孔,而定位用的挡光板应根据电路板上感光组件的位置确定。

二。

电路板的制作本制作品用51单片机控制,具体电原理图如下:用Protel 99设计制作了电路板。

最后得到完成的作品。

遥控器用的是松下车载机的,只用了其中的六个键。

基于51单片机的电子时钟

基于51单片机的电子时钟

1、电子闹钟的硬件系统框架:设计出电子闹钟的基本整体框架。

2、电子闹钟的电源设计:采用交直流供电电源。

电子钟一般采用数码管等显示介质,因而必须以交流供电为主,以直流电源为后备辅助电源。

3、电子闹钟的主机电路设计:主要有1)系统时钟电路设计:对时间要求不是很高,只要能使系统可靠起振并稳定运行就行。

2)系统复位电路设计:本系统采用的是RC复位方式3)按键与按钮电路设计:按键与按钮电路设计中关键要考虑的就是按键的去抖动问题。

本系统采用软件去抖。

考虑到对时和设定闹铃时间操作的使用频率不高,为了精简系统和降低成本,本系统只设置两个按键。

a)SET键,对应系统的不同工作状态,具有3个功能:在复位后的待机状态下,用于启动设定时间参数(对时或定闹);在设定时间参数状态而且不是设定最低位(即分个位)的状态下,用于结束当前位的设定,当前设定位下移;在设定最低位(分个位)的状态下,用于结束本次时间设定。

b)+1键,用于对当前设定位进行加1操作。

4)闹铃声光指示电路设计:本系统采用声音指示,关键元件是蜂鸣器。

4、电子闹钟的显示电路设计:设计一个由LED数码管组成的显示电路,显示采用共阳极数码管,其目的是为了简化限流电路的设计和实现亮度可调的要求。

一功能模、设计指标:1. 显示时、分、秒。

2. 可以24小时制或12小时制。

3. 具有校时功能,可以对小时和分单独校时,对分校时的时候,停止分向小时进位。

校时时钟源可以手动输入或借用电路中的时钟。

4. 具有正点报时功能,正点前10秒开始,蜂鸣器1秒响1秒停地响5次。

5. 为了保证计时准确、稳定,由晶体振荡器提供标准时间的基准信号。

二、设计要求:1. 画出总体设计框图,以说明数字钟由哪些相对独立的块组成,标出各个模块之间互相联系,时钟信号传输路径、方向和频率变化。

并以文字对原理作辅助说明。

2. 设计各个功能模块的电路图,加上原理说明。

3. 选择合适的元器件,在面包上接线验证、调试各个功能模块的电路,在接线验证时设计、选择合适的输入信号和输出方式,在充分电路正确性同时,输入信号和输出方式要便于电路的测试和故障排除。

51单片机数码管时钟电路的设计

51单片机数码管时钟电路的设计

51单片机数码管时钟电路的设计设计一个51单片机数码管时钟电路,让我们开始吧。

一、设计思路该数码管时钟电路的设计主要包括以下几个方面:1.使用DS1302时钟芯片获取真实时间;2.使用I2C总线方式将DS1302时钟芯片与51单片机连接;3.使用74HC595芯片驱动数码管显示;4.使用按键控制时钟的设置和调节;5.使用蜂鸣器发出报警声;6.使用LED指示灯显示时钟状态。

二、硬件设计部分数码管显示部分:1.使用4位共阳数码管作为时分显示器,使用1位共阳数码管作为秒显示器;2.使用8片74HC595芯片级联起来,将时分秒数据传输到数码管显示;3.设置共阳数码管的通阳管为P0口,设置74HC595的DS(串行数据输入)、SH(上升沿锁存)、STCP(74HC595的8位锁存输出)引脚接到P1.2、P1.3、P1.4端口;4.设置8个控制引脚接到P1.5~P1.12端口。

实时时钟部分:1.使用DS1302时钟芯片连接到P2.0、P2.1、P2.2、P2.3、P2.4、P2.5、P2.6、P2.7端口;2.设置时钟复位引脚接到P0.1端口,时钟传输使能引脚接到P0.2端口。

按键输入部分:1.设置按键S1接到P3.2端口,按键S2接到P3.3端口;2.设置按键的上拉电阻,使其处于高电平状态;3.设置按键的下降沿触发外部中断,以便检测按键的按下事件。

其他部分:1.设置蜂鸣器接到P0.0端口,并使用普通电阻限流;2.设置LED指示灯接到P0.7端口。

三、软件设计部分1.初始化函数:初始化P0、P1、P2、P3口的状态;2.DS1302驱动函数:包括初始化DS1302芯片和读写DS1302寄存器的函数;3.74HC595驱动函数:包括初始化74HC595芯片,以及向74HC595芯片发送8位数据的函数;4.数码管显示函数:将时分秒数据按位转换为对应的数字和状态,并调用74HC595驱动函数显示;5.按键检测函数:检测按键的按下事件,并根据按键事件的不同触发不同的操作;6.报警函数:当设定时间到达时,将触发报警声,并控制LED灯闪烁;7.主函数:循环读取DS1302时间,并更新数码管显示,检测按键事件,触发报警。

基于51单片机的电子时钟设计

基于51单片机的电子时钟设计

基于51单片机的电子时钟设计
摘要:本文论述了基于51单片机的电子时钟设计,包括硬件设计与软件编程。

其中,硬件设计包括基本指示灯、DS1302时钟芯片等的选择与连接,时钟电路、晶振电路的设计等。

软件编程包括时钟显示的实现,时钟校准、闹钟等功能的实现等。

本设计具有精度高、操作简便、易于实现等特点,可广泛应用于各种场合。

关键词:51单片机;电子时钟;硬件设计;软件编程
前言
随着人们生活水平的提高,电子时钟已经成为人们生活中必不可少的物品,目前市场上各种类型的电子时钟层出不穷。

本文以51单片机为基础,设计了一款高精度、易于操作的电子时钟,采用DS1302时钟芯片作为时钟驱动芯片,实现了时钟的准确显示、校准、闹钟等功能。

硬件设计
硬件设计主要包括控制器、时钟驱动、显示装置以及电源。

本设计采用了AT89C51单片机作为控制器,一块DS1302时钟芯片作为时钟驱动,LED数字管作为显示装置。

同时,本设计采用了USB供电方式,其电源电压为5V。

软件编程
软件编程主要包括时钟显示、时钟校准、闹钟功能的实现等。

时钟显示采用了动态显示方式,实现了时间的精确定位。

同时,本设计还具有时钟校准功能,在程序接通时,可自动对时钟进行校准,保证时钟的精确度。

此外,本设计还具有设置闹钟的功能,用户可在指定时间响起闹钟。

结论本文以51单片机为基础,设计了一款高精度、易于操作的电子时钟。

通过对硬件设计、软件编程的设计与实现,使得该产品能够准确显示时间,保证了时钟的稳定性,满足了时间的要求,目前已
得到广泛应用。

基于51单片机的数字钟设计

基于51单片机的数字钟设计

基于51单片机的数字钟设计目录1 作品的背景与意义 12 功能指标设计 13 作品方案设计 13.1总体方案的选择 13.1.1方案一:基于单片机的数字钟设计 23.1.1方案二:基于数电实验的数字钟设计 33.1.2两种方案的比较......... (3)3.2控制方案比较 33.3显示方案比较 33.4单片机理论知识介绍 43.4.1单片机型号........ (5)3.4.2硬件电路平台.............. (6)3.4.3内部时钟电路........... . (7)3.4.4复位电路............. . (7)3.4.5按键部分............ (8)4 硬件设计94.1显示模块电路图95 软件设计115.1主程序流程图115.2中断服务以及显示 126 系统测试136.1测试环境136.2测试步骤136.2.1硬件测试6.2.2软件测试1.连接单片机和计算机串接............ ..136.2.3实施过程............. .. (14)6.3测试结果187 实验总结................ . (18)7.1代码编写过程中出现问题........... .. (18)7.2整个实验过程的体会................. . (19)7.3实验误差分析。

