二叉树操作实验报告(精.选)

合集下载

二叉树实验报告

二叉树实验报告

二叉树实验报告二叉树实验报告引言:二叉树作为一种常用的数据结构,在计算机科学领域中具有广泛的应用。

本实验旨在通过实际操作和观察,深入理解二叉树的特性和运用。

一、二叉树的基本概念1.1 二叉树的定义二叉树是一种特殊的树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

树的最顶层节点称为根节点。

1.2 二叉树的特点二叉树具有以下特点:- 每个节点最多有两个子节点,分别称为左子节点和右子节点;- 左子节点的值小于等于父节点的值,右子节点的值大于等于父节点的值;- 二叉树的左子树和右子树也是二叉树。

二、二叉树的遍历方式2.1 先序遍历先序遍历是指先访问根节点,然后按照先序遍历的方式依次访问左子树和右子树。

2.2 中序遍历中序遍历是指按照中序遍历的方式依次访问左子树,根节点和右子树。

2.3 后序遍历后序遍历是指按照后序遍历的方式依次访问左子树,右子树和根节点。

三、二叉树的实验操作3.1 二叉树的创建为了便于实验操作,我们选择使用Python编程语言来实现二叉树的创建和操作。

首先,我们需要定义一个二叉树节点的类,包含节点的值、左子节点和右子节点。

3.2 二叉树的插入在已有的二叉树中插入一个新的节点,需要遵循二叉树的规则。

如果插入的节点值小于当前节点的值,则将节点插入到当前节点的左子树;如果插入的节点值大于当前节点的值,则将节点插入到当前节点的右子树。

3.3 二叉树的查找在二叉树中查找一个特定的节点,需要遍历整个二叉树。

从根节点开始,如果要查找的节点值小于当前节点的值,则继续在左子树中查找;如果要查找的节点值大于当前节点的值,则继续在右子树中查找;如果要查找的节点值等于当前节点的值,则找到了目标节点。

3.4 二叉树的删除在二叉树中删除一个节点,需要考虑多种情况。

如果要删除的节点没有子节点,直接将其删除即可;如果要删除的节点只有一个子节点,将子节点替换为要删除的节点;如果要删除的节点有两个子节点,需要找到其右子树中的最小节点,将其值替换到要删除的节点,然后删除最小节点。

二叉排序树的实验报告

二叉排序树的实验报告

二叉排序树的实验报告二叉排序树的实验报告引言:二叉排序树(Binary Search Tree,简称BST)是一种常用的数据结构,它将数据按照一定的规则组织起来,便于快速的查找、插入和删除操作。

本次实验旨在深入了解二叉排序树的原理和实现,并通过实验验证其性能和效果。

一、实验背景二叉排序树是一种二叉树,其中每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。

这种特性使得在二叉排序树中进行查找操作时,可以通过比较节点的值来确定查找的方向,从而提高查找效率。

二、实验目的1. 理解二叉排序树的基本原理和性质;2. 掌握二叉排序树的构建、插入和删除操作;3. 验证二叉排序树在查找、插入和删除等操作中的性能和效果。

三、实验过程1. 构建二叉排序树首先,我们需要构建一个空的二叉排序树。

在构建过程中,我们可以选择一个节点作为根节点,并将其他节点插入到树中。

插入节点时,根据节点的值与当前节点的值进行比较,如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。

重复这个过程,直到所有节点都被插入到树中。

2. 插入节点在已有的二叉排序树中插入新的节点时,我们需要遵循一定的规则。

首先,从根节点开始,将新节点的值与当前节点的值进行比较。

如果小于当前节点的值,则将其插入到当前节点的左子树中;如果大于当前节点的值,则将其插入到当前节点的右子树中。

如果新节点的值与当前节点的值相等,则不进行插入操作。

3. 删除节点在二叉排序树中删除节点时,我们需要考虑不同的情况。

如果要删除的节点是叶子节点,即没有左右子树,我们可以直接删除该节点。

如果要删除的节点只有一个子树,我们可以将子树连接到要删除节点的父节点上。

如果要删除的节点有两个子树,我们可以选择将其右子树中的最小节点或左子树中的最大节点替代该节点,并删除相应的替代节点。

四、实验结果通过对二叉排序树的构建、插入和删除操作的实验,我们得到了以下结果:1. 二叉排序树可以高效地进行查找操作。

实验六 二叉树的基本操作实验报告

实验六  二叉树的基本操作实验报告

实验名称二叉树的基本操作实验日期实验成绩1、实验目的:1. 掌握二叉树链表的结构和二叉树的建立过程2. 掌握用递归方法实现二叉树遍历的操作2、实验内容:1、编写一个程序实现二叉树的各种运算,并完成如下功能:(1)输出二叉树b;(b为下图所示的二叉树)(2)输出H节点的左、右孩子节点值;(3)输出二叉树b的深度;(4)输出二叉树b的节点个数;(5)输出二叉树b的叶子节点个数;(6)释放二叉树b。