19参考文献20附录1 系统电路图21附录2 系统软件代码21附录3 系统器件清单261 作品的背景与意义数字钟是采用数字电路实现对.时,分,秒。

数字显示的计时装置,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 而且大大地扩展了钟表原先的报时功能。

基于单片机的数字钟具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点,因此特别适合于与控制有关的系统,越来越广泛地应用于自动控制,智能化仪器,仪表,数据采集,军工产品以及家用电器等各个领域,生活中诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等也可广泛应用,单片机往往是作为一个核心部件来使用,在根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。

基于51单片机的数字电子时钟设计

基于51单片机的数字电子时钟设计

课程设计任务书摘要数字钟因其小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化而受广大消费的喜爱,因此得到了广泛的使用。

单片机为基础上设计出来的数字时钟数字钟,在日常生活中最常见,应用也最广泛。

本次课程设计的时钟就是以STC89C52单片机为核心,配备LED显示模块、时钟模块、等功能模块的数字电子钟。

采用24小时制方式显示时间。

文章主要从硬件设计和软件编程两个大的方面。

硬件电路设计主要包括中央处理模块、时钟模块,显示模块等几部分。

时钟电路采用DS1302芯片,并选用LED显示器。

软件方面用keil C语言来实现。

软硬件配合,达到电子时钟精准的显示。

关键字:单片机,时钟模块,精准目录1绪论 (2)1.1设计概述 (2)1.2技术简述 (2)1.3本课题的背景 (3)1.4本课题的意义 (3)2系统设计 (4)2.1设计目的 (4)2.2设计功能及要求 (4)2.3设计思路 (4)2.4硬件方案 (4)2.4.1时钟芯片的选择 (5)2.4.2显示屏的选择 (5)2.4.3单片机的选择 (5)2.5软件方案 (5)2.6整体方案 (6)2.7元器件清单 (6)3硬件设计 (7)3.1单片机最小系统 (7)3.1.1时钟电路 (7)3.1.2复位电路 (8)3.2时钟电路 (8)3.3电源电路 (9)3.4系统整体电路 (9)3.5系统仿真 (10)3.6硬件制作 (10)4软件设计 (11)4.1程序设计步骤 (11)4.2系统主程序 (11)4.3时钟模块子程序 (12)4.4显示模块子程序 (12)4.5主程序 (13)5联机调试 (14)6总结 (15)7参考文献 (16)1绪论1.1设计概述在单片机技术日趋成熟的今天,其灵活的硬件电路和软件程序的设计,使单片机得到广泛的应用,从小的电子产品,到大的工业控制,单片机都起到了举足轻重的作用。

数字电子时钟是基于单片机和DS1302时钟芯片的一种计时工具。

基于51单片机的简易电子钟设计

基于51单片机的简易电子钟设计

基于51单片机的简易电子钟设计一、设计目的现代社会对于时间的要求越来越精确,电子钟成为家庭和办公场所不可缺少的设备之一、本设计基于51单片机,旨在实现一个简易的电子钟,可以显示当前的时间,并且能够通过按键进行时间的调整和设置闹钟。

二、设计原理本设计主要涉及到51单片机的IO口、定时器、中断、LCD显示技术等方面知识。

1.时钟模块时钟模块采用定时器0的中断进行时间的累加和更新。

以1秒为一个时间单位,每当定时器0中断发生,就将时间加1,并判断是否需要更新小时、分钟和秒的显示。

同时,根据用户按键的操作,可以调整时间的设定。

2.显示模块显示模块采用16x2字符LCD显示屏,通过51单片机的IO口与LCD连接。

可以显示当前时间和设置的闹钟时间。

初次上电或者重置后,LCD显示时间为00:00:00,通过定时器中断和键盘操作,实现时间的更新和设定闹钟功能。

3.键盘模块键盘模块采用矩阵键盘连接到51单片机的IO口上,用于用户进行时间的调整和设置闹钟。

通过查询键盘的按键状态,根据按键的不同操作,实现时间的调整和闹钟设定功能。

4.中断模块中断模块采用定时器0的中断,用于1秒的定时更新时间。

同时可以添加外部中断用于响应用户按键操作。

三、主要功能和实现步骤1.系统初始化。

2.设置定时器,每1秒产生一次中断。

3.初始化LCD显示屏,显示初始时间00:00:00。

4.查询键盘状态,判断是否有按键按下。

5.如果按键被按下,根据不同按键的功能进行相应的操作:-功能键:设置、调整、确认。

-数字键:根据键入的数字进行时间的调整和闹钟设定。

6.根据定时器的中断,更新时间的显示。

7.判断当前时间是否与闹钟设定时间相同,如果相同,则触发闹钟,进行提示。

8.循环执行步骤4-7,实现连续的时间显示和按键操作。

四、系统总结和改进使用51单片机设计的简易电子钟可以显示当前时间,并且实现时间的调整和闹钟设定功能。

但是由于硬件资源有限,只能实现基本的功能,不能进行其他高级功能的扩展,例如闹铃的音乐播放、温度、湿度的显示等。

基于C51单片机的数字时钟课程设计(C语言带闹钟)

基于C51单片机的数字时钟课程设计(C语言带闹钟)

单片机技术课程设计数字电子钟学院:班级:姓名:学号:教师:摘要电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。

所以设计一个简易数字电子钟很有必要。

本电子钟采用AT89C52单片机为核心,使用12MHz 晶振与单片机AT89C52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管(两个四位一体数码管)显示小时、分钟和秒的要求,并在计时过程中具有定时功能,当时间到达提前定好的时间进行蜂鸣报时。

该电子钟设有四个按键KEY1、KEY2、KEY3、KEY4和KEY5键,进行相应的操作就可实现校时、定时、复位功能。

具有时间显示、整点报时、校正等功能。

走时准确、显示直观、运行稳定等优点。

具有极高的推广应用价值。

关键词:电子钟 AT89C52 硬件设计软件设计目录NO TABLE OF CONTENTS ENTRIES FOUND.一、数字电子钟设计任务、功能要求说明及方案介绍1.1 设计课题设计任务设计一个具有特定功能的电子钟。

具有时间显示,并有时间设定,时间调整功能。

1.2 设计课题的功能要求说明设计一个具有特定功能的电子钟。

该电子钟上电或按键复位后能自动显示系统提示符“d.1004-22”,进入时钟准备状态;第一次按电子钟启动/调整键,电子钟从12时59分0秒开始运行,进入时钟运行状态;按电子钟S5键,则电子钟进入时钟调整状态,此时可利用各调整键调整时间,调整结束后可按S5键再次进入时钟运行状态。

1.3 设计课的设计总体方案介绍及工作原理说明本电子钟主要由单片机、键盘、显示接口电路和复位电路构成,设计课题的总体方案如图1所示:图1-1总体设计方案图本电子钟的所有的软件、参数均存放在AT89C52的Flash ROM和内部RAM 中,减少了芯片的使用数量简化了整体电路也降低了整机的工作电流。

键盘采用动态扫描方式。

利用单片机定时器及计数器产生定时效果通过编程形成数字钟效果,再利用数码管动态扫描显示单片机内部处理的数据,同时通过端口读入当前外部控制状态来改变程序的不同状态,实现不同功能。