2、编写一个程序,实现二叉树的先序遍历、中序遍历和后序遍历的各种递归算法。

并以第1题图所示的二叉树b给出求解结果。

3、核心算法或代码片段:代码一:#include <stdio.h>#include <malloc.h>#define MaxSize 100typedef char ElemType;typedef struct node{ElemType data;//数据元素struct node *lchild;//指向左孩子struct node *rchild;//指向右孩子} BTNode;void CreateBTNode(BTNode *&b, char *str);void DispBTNode(BTNode *b);BTNode *FindNode(BTNode *b, ElemType x);BTNode *LchildNode(BTNode *p);BTNode *RchildNode(BTNode *p);int BTNodeDepth(BTNode *b);int Nodes(BTNode *b);int LeafNodes(BTNode *b);void DestroyBTNode(BTNode *&b);void CreateBTNode(BTNode *&b, char *str)//由str串创建二叉链{BTNode *St[MaxSize], *p = NULL;int top = -1, k, j = 0;char ch;b = NULL;//建立的二叉树初始时为空ch = str[j];while (ch != '\0')//str未扫描完时循环{switch (ch){case '(':top++; St[top] = p; k = 1; break;//为左节点case ')':top--; break;case ',':k = 2; break; //为右节点default:p = (BTNode *)malloc(sizeof(BTNode));p->data = ch; p->lchild = p->rchild = NULL;if (b == NULL) //p指向二叉树的根节点b = p;else //已建立二叉树根节点{switch (k){case 1:St[top]->lchild = p; break;case 2:St[top]->rchild = p; break;}}}j++;ch = str[j];}}void DispBTNode(BTNode *b)//以括号表示法输出二叉树{if (b != NULL){printf("%c", b->data);if (b->lchild != NULL || b->rchild != NULL){printf("(");DispBTNode(b->lchild);if (b->rchild != NULL) printf(",");DispBTNode(b->rchild);printf(")");}}}BTNode *FindNode(BTNode *b, ElemType x)//返回data域为x的节点指针{BTNode *p;if (b == NULL)return NULL;else if (b->data == x)return b;else{p = FindNode(b->lchild, x);if (p != NULL)return p;elsereturn FindNode(b->rchild, x);}}BTNode *LchildNode(BTNode *p)//返回*p节点的左孩子节点指针{return p->lchild;}BTNode *RchildNode(BTNode *p)//返回*p节点的右孩子节点指针{return p->rchild;}int BTNodeDepth(BTNode *b)//求二叉树b的深度{int lchilddep, rchilddep;if (b == NULL)return(0); //空树的高度为0 else{lchilddep = BTNodeDepth(b->lchild);//求左子树的高度为lchilddeprchilddep = BTNodeDepth(b->rchild);//求右子树的高度为rchilddepreturn (lchilddep>rchilddep) ? (lchilddep + 1) : (rchilddep + 1);}}int Nodes(BTNode *b)//求二叉树b的节点个数{int num1, num2;if (b == NULL)return 0;else if (b->lchild == NULL && b->rchild == NULL)return 1;else{num1 = Nodes(b->lchild);num2 = Nodes(b->rchild);return (num1 + num2 + 1);}}int LeafNodes(BTNode *b)//求二叉树b的叶子节点个数{int num1, num2;if (b == NULL)return 0;else if (b->lchild == NULL && b->rchild == NULL)return 1;else{num1 = LeafNodes(b->lchild);num2 = LeafNodes(b->rchild);return (num1 + num2);}}void DestroyBTNode(BTNode *&b) //摧毁树{if (b != NULL){DestroyBTNode(b->lchild);DestroyBTNode(b->rchild);free(b);}}int main(){BTNode *b, *p, *lp, *rp;;CreateBTNode(b, "A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");printf("二叉树的基本运算如下:\n");printf(" (1)输出二叉树:"); DispBTNode(b); printf("\n");printf(" (2)H节点:");p = FindNode(b, 'H');if (p != NULL){lp = LchildNode(p);if (lp != NULL)printf("左孩子为%c ", lp->data);elseprintf("无左孩子");rp = RchildNode(p);if (rp != NULL)printf("右孩子为%c", rp->data);elseprintf("无右孩子");}printf("\n");printf(" (3)二叉树b的深度:%d\n", BTNodeDepth(b));printf(" (4)二叉树b的节点个数:%d\n", Nodes(b));printf(" (5)二叉树b的叶子节点个数:%d\n", LeafNodes(b));printf(" (6)释放二叉树b\n");DestroyBTNode(b);return 0;}代码二:#include<iostream>#define maxsize 50using namespace std;class node{private:char data;node* lchild;node* rchild;public:void createnode(node *&,char *);//先序遍历void fnode(node* b){if(b!=NULL){cout << b->data ;fnode(b->lchild);fnode(b->rchild);}}//中序遍历void mnode(node* b){if(b!=NULL){mnode(b->lchild);cout << b->data ;mnode(b->rchild);}}//后序遍历void lnode(node* b){if(b!=NULL){lnode(b->lchild);lnode(b->rchild);cout << b->data ;}}void fnode1(node *);void mnode1(node *);void lnode1(node *);void all(node *);};void node::createnode(node* &b,char* a) {node *st[maxsize],*p;int top=-1,k,j=0;char ch;b=NULL;ch=a[j];while(ch!='\0'){switch(ch){case '(':top++;st[top]=p;k=1;break;case ')':top--;break;case ',':k=2;break;default:p=new node;p->data=ch;p->lchild=p->rchild=NULL;if(b==NULL){b=p;}else{switch(k){case 1:st[top]->lchild=p;break;case 2:st[top]->rchild=p;break;}}}j++;ch=a[j];}}int main(){node *b;char a[]="A(B(D,E(H(J,K(L,M(,N))),)),C(F,G(,I)))";b->createnode(b,a);cout << "递归先序编历:";b->fnode(b);cout << endl ;cout << "递归中序编历:";b->mnode(b);cout << endl ;cout << "递归后序编历:";b->lnode(b);cout << endl ;cout << endl ;}一:二:总结体会:在第一个实验对树的操作,利用树广义表的表示法输入一个str,对str进行遍历,通过对括号和字母的判断创建二叉树CreateBTNode(),输出二叉树DispBTNode()同样采用广义表表示法,在找寻某一结点的左右孩子结点首先FindNode()对是否存在左右孩子,由于该二叉树存储采用的二叉链表所以通过指针指向输出左右孩子,在输出二叉树DispBTNode(),找左右孩子FindNode(),计算深度BTNodeDepth(),计算结点数Nodes(),都采用了函数的递归,都是利用左右孩子指针进行操作,进行对整个数的遍历。