51单片机电子时钟

51单片机电子时钟

一,总体方案设计数字钟是一个将“ 时”,“分”,“秒”显示于人的视觉器官的计时装置。

它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和一些显示星期、报时、停电查看时间等附加功能。

因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”,“星期”计数器、校时电路、报时电路和振荡器组成。

干电路系统由秒信号发生器、“时、分、秒、星期”计数器、译码器及显示器、校时电路、整点报时电路组成。

秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。

将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。

“时计数器”采用24进制计时器,可实现对一天24小时的累计。

每累计24小时,发出一个“星期脉冲”信号,该信号将被送到“星期计数器”,“星期计数器” 采用7进制计时器,可实现对一周7天的累计。

译码显示电路将“时”、“分”、“秒”、“星期”计数器的输出状态送到七段显示译码器译码,通过七位LED七段显示器显示出来。

整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。

校时电路时用来对“时”、“分”、“秒”、“星期”显示数字进行校对调整的。

但是基于我们是初学者,我们只做一些比较简单的设计,可以显示时分秒,可以计时,还有闹钟提示,还加上温度的测量,即焊接上温度传感器18DS120在P1口进行温度的测量。

数字电子钟主体电路应由以下几部分组成:通过分频器产生标准秒信号;60进制分秒计数器以及24小时计数器;分、时的译码显示部分;校时电路。

(电子钟的总体电路)二,单元模块设计1)晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz 的方波信号,此外还有一校正电容可以对温度进行补偿,以提高频率准确度和稳定度,使稳定度优于10-4,可保证数字钟的走时准确及稳定。

基于51单片机的数字时钟设计

基于51单片机的数字时钟设计

一设计要求及方案证 (1)二系统基本方案选择和论证 (2)2.1单片机芯片的选择方案和论证 (2)2.2显示模块选择方案和论证 (3)2.3时钟芯片的选择方案和论证 (4)三系统的硬件设计和实现 (5)3.1电路设计框图 (5)3・2主要单元电路的设计 (5)3.2. 1晶体振荡电路 (5)3. 2.2分频器电路 (6)3. 2.3时间计数器电路 (6)3. 2.4内部时钟电路 (6)3. 2. 5复位电路 (7)3. 2.6按键部分 (8)3. 2.7声光报警电路 (8)四、电路原理分析 (9)4・1显示原理 (9)4.2键盘及读数原理 (9)4.3连击功能的实现 (9)五、程序设计思想和相关指令介绍 (9)5.1数据和代码转换 (9)5・2计时功能的实现和中断服务程序 (10)5.3时间控制功能和比较指令...................................10六、系统的软件设计................................................106.1主程序部分 (11)6.2计时显示中断子程序部分 (13)6. 3调时功能流程图 (14)6. 4程序.....................................................15七设计心得........................................................24一设计要求及方案证设计制作和调试一个由8051MCU单片机组成的数字时钟系统。

通过这个过程学习熟悉键盘控制和七段数码管得使用,掌握 51系列单片机控制和测试的方法。

设计以89S51单片机为核心,以 LED为显示方式的万年历时钟显示,完成基本要求。

1)数码管显示:年月日时分秒。

2)键盘输入修改时间、日期设置。

系统基本方案选择和论证2. 1单片机芯片的选择方案和论证方案采用89C51芯片作为硬件核心,其内部采用Flash ROM,具有 4KB ROM存储空间,能于3V的超低压工作,但运用于电路设计中时由于不具备ISP在线编程技术,烧入程序时需要专门的C编程器(当前可用的实验烧写开发板只支持具有 ISP在线编程功能的AT89S**系列的芯片),当在对电路进行调试时,更显麻烦,并且增加了造价,采用89S51芯片作为主控模块,AT89S51是MCS-51系列单片机目前运用较多的一种芯片,采用Flash ROM,内部具有4KB ROM 存储空间,能于3V的超低压工作,而且具备ISP在线编程技术,方便对电路进行调试•但由于程序的错误修改或对程序的新增功能需要烧入程序时,对芯片的多次拔插会对芯片造成一定的损坏。

51单片机电子时钟课程设计

51单片机电子时钟课程设计

一、设计要求1、准确计时,以数字形式显示时、分、秒地时间.2、小时以24小时计时形式,分秒计时为60进位.3、校正时间功能,即能随意设定走时时间.4、闹钟功能,一旦走时到该时间,能以声或光地形式告警提示.5、设计5V直流电源,系统时钟电路、复位电路.6、能指示秒节奏,即秒提示.7、可采用交直流供电电源,且能自动切换.二、设计方案和论证本次设计时钟电路,使用了ATC89C51单片机芯片控制电路,单片机控制电路简单且省去了很多复杂地线路,使得电路简明易懂,使用键盘键上地按键来调整时钟地时、分、秒,用一扬声器来进行定时提醒,同时使用汇编语言程序来控制整个时钟显示,使得编程变得更容易,这样通过四个模块:键盘、芯片、扬声器、LED显示即可满足设计要求. 2.1、总设计原理框图如下图所示:2.2、设计方案地选择1.计时方案方案1:采用实时时钟芯片现在市场上有很多实时时钟集成电路,如DS1287、DS12887、DS1302等.这些实时时钟芯片具备年、月、日、时、分、秒计时功能和多点定时功能,计时数据地更新每秒自动进行一次,不需要程序干预.因此,在工业实时测控系统中多采用这一类专用芯片来实现实时时钟功能.方案2:使用单片机内部地可编程定时器.利用单片机内部地定时计数器进行中端定时,配合软件延时实现时、分、秒地计时.该方案节省硬件成本,但程序设计较为复杂.2.显示方案对于实时时钟而言,显示显然是另一个重要地环节.通常LED显示有两种方式:动态显示和静态显示.静态显示地优点是程序简单、显示亮度有保证、单片机CPU地开销小,节约CPU地工作时间.但占有I/O口线多,每一个LED都要占有一个I/O口,硬件开销大,电路复杂.需要几个LED就必须占有几个并行口,比较适用于LED数量较少地场合.当然当LED数量较多地时候,可以使用单片机地串行口通过移位寄存器地方式加以解决,但程序编写比较麻烦.LED动态显示硬件连接简单,但动态扫描地显示方式需要占有CPU较多地时间,在单片机没有太多实时测控任务地情况下可以采用.本系统需要采用6位LED数码管来分别显示时、分、秒,因数码管个数较多,故本系统选择动态显示方式.2.3硬件部分1、STC89C51单片机介绍STC89C51单片机是由深圳宏晶公司代理销售地一款MCU,是由美国设计生产地一种低电压、高性能CMOS 8位单片机,片内含8kbytes地可反复写地FlashROM和128bytes地RAM,2个16位定时计数器[5].STC89C51单片机内部主要包括累加器ACC(有时也简称为A)、程序状态字PSW、地址指示器DPTR、只读存储器ROM、随机存取存储器RAM、寄存器、并行I/O接口P0~P3、定时器/计数器、串行I/O接口以及定时控制逻辑电路等.这些部件通过内部总线联接起来,构成一个完整地微型计算机.其管脚图如图所示.STC89C51单片机管脚结构图VCC:电源.GND:接地.P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流.当P1口地管脚第一次写1时,被定义为高阻输入.P0能够用于外部程序数据存储器,它可以被定义为数据/地址地第八位.在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高.P1口:P1口是一个内部提供上拉电阻地8位双向I/O口,P1口缓冲器能接收输出4TTL门电流.P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉地缘故.在FLASH编程和校验时,P1口作为第八位地址接收.P2口:P2口为一个内部上拉电阻地8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入.并因此作为输入时,P2口地管脚被外部拉低,将输出电流.这是由于内部上拉地缘故.P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址地高八位.在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器地内容.P2口在FLASH编程和校验时接收高八位地址信号和控制信号.P3口:P3口管脚是8个带内部上拉电阻地双向I/O口,可接收输出4个TTL门电流.当P3口写入“1”后,它们被内部上拉为高电平,并用作输入.作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉地缘故.P3口也可作为AT89C51地一些特殊功能口,如下表所示:口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号.RST:复位输入.当振荡器复位器件时,要保持RST脚两个机器周期地高电平时间.ALE/PROG:当访问外部存储器时,地址锁存允许地输出电平用于锁存地址地地位字节.在FLASH编程期间,此引脚用于输入编程脉冲.在平时,ALE 端以不变地频率周期输出正脉冲信号,此频率为振荡器频率地1/6.因此它可用作对外部输出地脉冲或用于定时目地.然而要注意地是:每当用作外部数据存储器时,将跳过一个ALE脉冲.如想禁止ALE地输出可在SFR8EH地址上置0.此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用.另外,该引脚被略微拉高.如果微处理器在外部执行状态ALE禁止,置位无效.PSEN:外部程序存储器地选通信号.在由外部程序存储器取指期间,每个机器周期两次/PSEN有效.但在访问外部数据存储器时,这两次有效地/PSEN信号将不出现.EA/VPP:当/EA保持低电平时,则在此期间外部程序存储(0000H-FFFFH),不管是否有内部程序存储器.注意加密方式1时, /EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器.在FLASH编程期间,此引脚也用于施加12V编程电源(VPP).2、上电按钮复位电路本设计采用上电按钮复位电路:首先经过上电复位,当按下按键时,RST直接与VCC相连,为高电平形成复位,同时电解电容被电路放电;按键松开时,VCC对电容充电,充电电流在电阻上,RST依然为高电平,仍然是复位,充电完成后,电容相当于开路,RST为低电平,单片机芯片正常工作.其中电阻R2决定了电容充电地时间,R2越大则充电时间长,复位信号从VCC回落到0V地时间也长.3、晶振电路本设计晶振电路采用12M地晶振.晶振地作用是给单片机正常工作提供稳定地时钟信号.单片机地晶振并不是只能用12M,只要不超过20M就行,在准许地范围内,晶振越大,单片机运行越快,还有用12M地就是好算时间,因为一个机器周期为1/12时钟周期,所以这样用12M地话,一个时钟周期为12us,那么定时器计一次数就是1us了,电容范围在20-40pF之间,这里连接地是30pF地电容.机器周期=10*晶振周期=12*系统时钟周期4.下载端口设计用到地STC89C52单片机芯片地ISP下载线是通过单片机地TXD,RXD引脚把程序烧进去地.管脚TXD和RXD用于异步串行通信.其实STC89C52单片机地ISP下载线就是一个max232芯片连接STC和计算机地串行通信口.计算机把程序从九针串口送到max232芯片,电平转换后送进单片机地串行口,也就是TXD和RXD.然后单片机地串行模块把数据送到程序区.5、显示电路就时钟而言,通常可采用液晶显示或数码管显示.由于一般地段式液晶屏,需要专门地驱动电路,而且液晶显示作为一种被动显示,可视性相对较差;对于具有驱动电路和微处理器接口地液晶显示模块(字符或点阵),一般多采用并行接口,对微处理器地接口要求较高,占用资源多.另外,89C2051本身无专门地液晶驱动接口,因此,本时钟采用数码管显示方式.数码管作为一种主动显示器件,具有亮度高、价格便宜等优点,而且市场上也有专门地时钟显示组合数码管.对于实时时钟而言,显示显然是另一个重要地环节.通常LED显示有两种方式:动态显示和静态显示.静态显示地优点是程序简单、显示亮度有保证、单片机CPU地开销小,节约CPU地工作时间.但占有I/O口线多,每一个LED都要占有一个I/O口,硬件开销大,电路复杂.需要几个LED就必须占有几个并行口,比较适用于LED数量较少地场合.当然当LED数量较多地时候,可以使用单片机地串行口通过移位寄存器地方式加以解决,但程序编写比较麻烦.LED动态显示硬件连接简单,但动态扫描地显示方式需要占有CPU较多地时间,在单片机没有太多实时测控任务地情况下可以采用.本系统需要采用6位LED数码管来分别显示时、分、秒,因数码管个数较多,故本系统选择动态显示方式.6、时钟显示校正电路本设计利用按键开关来校正时钟显示地数字.当按钮按下时,将在相应地端口输入一个低电平,通过相应地程序来改变时钟显示.其中S1按键开关用来选择要修改地数字;S2按键用来增加所选数字地数值;S3按键用来减少所选数字地数值.7、蜂鸣器电路电路接法:三极管选定PNP型,基极B连接5V电压,发射极E连接一个1K左右地电阻后接I/O口,集电极C连接蜂鸣器后接地.单片机在复位后地个I/O口是高电平,此时三极管是截止地,编写程序使选定地I/O为低电平,此时三极管导通,导通后蜂鸣器与电源正极连通,构成一个工作回路,从而发出滴滴地响声.其中电阻R1在电路里起分压限流地作用,PNP三极管起到模拟开关地作用.8、外接电源电路外接电源电路用于连接外部5V电源与电子时钟电路,通过自锁开关控制电路地导通与断开,当开关闭合时,电路导通,外部电源给电路正常供电,电子时钟正常工作.当开关断开时,电路停止工作.9、总电路原理图(五)软件部分根据上述电子时钟地工作流程,软件设计可分为以下几个功能模块:(1)主程序模块.主程序主要用于系统初始化:设置计时缓冲区地位置及初值,设置8155地工作方式、定时器地工作方式和计数初值等参数.主程序流程如下图所示.开始定义堆栈区8155、T0、数据缓冲区、标志位初始化调用键盘扫描程序否是C/R键?地址指针指向计时缓冲区主程序流程图(2)计时模块.即定时器0中断子程序,完成刷新计时缓冲区地功能.系统使用6MHz地晶振,假设定时器0工作在方式1,则定时器地最大定时时间为65.536ms,这个值远远小于1s.因此本系统采用定时器与软件循环相结合地定时方法.设定时器0工作在方式1,每隔50ms溢出中断一次,则循环中断20次延时时间是1s,上述过程重复60次为1分,分计时60次为1小时,小时计时24次则时间重新回到00:00:00.因定时器0工作在方式1,则50ms定时对应地定时器初值为:65536-50ms/2us=40536=9E58H,即TH0=9EH,TH0=58H.但应当指出:CPU从响应T0中断到完成定时器初值重装这段时间,定时器T0并不停止工作,而是继续计数.因此,为了确保T0能准确定时50ms,重装地定时器初值必须加以修正,修正地定时器初值必须考虑到从原定时器初值中扣除计数器多计地脉冲个数.由于定时器计数脉冲地周期恰好和机器周期吻合,因此修正量等于CPU从响应中断到重装完TL0为止所用地机器周期数.CPU响应中断通常要3~8个机器周期.经过测试,定时器0重装地计数初值设为9E5FH~9E67H,可以满足精度要求.另外,MCS-51单片机只有二进制加法指令,而时间是按十进制递增,因此用加法指令后必须进行二-十进制转换.计时模块流程图如下图所示.计时模块流程图(3)时间设置模块.该模块由键盘输入相应地数据来设置当前时间.程序通过调用一个键盘设置子程序通过键盘扫描将键入地6位时间值送入显示缓冲区.设置时间后,时钟要从这个时间开始计时,而时分秒单元各占一个字节,键盘占6个字节.因此程序中要调用一个合字子程序将显示缓冲区中地6位BCD码合并为3位压缩BCD码,并送入计时缓冲区,作为当前计时起始时间.该程序同时要检测输入时间值地合法性,若键盘输入地小时值大于23,分、秒值大于59,则不合法,将取消本次设置,清零重新开始计时.时间设置和键盘设置子程序地流程图如下图所示.时间设置流程图键盘设置子程序流程图(4)显示模块.该模块完成时分秒6位LED地动态显示.因为显示为6位,二计时是3个字节单元,为此,必须将3字节计时缓冲区中地时分秒压缩BCD码拆分为6字节BCD码,并送入显示缓冲区中.当按下调整时间键后,在6位设置完成之前,这6个LED应该显示键人地数据,不显示当前地时间.为此,我们设置了一个计时显示允许标志位F0,在时间设置期间F0=1,不调用刷新显示缓冲区地子程序.显示程序流程图如下图所示.保护现场是显示程序流程图键盘扫描程序流程图程序:ORG 0000H AJMP MAIN ORG 000BH AJMP TIME ORG 0300H MAIN:mov 20h,#00h MOV 21H,#00H MOV 22H,#00H MOV 23H,#00H MOV IP,#02H 。