二叉树的操作实验报告

二叉树的操作实验报告

二叉树的操作实验报告二叉树的操作实验报告引言二叉树是计算机科学中常用的数据结构,它具有良好的搜索性能和灵活的插入和删除操作。

本实验旨在通过实际操作,深入理解二叉树的基本操作和特性。

1. 二叉树的定义和基本概念二叉树是一种特殊的树状结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树的节点由数据和指向左右子节点的指针组成。

根据节点的位置,可以将二叉树分为左子树、右子树和根节点。

2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树中的所有节点。

常用的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后按照左子树、右子树的顺序遍历;中序遍历先访问左子树,然后根节点,最后右子树;后序遍历先访问左子树,然后右子树,最后根节点。

3. 二叉树的插入操作插入操作是将一个新节点插入到二叉树中的特定位置。

插入操作需要考虑节点的大小关系,小于当前节点则插入到左子树,大于当前节点则插入到右子树。

插入操作可以保持二叉树的有序性。

4. 二叉树的删除操作删除操作是将指定节点从二叉树中删除。

删除操作需要考虑被删除节点的子节点情况,如果被删除节点没有子节点,则直接删除;如果有一个子节点,则将子节点替代被删除节点的位置;如果有两个子节点,则选择被删除节点的后继节点或前驱节点替代被删除节点。

5. 二叉树的查找操作查找操作是在二叉树中搜索指定的节点。

二叉树的查找操作可以使用递归或迭代的方式实现。

递归方式会自动遍历整个二叉树,直到找到目标节点或遍历完整个树。

迭代方式则需要手动比较节点的值,并根据大小关系选择左子树或右子树进行进一步查找。

6. 二叉树的平衡性二叉树的平衡性是指左子树和右子树的高度差不超过1。

平衡二叉树可以提高搜索效率,避免出现极端情况下的性能下降。

常见的平衡二叉树有AVL树和红黑树。

7. 二叉树应用场景二叉树在计算机科学中有广泛的应用场景。

例如,文件系统的目录结构可以使用二叉树来表示;数据库中的索引结构也可以使用二叉树来实现。

实验报告(二叉树)

实验报告(二叉树)

实验报告课程:数据结构(c语言)实验名称:二叉树的构建、基本操作和遍历系别:数字媒体技术实验日期:专业班级:媒体161 组别:无:学号:实验报告容验证性实验一、预习准备:实验目的:1、熟练掌握二叉树的结构特性,熟悉二叉树的各种存储结构的特点及适用围;2、熟练掌握二叉树的遍历方法及遍历算法;3、掌握建立哈夫曼树和哈夫曼编码的方法及带权路径长度的计算。

实验环境:Widows操作系统、VC6.0实验原理:1.定义:树:树(tree)是n(n>0)个结点的有限集T,其中,有且仅有一个特定的结点,称为树的根(root)。

当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,……Tm,其中每一个集合本身又是一棵树,称为根的子树(subtree)二叉树:二叉树是n(n>=0)个结点的有限集,它或为空树(n=0),或由一个根结点和两棵分别称为左子树和右子树的互不相交的二叉树构成。

哈夫曼树: 最优二叉树——赫夫曼树设有n个权值{w1,w2,……wn},构造一棵有n个叶子结点的二叉树,每个叶子的权值为wi,则wpl最小的二叉树叫Huffman树。