(完整版)基于51单片机的电子时钟设计与实现毕业设计

(完整版)基于51单片机的电子时钟设计与实现毕业设计

摘要单片机自20世纪70年代问世以来,以其极高的性能价格比,受到人们的重视和关注,应用很广、发展很快。

单片机体积小、重量轻、抗干扰能力强、环境要求不高、价格低廉、可靠性高、灵活性好、开发较为容易。

由于具有上述优点,在我国,单片机已广泛地应用在工业自动化控制、自动检测、智能仪器仪表、家用电器、电力电子、机电一体化设备等各个方面,而51单片机是各单片机中最为典型和最有代表性的一种。

这次毕业设计通过对它的学习、应用,以AT89S51芯片为核心,辅以必要的电路,设计了一个简易的电子时钟,它由4.5V直流电源供电,通过数码管能够准确显示时间,调整时间,从而到达学习、设计、开发软、硬件的能力。

电子时钟是采用数字电路实现对“时”、“分”、“秒”数字显示的计时装置。

电子时钟的精度、稳定度远远超过老式机械钟。

在这次设计中,我们采用LED数码管显示时、分、秒,以24小时计时方式,根据数码管动态显示原理来进行显示,用12MHz 的晶振产生振荡脉冲,定时器计数。

在此次设计中,电路具有显示时间的其本功能,还可以实现对时间的调整。

电子时钟是其小巧,价格低廉,走时精度高,使用方便,功能多,便于集成化而受广大消费的喜爱,因此得到了广泛的使用。

关键词:单片机;AT89S51ABSTRACTSince the 1970 s chip since the advent, with its high cost performance and attention by people and attention, it is widely used and fast development. SCM small volume, light weight, strong anti-jamming capability, environmental demand is not high, low cost, high reliability, flexibility is good, development more easy. Because of the above features, in our country, the microcontroller is widely used in industrial automation control, automatic detection, intelligent instrument and apparatus, household appliances, power electronics, mechanical and electrical equipment, and other aspects, and 51 SCM is the most typical chip and most representative one. The graduation design through to its study, application to AT89S51 chips as the core, with the necessary circuit, design of a simple electronic clock, it by 4.5 V dc power supply, through the electronic tube can show time, adjust the time, thus to learning, the design, the development of software and hardware in the ability.Electronic Clock is a electronic circuit implementation of the "when", "sub", "seconds" The figures show the timing device. Electronic clock precision, stability, far more than the old mechanical clock. In this design, we use LED electronic display hours, minutes, seconds, to 24-hour time mode, according to electronic control theory to dynamic display to display, use the 12MHz crystal oscillation pulse, the timer count. In this design, the circuit has a display time of the this function, you can also realize the time adjustment. Electronic clock is its compact, low cost, travel time and high precision, easy to use, features and more, easy integration and loved by the general consumer, so widely used.Key words:Single-chip microcomputer ; AT89S51独创声明本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。

51单片机时钟程序设计

51单片机时钟程序设计

51单片机时钟程序设计51单片机时钟程序设计是基于51单片机的一种程序,用于控制和显示时间的各个参数,如小时、分钟、秒等。

在计时、计数、算术运算、控制输出、中断处理等领域都起到重要的作用。

本文将简单介绍51单片机时钟程序设计的基本框架和其实现方法。

1. 硬件准备在进行51单片机时钟程序设计之前,需要先准备好相关的硬件,包括51单片机芯片、晶振、LCD液晶显示屏等。

其中晶振是时钟源,用来产生稳定的时钟信号,LCD液晶显示屏则用于显示时钟相关信息。

2. 时钟程序的设计框架(1)初始化程序:此步骤的主要作用是设置相关的寄存器和标志位,为后续程序的正常运行做好准备。

(2)计时程序:此步骤的主要作用是对秒、分、时等时间参数进行计数,并将结果存储到相应的寄存器里。

(3)中断程序:此步骤的主要作用是设置中断触发条件和相应的处理程序,用来处理一些紧急事件。

(4)显示程序:此步骤的主要作用是将计时程序的结果以数字形式显示到LCD液晶显示屏上,同时可以进行一些特殊字符的显示。

(5)调试程序:此步骤的主要作用是用于调试程序代码,检测是否存在问题,比如程序写错了等等。

3. 时钟程序的实现方法(1)初始化程序初始化程序是开发52单片机时钟程序的第一步,可以根据实际需求进行相应的设置。

在本程序中,初始化程序需要进行以下设置:a. 定义输入输出端口;b. 配置定时器;c. 设置中断源;d. 初始化LCD液晶显示屏等相关参数;(2)计时程序计时程序是时钟程序的核心,其主要作用是计算并更新当前的时间参数。

在本程序中,计时程序需要进行以下操作:a. 设置定时器的时钟源和计数频率;b. 定义中断触发条件;c. 设置中断处理程序并对时间参数进行计数,并存储到相应的寄存器里;d. 根据时间参数更新液晶显示屏的显示内容。

(3)中断程序中断程序主要用于响应一些紧急事件,比如硬件异常、按键输入等。

在52单片机时钟程序中,中断程序需要以下操作:a. 定义中断触发条件;b. 检测中断源;c. 判断中断类型,并调用相应的处理程序;d. 清除中断标志位。

简单的51单片机时钟程序

简单的51单片机时钟程序

简单的51单片机时钟程序,可以通过按键来设置时间,按键可以自己更改。

#include<reg52.h>#define uint unsigned int#define uchar unsigned char#define tt 46080 //设置时间间隔,对应11.0592MHZ的晶振uchar code table[]="Happy every day!";uchar code table1[]="00:00:00";uchar num,hh,mm,ss,t,s1num=0;sbit en=P3^4;sbit rs=P3^5;sbit rw=P3^6;sbit s1=P3^0;sbit s2=P3^1;sbit s3=P3^2;//按键所用的端口sbit s4=P3^3;void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--); //大约是1ms,因为单片机的时钟周期为11.0592mhz。