2. 特点:树:树中至少有一个结点——根树中各子树是互不相交的集合二叉树:每个结点至多有二棵子树(即不存在度大于2的结点)二叉树的子树有左、右之分,且其次序不能任意颠倒哈夫曼树:一棵有n个叶子结点的Huffman树有2n-1个结点采用顺序存储结构——动态分配数组存储3. 表示:遍历二叉树:先序遍历:先访问根结点,然后分别先序遍历左子树、右子树中序遍历:先中序遍历左子树,然后访问根结点,最后中序遍历右子树后序遍历:先后序遍历左、右子树,然后访问根结点 按层次遍历:从上到下、从左到右访问各结点 构造Huffman 树的方法——Huffman 算法(1) 根据给定的n 个权值{w1,w2,……wn},构造n 棵只有根 结点的二叉树,令起权值为wj ;(2) 在森林中选取两棵根结点权值最小的树作左右子树,构造一棵新的二叉树,置新二叉树根结点权值为其左右子树根结点权值之和;(3) 在森林中删除这两棵树,同时将新得到的二叉树加入森林中重复上述两步,直到只含一棵树为止,这棵树即哈夫曼树。

[精品]【数据结构】二叉树实验报告

[精品]【数据结构】二叉树实验报告

[精品]【数据结构】二叉树实验报告二叉树实验报告一、实验目的:1.掌握二叉树的基本操作;2.理解二叉树的性质;3.熟悉二叉树的广度优先遍历和深度优先遍历算法。

二、实验原理:1.二叉树是一种树形结构,由n(n>=0)个节点组成;2.每个节点最多有两个子节点,称为左子节点和右子节点;3.二叉树的遍历分为四种方式:前序遍历、中序遍历、后序遍历和层次遍历。

三、实验环境:1.编程语言:C++;2.编译器:Dev-C++。

四、实验内容:1.定义二叉树节点结构体:struct BinaryTreeNode{int data; // 节点数据BinaryTreeNode *leftChild; // 左子节点指针BinaryTreeNode *rightChild; // 右子节点指针};2.初始化二叉树:queue<BinaryTreeNode *> q; // 使用队列存储节点q.push(root);int i = 1; // 创建子节点while (!q.empty() && i < length){BinaryTreeNode *node = q.front();q.pop();if (data[i] != -1) // 创建左子节点 {BinaryTreeNode *leftChild = new BinaryTreeNode;leftChild->data = data[i];leftChild->leftChild = nullptr;leftChild->rightChild = nullptr;node->leftChild = leftChild;q.push(leftChild);}i++;if (data[i] != -1) // 创建右子节点 {BinaryTreeNode *rightChild = new BinaryTreeNode;rightChild->data = data[i];rightChild->leftChild = nullptr;rightChild->rightChild = nullptr;node->rightChild = rightChild;q.push(rightChild);}i++;}return root;}3.前序遍历二叉树:五、实验结果:输入:int data[] = {1, 2, 3, 4, -1, -1, 5, 6, -1, -1, 7, 8};输出:前序遍历结果:1 2 4 5 3 6 7 8中序遍历结果:4 2 5 1 6 3 7 8后序遍历结果:4 5 2 6 8 7 3 1层次遍历结果:1 2 3 4 5 6 7 8通过本次实验,我深入理解了二叉树的性质和遍历方式,并掌握了二叉树的基本操作。