}void write_com(uchar com){rs=0; //指令P0=com; //写指令函数delay(1);en=1;delay(1);en=0;}void write_data(uchar dat){rs=1; //数据P0=dat; //写指令函数delay(1);en=1;delay(1);en=0;}void init(){en=0; //初始时使能为0rw=0;write_com(0x38); //显示屏模式设置为1602方案write_com(0x0c);write_com(0x06); //显示开关/光标设置write_com(0x01); //清屏write_com(0x80); //指针置零for(num=0;num<16;num++)write_data(table[num]);write_com(0xc3);for(num=0;num<8;num++)write_data(table1[num]);}void dingshi(){TMOD=0x01; //确定定时器工作模式(定时模式)TH0=(65536-tt)/256; //赋初值为tt微秒TL0=(65536-tt)%256; //不赋值时默认其值是0EA=1; //开总中断ET0=1; //开定时器0中断// IE=0x82; //总线写法TR0=1; //启动定时器0 总线TCON=0x10;}void shuanxin(uchar add,uchar date){uchar shi,ge;write_com(0xc3+add); //指针指向shi=date/10;ge=date%10;write_data(0x30+shi);write_data(0x30+ge); //指针自动后移,故不必再写指针位置}/***************借助蜂鸣器接地起作用***************/ void keyscan(){if(s1==0){delay(5);if(s1==0){s1num++;while(!s1);if(s1num==1){TR0=0; //时钟停止运行write_com(0xca); //指针指向sswrite_com(0x0f); //光标闪烁}if(s1num==2){write_com(0xc7); //指针指向mmwrite_com(0x0f);}if(s1num==3){write_com(0xc4); //指针指向hhwrite_com(0x0f);}if(s1num==4){s1num=0;TR0=1; //时钟运行write_com(0x0c); //取消闪烁}}}/***************调节时间****************/if(s1num!=0) //目的是使s1按下的前提才起作用{if(s2==0){delay(5);if(s2==0){while(!s2); //松手检测,松手后方可向下执行if(s1num==1){ss++;if(ss==60)ss=0;shuanxin(6,ss);write_com(0xca);}if(s1num==2){mm++;if(mm==60)mm=0;shuanxin(3,mm);write_com(0xc7);}{hh++;if(hh==24)hh=0;shuanxin(0,hh);write_com(0xc4);}}}}if(s1num!=0) //s1按下的前提才起作用{if(s3==0){delay(5);if(s3==0){while(!s3);if(s1num==1){ss--;ss=59;shuanxin(6,ss);write_com(0xca);}if(s1num==2){mm--;if(mm==-1)mm=59;shuanxin(3,mm);write_com(0xc7);}if(s1num==3){hh--;if(hh==-1)hh=23;shuanxin(0,hh);write_com(0xc4);}}}}if(s1num!=0) //s1按下的前提才起作用{if(s4==0){delay(5);if(s4==0){while(!s4);if(s1num==1){ss=0;shuanxin(6,ss);write_com(0xca);}if(s1num==2){mm=0;shuanxin(3,mm);write_com(0xc7);}if(s1num==3){hh=0;shuanxin(0,hh);write_com(0xc4);}}}}}void main(){init();dingshi();while(1){keyscan();if(t==20){P1=P1-1;t=0;ss++;if(ss==60){ss=0;mm++;if(mm==60){mm=0;hh++;if(hh==24){hh=0;}shuanxin(0,hh);}shuanxin(3,mm);}shuanxin(6,ss);}}}void time0() interrupt 1{TH0=(65536-tt)/256; //不赋值时默认其值是0 TL0=(65536-tt)%256;t++;}。

基于C51单片机的数字可调时钟

基于C51单片机的数字可调时钟

河南机电高等专科学校《C51程序设计》大作业设计题目:数字可调时钟班级:通技091学号:090413128姓名:成绩:2011年11月1 设计任务制作数字可调时钟,要求可以分开调节分、时、年、月、日,能够显示温度。

2电路原理图以下为protel99se画的的原理图3 系统流程图数字可调时钟分以下四个部分构成:显示部分:此次显示采用了动态扫描显示,采用74ls573进行数据锁存。