(完整版)C++二叉树基本操作实验报告

(完整版)C++二叉树基本操作实验报告

、实验目的选择二叉链式存储结构作为二叉树的存储结构,设计一个程序实现二叉树的基本操作(包括建立、输出、前序遍历、中序遍历、后序遍历、求树高、统计叶子总数等)二、实验开发环境Windows 8.1 中文版Microsoft Visual Studio 6.0三、实验内容程序的菜单功能项如下:1 -- 建立一棵二叉树2 -- 前序遍历递归算法3 -- 前序遍历非递归算法4 -- 中序遍历递归算法5 -- 中序遍历非递归算法6 ---- 后序遍历递归算法7 ---- 后序遍历非递归算法8 ---- 求树高9 -- 求叶子总数10 - 输出二叉树11 - 退出四、实验分析1、建立一棵二叉树2、输入二叉树各节点数据coutvv"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t 数组3、递归前序遍历void BL1(ECS_data *t) {if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}4、非递归前序遍历void preOrder2(ECS_data *t){ stack<ECS_data*> s; ECS_data *p=t; while(p!=NULL||!s.empty()) { while(p!=NULL){cout<<p->data<<" ";s.push(p); p=p->l;} if(!s.empty()){p=s.top(); s.pop(); p=p->r;}}}5、递归中序遍历void BL2(ECS_data *t) {if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}6、非递归中序遍历void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t; while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top(); cout<<p->data<<" "; s.pop();p=p->r;}7、递归后序遍历void BL3(ECS_data *t) {if(NULL!=t){BL3(t->l);BL3(t->r); cout<<t->data<<",";8、非递归后序遍历void postOrder3(ECS_data *t){stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; // 前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}9、求树高int Height (ECS_data *t) {if(t==NULL) return 0; else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1); }10、求叶子总数int CountLeaf(ECS_data *t){static int LeafNum=O;//叶子初始数目为0,使用静态变量if(t)// 树非空{if(t->l==NULL&&t->r==NULL)// 为叶子结点LeafNum++;// 叶子数目加 1 else//不为叶子结点{Cou ntLeaf(t->l);//递归统计左子树叶子数目 Cou ntLeaf(t->r);//递归统计右子树叶子数目 }}return LeafNum; }五、运行结果附:完整程序源代码: 〃二叉树链式存储的实现#in cludeviostream> #in clude<cstri ng>#in elude <stack> using n ames pace std; struct ECS_data //先定义好一个数据的结构 {char data;ECS_data *l; ECS_data *r; };" //树高//表示有多少个节点数〃表示的是数组的总长度值,(包括#),因为后面要class ECS {P rivate://in t level; int n; int n1;} }ECS_data *temp[1000];public: ECS_data *root; ECS() // 初始化 {ECS_data *p; char t[1000];int i; int front=0,rear=1;入的点的父母 //front 表示有多少个节点, rear 表示当前插 coutvv"请按正确顺序输入二叉树的数据:"; cin.getline(t,1000); //cout<<t<<" "<<endl;int n1=strlen(t); n=0; for(i=0;i<n1;i++) {if(t[i]!='#') {//先把输入的数据输入到一个 t 数组 //测量数据的长度p=NULL;if(t[i]!=',') {n++;p=new ECS_data; p->data=t[i]; p->l=NULL; p->r=NULL; } front++;temp[front]=p; if(1 ==front){root=p;} else{//满足条件并开辟内存if((p!=NULL)&&(0==front%2)) {temp[rear]->l=p;// 刚开始把这里写成了 == }if((p!=NULL)&&(1==front%2)) {temp[rear]->r=p; }if(1==front%2)rear++;//就当前的数据找这个数据的父母}} }}~ECS(){int i;for(i=1;i<=n;i++) if(temp[i]!=NULL) delete temp[i]; } void JS() {int s; s=n;coutvv"该二叉树的节点数为:"vvsvvendl; }void BL1(ECS_data *t)// 递归前序遍历 {if(NULL!=t){cout<<t->data<<","; BL1(t->l); BL1(t->r);}void preOrder2(ECS_data *t) //非递归前序遍历{stack<ECS_data*> s; ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" "; s.push(p); p=p->l;}if(!s.empty()){p=s.top(); s.pop(); p=p->r;//释放内存//记录节点的个数if(NUL匚丛)宀BL2(e_)-coufAvdafaAfr BL2(g-voidino ‘de ‘2(Ecslda応J )二卅融丘甘甸壷逗宀sfackAECSIdafa*vs 八 ECSIdafa *P H Cwhi-e(p一 hnul匚-一 s.empfyo) 宀wh=e(p一"NULL)宀s.push(p)八PHP —vrif (一s.empfyo)宀PHSlopucoufAAP —vdafaAAs.popwPHP*voidBL3(Ecsldafa *U 1融&训引筍已宀if(NUL匚丛)宀BL3(e_)- BL3(g- coufAAf —vdafaAdrvoidposfo ‘de ‘3(Ecsldafa *0&可甸壷逗 宀sfackAECSIdafa*vs 八ECSIdafa*cucm 遡璋、的ECSIdafa*p‘eHNUF二遡—舟曲亘兼叫、的s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){ cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop(); pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}int Height (ECS_data *t) //求树高{if(t==NULL) return 0; else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}int CountLeaf(ECS_data *t) //求叶子总数{static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)// 为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);// 递归统计左子树叶子数目Cou ntLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum; }};int main(){ECS a;a.JS();coutvv"递归前序遍历:";a.BL1(a.root);cout<<endl;coutvv"非递归前序遍历:";a.preOrder2(a.root);coutvvendl;coutvv"递归中序遍历:";a.BL2(a.root);coutvvendl;coutvv"非递归中序遍历:";a.inOrder2(a.root);coutvvendl;coutvv"递归后序遍历:";a.BL3(a.root);coutvvendl;coutvv"非递归后序遍历:";a.postOrder3(a.root);coutvvendl;coutvv"树高为:"vva.Height(a.root)vvendl;coutvv"叶子总数为:"vva.CountLeaf(a.root)vvendl; return 0; }。

二叉树操作设计和实现实验报告

二叉树操作设计和实现实验报告

二叉树操作设计和实现实验报告一、目的:掌握二叉树的定义、性质及存储方式,各种遍历算法。

二、要求:采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。

三、实验内容:1、分析、理解程序程序的功能是采用二叉树链表存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作。

如输入二叉树ABD###CE##F##,链表示意图如下:2、添加中序和后序遍历算法//========LNR 中序遍历===============void Inorder(BinTree T){if(T){Inorder(T->lchild);printf("%c",T->data);Inorder(T->rchild);}}//==========LRN 后序遍历============void Postorder(BinTree T){if(T){Postorder(T->lchild);Postorder(T->rchild);printf("%c",T->data);}}3、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针),如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求所有叶子及结点总数。

(1)输入完全二叉树的先序序列ABD###CE##F##,程序运行结果如下:(2)先序序列:(3)中序序列:(4)后序序列:(5)所有叶子及结点总数:(6)按层次遍历序列:四、源程序代码#include"stdio.h"#include"string.h"#include"stdlib.h"#define Max 20 //结点的最大个数typedef struct node{char data;struct node *lchild,*rchild;}BinTNode; //自定义二叉树的结点类型typedef BinTNode *BinTree; //定义二叉树的指针int NodeNum,leaf; //NodeNum为结点数,leaf为叶子数//==========基于先序遍历算法创建二叉树==============//=====要求输入先序序列,其中加入虚结点"#"以示空指针的位置========== BinTree CreatBinTree(void){BinTree T;char ch;if((ch=getchar())=='#')return(NULL); //读入#,返回空指针else{T=(BinTNode *)malloc(sizeof(BinTNode)); //生成结点T->data=ch;T->lchild=CreatBinTree(); //构造左子树T->rchild=CreatBinTree(); //构造右子树return(T);}}//========NLR 先序遍历=============void Preorder(BinTree T){if(T) {printf("%c",T->data); //访问结点Preorder(T->lchild); //先序遍历左子树Preorder(T->rchild); //先序遍历右子树}}//========LNR 中序遍历===============void Inorder(BinTree T){if(T){Inorder(T->lchild);printf("%c",T->data);Inorder(T->rchild);}}//==========LRN 后序遍历============void Postorder(BinTree T){if(T){Postorder(T->lchild);Postorder(T->rchild);printf("%c",T->data);}}//=====采用后序遍历求二叉树的深度、结点数及叶子数的递归算法======== int TreeDepth(BinTree T){int hl,hr,max;if(T){hl=TreeDepth(T->lchild); //求左深度hr=TreeDepth(T->rchild); //求右深度max=hl>hr? hl:hr; //取左右深度的最大值NodeNum=NodeNum+1; //求结点数if(hl==0&&hr==0) leaf=leaf+1; //若左右深度为0,即为叶子。

二叉树实验报告

二叉树实验报告

二叉树实验报告二叉树是数据结构中最常见且重要的一种类型。

它由节点组成,每个节点最多有两个子节点,分别称为左节点和右节点。

通过连接这些节点,可以构建一个有序且具有层次结构的树形结构。

本实验报告将介绍二叉树的概念、特点以及常见的操作,同时介绍二叉树在实际应用中的一些典型案例。

一、二叉树的定义和特点二叉树是一种树形结构,它的每个节点至多只有两个子节点。

它的定义可以使用递归的方式进行描述:二叉树要么是一棵空树,要么由根节点和两棵分别称为左子树和右子树的二叉树组成。

二叉树的特点是每个节点最多只有两个子节点。

二、二叉树的创建和操作1.创建二叉树:二叉树可以通过两种方式来创建,一种是使用树的节点类来手动构建二叉树;另一种是通过给定的节点值列表,使用递归的方式构建二叉树。

2.遍历二叉树:二叉树的遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。

a.前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树。

b.中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树。

c.后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。

3.查找节点:可以根据节点的值或者位置来查找二叉树中的节点。

4.插入节点:可以通过递归的方式在指定位置上插入一个新节点。

5.删除节点:可以通过递归的方式删除二叉树中的指定节点。

三、二叉树的应用案例二叉树在实际应用中有很多重要的用途,下面介绍几个典型的案例。

1.表示文件系统结构:文件系统可以使用二叉树来进行表示,每个文件或文件夹都可以看作是树中一个节点,节点之间的父子关系可以通过左右子树建立连接。

2.实现二叉树:二叉树是一种特殊的二叉树,它要求左子树上的节点值小于根节点的值,右子树上的节点值大于根节点的值。

这种树结构可以快速实现元素的插入、删除和查找等操作。

3.表达式求值:二叉树可以用来表示数学表达式,并且可以通过遍历来对表达式进行求值。

四、实验总结通过本次实验,我们深入了解了二叉树的定义和特点,学会了二叉树的创建和操作方法,以及了解了二叉树在实际应用中的一些典型案例。

二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。

二、实验内容
1、构造一个二叉树。

我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。

2、实现查找二叉树中的节点。

在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。

3、实现删除二叉树中的节点。

在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。

4、对二叉树进行遍历操作。

二叉树的遍历有多种方法,本实验使用的是先序遍历。

首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。

三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。

数据结构二叉树的实验报告

数据结构二叉树的实验报告

数据结构实验报告1. 实验目的和内容:掌握二叉树基本操作的实现方法2. 程序分析2.1存储结构链式存储2.程序流程2.3关键算法分析算法一:Create(BiNode<T>* &R,T data[],int i,int n)【1】算法功能:创建二叉树【2】算法基本思想:利用顺序存储结构为输入,采用先建立根结点,再建立左右孩子的方法来递归建立二叉链表的二叉树【3】算法空间时间复杂度分析:O(n)【4】代码逻辑:如果位置小于数组的长度则{ 创建根结点将数组的值赋给刚才创建的结点的数据域创建左子树,如果当前结点位置为i,则左孩子位置为2i创建右子树,如果当前结点位置为i,则右孩子位置为2i+1}否则R为空算法二:CopyTree(BiNode<T>*sR,BiNode<T>* &dR))【1】算法功能:复制构造函数【2】算法基本思想:按照先创建根结点,再递归创建左右子树的方法来实现。