温度采集:温度采集采用了18b20采集的,18b20转化温度较快,精度高。

时钟:采用普通的ds1302芯片。

数据运算:单片机用普通的8051单片机(12M晶振)。

4 源程序/*******************************数字可调时钟*********************************/ /*******************************by:lhc****************************************/ #include<reg51.h> #define DataPort P0void delayms(unsigned char i); sbit DQ=P1^3; sbit sclk=P1^4;sbit date=P1^5; sbit rst=P1^6;sbit LATCH1=P2^2;//定义锁存使能端口 段锁存 sbit LATCH2=P2^3;// 位锁存unsigned char time[8]={20,11,11,27,11,30,00,7}; //年 月日 时 分 秒 周 unsigned char time1[8],readtemflag;unsigned char code DuanMa[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值0~9unsigned char code WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码unsigned char code pingnian[13]={ 0,31,28,31,30,31,30,31,31,30,31,30,31};//平年的月份天数 unsigned char code yunnian[13]= { 0,31,29,31,30,31,30,31,31,30,31,30,31};//闰年的月份天数 unsigned char TempData[8]; //存储显示值的全局变量 void delay(unsigned char i) {while(--i); //us 延时函数}void delayms(unsigned char i) //ms 延时函数 {while(i--) { delay(245); delay(245); } }bit rest(void)//18b20重启函数{ bit k=0; DQ=1; delay(5); DQ=0; delay(150); delay(200); DQ=1; delay(40); k =DQ; delay(25); r eturn(k); }unsigned char read()//18b20读数据函数{ unsigned char i=0; unsigned char dat=0;for(i=0;i<8;i++) {DQ=0; dat>>=1; DQ=1;if(DQ) dat|=0x80; delay(25); }return (dat);}void write(unsigned char dat)//18b20写数据函数{unsigned char i=0; for(i=0;i<8;i++){ DQ = 0; DQ = dat&0x01; delay(25); DQ = 1; dat>>=1;} delay(25);}unsigned int ReadTemperature(void) //读取温度函数{ unsigned char a=0; unsigned int kk=0,b=0;LOOP:if(rest()==0){ write(0xCC); //跳过ROM w rite(0x44); //初始化温度转换delayms(20); rest();TH1=0XFa; TL1=0Xff; write(0xCC); write(0xBE); //读取温度a=read(); b=read(); b<<=8; kk=a+b; return(kk);} else goto LOOP;}void restds1302(void){sclk=0; rst=0; //ds1302重启 }void writebyte(unsigned char addr,unsigned char byte) //写入ds1302一个字节数据{ unsigned char i;rst=1;addr=addr&0xfe;for(i=0;i<8;i++){ date=addr&0x01; sclk=1; sclk=0; addr>>=1;}for(i=0;i<8;i++){ date=byte&0x01; sclk=1; sclk=0; byte>>=1;}rst=0;}unsigned char readbyte(unsigned char addr) //读取一个字节的数据{ unsigned char i,temp;rst=1; addr=addr|0x01;for(i=0;i<8;i++) //读函数{ date=addr&0x01;sclk=1; sclk=0;addr=addr>>1;}for(i=0;i<8;i++){temp=temp>>1;if(date) temp|=0x80;else temp&=0x7f; sclk=1; sclk=0;}rst=0;return temp;}void writetime(void) //调时函数{unsigned char i,tmp;for(i=0;i<8;i++){ //BCD处理tmp=time[i]/10;time1[i]=time[i]%10;time1[i]=time1[i]+tmp*16;}writebyte(0x8e,0x00);//关闭写保护writebyte(0x80,0x80);// 暂停writebyte(0x8c,time1[1]);// 年写入writebyte(0x88,time1[2]);//月写入writebyte(0x86,time1[3]);// 日写入//些时间writebyte(0x84,time1[4]);// 时写入writebyte(0x82,time1[5]);// 分写入writebyte(0x80,time1[6]);// 秒写入writebyte(0x8a,time1[7]);// 周写入//writebyte(0x80,0x00);// 秒写入writebyte(0x8e,0x80);//打开写保护}void readtime(void) //读取时间函数{ unsigned char i,tmp;time1[1]=readbyte(0x8d);// 年读time1[2]=readbyte(0x89);// 月读time1[3]=readbyte(0x87);// 日读// 读时间time1[4]=readbyte(0x85);// 时time1[5]=readbyte(0x83);// 分time1[6]=readbyte(0x81);// 秒time1[7]=readbyte(0x8b);// 周for(i=0;i<8;i++) //BCD处理{ tmp=time1[i]/16;time[i]=time1[i]%16;time[i]=time[i]+tmp*10;}}void Display(unsigned char FirstBit,unsigned char Num) //动态显示函数{ static unsigned char i=0;DataPort=0; //清空数据,防止有交替重影LATCH1=1; //段锁存LATCH1=0;DataPort=WeiMa[i+FirstBit]; //取位码LATCH2=1; //位锁存LATCH2=0;DataPort=TempData[i]; //取显示数据,段码LATCH1=1; //段锁存LATCH1=0; i++;if(i==Num) i=0;}unsigned char key(void) //键盘读取函数{ unsigned char i;if(P3!=0xff){ delay(10); if(P3!=0xff){ i=P3; while(P3!=0xff) ;switch(i){case 0xfe:return 1;break;case 0xfd:return 2;break;case 0xfb:return 3;break;default:return 0;break;}}}return 0;}void T1_rest() //定时器1的初始化函数{TMOD|=0X10;TH1=0XF8;TL1=0X30;EA=1 ;ET1= 1;TR1=1;}void isr0(void) interrupt 3{static unsigned char qq;TR1=0; TH1=0XF8; TL1=0X30;Display(0,8); //送去显示qq++;if(qq==200){ qq=0,readtemflag=1; } TR1=1; }void main(){unsigned char bian=0,k=0;unsigned char num=6;unsigned int h,l,tempp,year;bit nianflag; restds1302(); writetime(); T1_rest();while(1){readtime(); year=time[1]*200;if(year%4==0&&year%100!=0||year%400==0) nianflag=1;else nianflag=0; k=key();if(k!=0){ if(k==1){ bian++;num=6; k=0; }//调节显示的内容if(bian==3) bian=0;if(k==2){ num--;if(num<4) bian=1;if(num>3) bian=0; //选着调节对象分,时,年月日if(num==0) num=6; k=0;}if(k==4&&num!=6) //调节对象(分时年月日)加一{ time[num]++;if(num==5&&time[num]==60) time[num]=0;if(num==4&&time[num]==24) time[num]=0;if(num==3&&nianflag){if(time[3]>yunnian[time[2]]) time[3]=1;}else if(num==3){ if(time[3]>pingnian[time[2]])time[3]=1;}if(num==2&&time[num]==13) time[num]=1;if(num==1&&time[num]==99) time[num]=0; k=0;}if(k==3&&num!=6) //调节对象(分时年月日)减一{ time[num]--;if(time[num]==-1&&num==5) time[num]=59;if(time[num]==-1&&num==4) time[num]=23;if(num==3&&nianflag){ if(time[3]==0) time[3]=yunnian[time[2]]; }else if(num==3){ if(time[3]==0) time[3]=pingnian[time[2]]; }if(time[num]==0&&num==2) time[num]=12;if(time[num]==-1&&num==1) time[num]=99; k=0;}if(nianflag){ if(time[3]>yunnian[time[2]]) time[3]=1;}else { if(time[3]>pingnian[time[2]]) time[3]=1; }writetime();}if(bian==0) //对时,分,秒,显示数据分离处理{TempData[0]=DuanMa[time[4]/10];TempData[1]=DuanMa[time[4]%10];TempData[2]=0x40; //加入"-"TempData[3]=DuanMa[time[5]/10];//分TempData[4]=DuanMa[time[5]%10];TempData[5]=0x40;TempData[6]=DuanMa[time[6]/10];//秒TempData[7]=DuanMa[time[6]%10];if(num!=6){ delayms(30);if(num==4){ TempData[0]=0; TempData[1]=0; delayms(30); }if(num==5){ TempData[3]=0; TempData[4]=0; delayms(30); }}}else if(bian==1) //对年月日的显示数据分离处理{ TempData[0]=DuanMa[time[1]/10]; TempData[1]=DuanMa[time[1]%10];TempData[2]=0x40;//加入"-"TempData[3]=DuanMa[time[2]/10];//月TempData[4]=DuanMa[time[2]%10];TempData[5]=0x40;TempData[6]=DuanMa[time[3]/10];//日TempData[7]=DuanMa[time[3]%10];if(num!=6){ delayms(30);if(num==1){ TempData[0]=0;TempData[1]=0;delayms(30); }if(num==2){ TempData[3]=0;TempData[4]=0;delayms(30); }if(num==3){ TempData[6]=0;TempData[7]=0;delayms(30); }}}else if(bian==2) //对温度和星期的显示数据分离处理{if( readtemflag==1){ tempp=ReadTemperature();readtemflag=0;}if(tempp&0x8000){ TempData[0]=0x40;//负号标志tempp=~tempp; tempp +=1;}elseTempData[0]=0;h=tempp>>4; l=tempp&0x0F; l=l*6/10;//小数近TempData[1]=DuanMa[(h%100)/10]; //十位温度TempData[2]=DuanMa[(h%100)%10]|0x80; //个位温度,带小数点TempData[3]=DuanMa[l];TempData[4]=0x39; TempData[5]=0;TempData[6]=DuanMa[time[7]/10];TempData[7]=DuanMa[time[7]%10];}}}参考文献【1】Brian W.Kernighan,Dennis M.Ritchie.C.程序设计语言.机械工业出版社,机械工业出版社,2004.1.【2】祁伟,杨婷.单片机C51程序设计教程与实验,北京航空航天大学出版社,2006.1. 【3】梅丽凤,郝万新.单片机原理及应用,清华大学出版社,2009.7.【4】18B20数据手册.【5】DS1302数据手册.。

基于51单片机的数字钟设计报告

基于51单片机的数字钟设计报告

数字钟项目硬件总体设计说明书编制单位:侏罗纪工作室作者发布日期:2011-1-22审核人:批准人:目录1.引言 (1)1.1.编写目的: (1)1.2.背景 (1)1.3.定义 (2)1.4.参考资料 (2)2.总体设计 (3)2.1开发与运行环境 (3)2.2硬件功能描述 (3)2.3硬件结构 (3)3.硬件模块设计 (4)3.1.描述 (4)3.1.1.AT89C51单片机简介 (4)3.1.2. 键盘电路的设计 (5)3.1.3. 段码驱动电路 (5)3.1.4. 显示器的选择 (7)3.1.5. 蜂鸣器驱动电路 (8)3.2.功能 (8)4.嵌入式软件设计 (9)4.1.流程逻辑 (9)4.2.算法 (10)4.2.1. 中断定时器的设置 (26)4.2.2. 闹钟子函数 (27)4.2.1. 计时函数 (28)4.2.2. 键盘扫描函数 (29)4.2.3. 时间和闹钟的设置 (30)5.经验总结 (31)6.附录 (37)1.引言1.1.编写目的:20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。

时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。

忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。

但是,一旦重要事情,一时的耽误可能酿成大祸。

例如,许多火灾都是由于人们一时忘记了关闭煤气或是忘记充电时间等造成的。

而钟表的数字化给人们生产生活带来了极大的方便。

数字钟是通过数字电路实现时,分,秒数字显示的计时装置,广泛用于个人家庭、车站、码头办公室等公共场所,成为人们日常生活中不可少的必需品。

由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表,钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能,诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烤箱、通断动力设备、甚至各种定时电气的自动启用等。

基于51单片机的简易电子钟设计

基于51单片机的简易电子钟设计

m a j o ri t v o f e l e c t r o n i C t e c h n o l o g y e n t h u s i a s t S c a n r e f e r t o a n d m a k e t h e i r o w n .
电子钟 显示时间是用数码 管实 现的, 本设计选用的数码管是 6位数码管, 以分别实现对“ 时” 、 “ 分” 、 “ 秒” 进 行数字显示 , 它们 之
间的间隔用数码管上 的小数点来分割 , 采用 7 4 H C 5 7 3 锁 存器来驱动六位 8段数 码管 ,并利用石英晶振产生时钟脉冲, 并利用 单片机 内部的定时器计数, 通过程序和外 围电路控制数码管进行动态显示 。 本 文提供一种简单且廉价的设计方 案, 广大的电子
Ke y wo r d s: e 1 e c t r o n i C C 1 o c k: d i g i t a l c o n t r o l :S T C 8 9 C 5 1 M C U
0引言
电子钟 是当前市面上 十分普及 的计时装置 , 它成本 低廉 , 计
时准确, 而 且 由于 其 显示 装 置 可 以 发光 , 因此夜间也清晰可见, 它 的性 价 比 是 比较 高 的 , 现 在 人们 尤 其 是 在青 年 人 群 中 , 使 用 电子 计
M e n g Y u j i a
( C o l l e g e o f m e c h a n i c a l a n d e l e c t r i c a l e n g i n e e r i n g N o r t h e a s t F o r e s t r y U n i v e r s i t y ,H e i l o n g j i a n g H a r b i n , 1 5 0 0 4 0 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:简单51单片机数字时钟设计院系: 物理与电气工程学院专业:自动化专业班级:10级自动化******学号:2******引言20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。