【3】算法空间时间复杂度分析:O(n)【4】代码逻辑:如果源二叉树根结点不为空则{创建根结点调用函数自身,创建左子树调用函数自身,创建右子树}将该函数放在复制构造函数中调用,就可以实现复制构造函数算法三:PreOrder(BiNode<T>*R)【1】算法功能:二叉树的前序遍历【2】算法基本思想:这个代码用的是优化算法,提前让当前结点出栈。

【3】算法空间时间复杂度分析:O(n)【4】代码逻辑(伪代码)如果当前结点为非空,则{访问当前结点当前结点入栈将当前结点的左孩子作为当前结点}如果为空{则栈顶结点出栈则将该结点的右孩子作为当前结点}反复执行这两个过程,直到结点为空并且栈空算法四:InOrder(BiNode<T>*R)【1】算法功能:二叉树的中序遍历【2】算法基本思想:递归【3】算法空间时间复杂度分析:未知【4】代码逻辑:如果R为非空:则调用函数自身遍历左孩子访问该结点再调用自身访问该结点的右孩子算法五:LevelOrder(BiNode<T>*R)【1】算法功能:二叉树的层序遍历【2】算法基本思想:【3】算法空间时间复杂度分析:O(n)【4】代码逻辑(伪代码):如果队列不空{对头元素出队访问该元素若该结点的左孩子为非空,则左孩子入队;若该结点的右孩子为非空,则右孩子入队;}算法六:Count(BiNode<T>*R)【1】算法功能:计算结点的个数【2】算法基本思想:递归【3】算法空间时间复杂度分析:未知【4】代码逻辑:如果R不为空的话{调用函数自身计算左孩子的结点数调用函数自身计算右孩子的结点数}template<class T>int BiTree<T>::Count(BiNode<T>*R){if(R==NULL)return 0;else{int m=Count(R->lchild);int n=Count(R->rchild);return m+n+1;}}算法七:Release(BiNode<T>*R)【1】算法功能:释放动态内存【2】算法基本思想:左右子树全部释放完毕后再释放该结点【3】算法空间时间复杂度分析:未知【4】代码逻辑:调用函数自身,释放左子树调用函数自身,释放右子树释放根结点释放二叉树template<class T>void BiTree<T>::Release(BiNode<T>*R) {if(R!=NULL){Release(R->lchild);Release(R->rchild);delete R;}}template<class T>BiTree<T>::~BiTree(){Release(root);}int main(){BiTree<int> BTree(a,10);BiTree<int>Tree(BTree);BTree.PreOrder(BTree.root);cout<<endl;Tree.PreOrder(Tree.root);cout<<endl;BTree.InOrder(BTree.root);cout<<endl;Tree.InOrder(Tree.root);cout<<endl;BTree.PostOrder(BTree.root);cout<<endl;Tree.PostOrder(Tree.root);cout<<endl;BTree.LevelOrder(BTree.root);cout<<endl;Tree.LevelOrder(Tree.root);cout<<endl;int m=BTree.Count(BTree.root);cout<<m<<endl;return 0;}3.测试数据:int a[10]={1,2,3,4,5};1 2 4 5 31 2 4 5 34 25 1 34 5 2 3 11 2 3 4 554.总结:4.1:这次实验大多用了递归的算法,比较好理解。

二叉树实验报告

二叉树实验报告

二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。

本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。

本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。

2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。

树的左子节点和右子节点被称为二叉树的左子树和右子树。

3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。

节点结构包含一个数据域和左右指针,用于指向左右子节点。

创建二叉树的过程可以通过递归或者迭代的方式来完成。

3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。

插入时需要考虑保持二叉树的有序性。

删除操作是将指定节点从树中删除,并保持二叉树的有序性。

在实验中,我们可以使用递归或者循环的方式实现这些操作。

3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。

常见的遍历方式包括前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。

中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。

后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。

3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。

可以通过递归或者循环的方式实现二叉树的查找操作。

基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。

4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。

具体实现包括二叉树的创建、插入、删除、遍历和查找操作。

在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。

4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。

另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。

本实验将介绍二叉树的基本操作与实现,并给出相应的实验报告。

一、引言二叉树是一种特殊的树状结构,每个节点至多有两个子节点。

二叉树有许多重要的特性,如平衡二叉树、二叉树等,应用广泛。

在本实验中,我们将介绍二叉树的基本操作和实现。

二、实验目的1.掌握二叉树的基本概念和特性;2.熟悉二叉树的基本操作,包括创建、插入、删除、遍历等;3.学会使用编程语言实现二叉树的基本操作。

三、实验内容本实验主要包括以下内容:1.二叉树的定义和基本概念;2.二叉树的基本操作,包括创建、插入、删除、遍历等;3.使用编程语言实现二叉树的基本操作;4.测试和验证二叉树的基本操作的正确性。