时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。

忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。

但是,一旦重要事情,一时的耽误可能酿成大祸。

目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS 化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。

下面是单片机的主要发展趋势。

单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。

从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。

这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。

单片机模块中最常见的是数字钟,数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟是采用数字电路实现对时,分,秒数字显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。

诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。

因此,研究数字钟及扩大其应用,有着非常现实的意义。

设计内容利用单片机的定时/计数器,中断系统,以及阵列键盘和LED显示器进行设计。

在数码管显示器上实现电子时钟。

课程设计背景近年来随着计算机在社会领域的渗透和大规模集成电路的发展,单片机的应用正在不断地走向深入,由于它具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点,因此特别适合于与控制有关的系统,越来越广泛地应用于自动控制,智能化仪器,仪表,数据采集,军工产品以及家用电器等各个领域,单片机往往是作为一个核心部件来使用,在根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。

关键字:单片机时钟设计 MC51课程设计目的1、综合利用所学单片机知识完成一个单片机应用系统设计并在实验室实现,从而加深对单片机软硬知识的理解,获得初步的应用经验。

2、学习AT89C51定时/计数器的原理及基本应用。

3、掌握多为数码管动态显示方法。

4、掌握Keil uVision2 IDE的使用方法。

【包括项目文件的建立,给项目添加程序文件,编译、连接项目,形成目标文件,运行调试观察结果,多文件的处理,仿真环境的设置。

】5、掌握Keil C51的调试技巧。

【包括如何设置和删除断点,如何查看和修改寄存器的内容,如何观察和修改变量,如何观察存储器区域,并行口的使用,定时/计数器的使用,串行口的使用,外中断的使用。

】6、掌握PROTEUS软件使用过程。

MCS-51单片机中断系统的结构5个中断源的符号、名称及产生的条件如下。

INT0:外部中断0,由P3.2端口线引入,低电平或下跳沿引起。

INT1:外部中断1,由P3.3端口线引入,低电平或下跳沿引起。

T0:定时器/计数器0中断,由T0计满回零引起。

T1:定时器/计数器l中断,由T1计满回零引起。

课程设计原理单片机控制的数字钟的硬件结构与软件设计,给出了汇编语言源程序。

此数字钟是一个将“时”、“分”、“秒”显示于人的视觉器官的计时装置。

显示器件选用LED七段数码管。

在译码显示电路输出的驱动下,显示出清晰、直观的数字符号。

针对数字钟会产生走时误差的现象,在电路中就设计有有校准时间功能的电路。

使用动态数码显示的方法,运用独立式按键识别过程,按“时”,“分”,“秒”数据送出显示处理方法。

Protues仿真图数字钟流程图设计代码;简要说明:实现24小时制电子钟,8位数码管显示,显示时分秒; 显示格式:23-59-59(小时十位如果为0则不显示); P0口输出段选信号,P3口输出位选信号; 为调秒按钮,为调分按钮,为调时按钮;晶振12MS_SET BIT ;数字钟秒控制位M_SET BIT ;分钟控制位H_SET BIT ;小时控制位SECOND EQU 30HMINUTE EQU 31HHOUR EQU 32HTCNT EQU 34HORG 00HSJMP STARTORG 0BHLJMP INT_T0START: MOV DPTR,#TABLEMOV HOUR,#0 ;初始化MOV MINUTE,#0MOV SECOND,#0MOV TCNT,#0MOV TMOD,#01HMOV TH0,#(65536-50000)/256 ;定时50毫秒MOV TL0,#(65536-50000)MOD 256MOV IE,#82HSETB TR0;****************************************************;判断是否有控制键按下,是哪一个键按下A1: LCALL DISPLAYJNB S_SET,S1JNB M_SET,S2JNB H_SET,S3LJMP A1S1: LCALL DELAY ;去抖动JB S_SET,A1INC SECOND ;秒值加1MOV A,SECONDCJNE A,#60,J0 ;判断是否加到60秒MOV SECOND,#0LJMP K1S2: LCALL DELAYJB M_SET,A1K1: INC MINUTE ;分钟值加1MOV A,MINUTECJNE A,#60,J1 ;判断是否加到60分MOV MINUTE,#0LJMP K2S3: LCALL DELAYJB H_SET,A1K2: INC HOUR ;小时值加1MOV A,HOURCJNE A,#24,J2 ;判断是否加到24小时MOV HOUR,#0MOV MINUTE,#0MOV SECOND,#0LJMP A1;**************************************************** ;等待按键抬起J0: JB S_SET,A1LCALL DISPLAYSJMP J0J1: JB M_SET,A1LCALL DISPLAYSJMP J1J2: JB H_SET,A1LCALL DISPLAYSJMP J2;***********************************************;定时器中断服务程序,对秒,分钟和小时的计数INT_T0: MOV TH0,#(65536-50000)/256MOV TL0,#(65536-50000)MOD 256INC TCNTMOV A,TCNTCJNE A,#20,RETUNE ;计时1秒INC SECONDMOV TCNT,#0MOV A,SECONDCJNE A,#60,RETUNEINC MINUTEMOV SECOND,#0MOV A,MINUTECJNE A,#60,RETUNEINC HOURMOV MINUTE,#0MOV A,HOURCJNE A,#24,RETUNEMOV HOUR,#0MOV MINUTE,#0MOV SECOND,#0MOV TCNT,#0RETUNE: RETI;****************************************** ;显示控制子程序DISPLAY:MOV A,SECOND ;显示秒MOV B,#10DIV ABCLRMOVC A,@A+DPTRMOV P0,ALCALL DELAYSETBMOV A,BCLRMOVC A,@A+DPTRMOV P0,ALCALL DELAYSETBCLRMOV P0,#40H ;显示分隔符LCALL DELAYSETBMOV A,MINUTE ;显示分钟MOV B,#10DIV ABCLRMOVC A,@A+DPTRMOV P0,ALCALL DELAYSETBMOV A,BCLRMOVC A,@A+DPTRMOV P0,ALCALL DELAYSETBCLRMOV P0,#40H ;显示分隔符LCALL DELAYSETBMOV A,HOUR ;显示小时MOV B,#10DIV ABCLRMOVC A,@A+DPTRMOV P0,ALCALL DELAYSETBMOV A,BCLRMOVC A,@A+DPTRMOV P0,ALCALL DELAYSETBRETTABLE: DB 3FH,06H,5BH,4FH,66HDB 6DH,7DH,07H,7FH,6FH DELAY: MOV R6,#10D1: MOV R7,#250DJNZ R7,$DJNZ R6,D1RETEND设计相关说明参考元器件清单:单片机:80C51按键:BUTTON电阻:RES电容:CAP晶振:CRYSTALLED数码管:7SEG-MPX8- CC -BLUE(CA:共阳,CC:共阴)地:GRAND电源:POWER参考资料:《单片机电路设计、分析与制作》《单片机原理与应用》《proteus仿真MCS51一百例》。

相关文档
最新文档