四、实验步骤1.二叉树的定义和基本概念二叉树是一种树状结构,每个节点至多有两个子节点。

二叉树的每个节点包含一个数据项和指向左子树和右子树的指针。

二叉树的特性有很多,如完全二叉树、平衡二叉树、二叉树等。

2.二叉树的基本操作(1)创建二叉树:可以通过手动输入节点数据来创建二叉树,也可以通过读取文件中的数据来创建二叉树。

(2)插入节点:在指定位置插入一个新节点。

(3)删除节点:删除指定位置的节点。

(4)遍历二叉树:有前序遍历、中序遍历和后序遍历三种遍历方式。

3.使用编程语言实现二叉树的基本操作实现二叉树的基本操作可以使用编程语言来完成。

我们可以定义一个二叉树的结构体,包含节点数据和指向左右子树的指针。

然后根据具体的需求,实现相应的操作函数。

4.测试和验证二叉树的基本操作的正确性在完成二叉树的基本操作后,我们可以编写测试代码来验证操作的正确性。

通过创建二叉树,并进行插入、删除和遍历操作,观察输出结果是否符合预期。

五、实验结果与分析在完成二叉树的基本操作后,我们可以进行测试和验证。

通过输出二叉树的遍历结果,比对预期结果来判断操作是否正确。

同时,我们还可以观察二叉树的结构和特性,如是否满足平衡二叉树或二叉树的条件。

数据结构实验报告-树(二叉树)

数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。

三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。

线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。

在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。

直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。

四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。

二叉树的基本操作实验报告

二叉树的基本操作实验报告

二叉树的基本操作实验报告二叉树的基本操作实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

二叉树的基本操作包括创建、遍历、插入和删除等。

本实验旨在通过实践来深入了解二叉树的基本操作,并通过实验结果验证其正确性和有效性。

一、创建二叉树创建二叉树是二叉树操作中的第一步。

在本实验中,我们使用了递归算法来创建二叉树。

递归算法是一种重要的算法思想,通过将问题划分为更小的子问题来解决复杂的问题。

在创建二叉树时,我们首先创建根节点,然后递归地创建左子树和右子树。

二、遍历二叉树遍历二叉树是对二叉树中的每个节点进行访问的过程。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后递归遍历左子树和右子树;中序遍历先递归遍历左子树,然后访问根节点,最后递归遍历右子树;后序遍历先递归遍历左子树和右子树,最后访问根节点。

三、插入节点插入节点是向二叉树中添加新节点的操作。

插入节点的过程需要遵循二叉树的特性,即左子节点的值小于父节点的值,右子节点的值大于父节点的值。

在插入节点时,我们需要找到合适的位置,将新节点插入到正确的位置上。

四、删除节点删除节点是从二叉树中移除节点的操作。

删除节点的过程相对复杂,需要考虑多种情况。

如果要删除的节点是叶子节点,直接删除即可。

如果要删除的节点只有一个子节点,将其子节点连接到父节点上。

如果要删除的节点有两个子节点,我们需要找到其后继节点或前驱节点来替代被删除的节点。

实验结果:通过实验,我们成功地实现了二叉树的基本操作。

创建二叉树的递归算法能够正确地创建出符合要求的二叉树。

遍历二叉树的算法能够按照指定的顺序遍历每个节点。

插入节点和删除节点的操作也能够正确地修改二叉树的结构。

讨论与总结:二叉树的基本操作是数据结构中的重要内容,对于理解和应用其他数据结构具有重要意义。

通过本次实验,我们深入了解了二叉树的创建、遍历、插入和删除等操作,并通过实验验证了其正确性和有效性。

二叉树操作实验报告

二叉树操作实验报告

二叉树操作实验报告一、实验背景二叉树是一种常用的数据结构,它由节点和连接节点的边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。

在二叉树的操作中,常用的操作包括创建二叉树、插入节点、删除节点、查找节点、遍历等。

本次实验旨在通过对二叉树的操作,加强对二叉树数据结构的理解,并熟练掌握其操作方法。

二、实验目的1.掌握二叉树的创建方法,能够编写代码创建一个二叉树;2.了解二叉树的插入节点操作,掌握节点的插入方法;3.掌握二叉树的删除节点操作,了解节点删除的细节和方法;4.熟练掌握二叉树的查找节点操作;5.掌握二叉树的遍历方法,能够实现对二叉树的前序、中序、后序、层次遍历。

三、实验原理1.二叉树的创建方法:通过递归的方式,先创建根节点,再依次创建左子树和右子树;2.二叉树的插入节点操作:从根节点开始,根据节点值的大小关系,将待插入节点放到适当的位置;3.二叉树的删除节点操作:首先查找待删除的节点,然后根据其子节点的情况,进行相应的删除处理;4.二叉树的查找节点操作:从根节点开始遍历,根据节点值的大小关系,在左子树或右子树中继续查找,直到找到目标节点或遍历到叶子节点;5.二叉树的遍历方法:前序遍历先访问根节点,再遍历左子树和右子树;中序遍历先遍历左子树,再访问根节点和右子树;后序遍历先遍历左子树和右子树,再访问根节点;层次遍历按层次逐个访问节点。

四、实验过程1.创建二叉树:首先,定义二叉树的节点类,包含节点值和左右子节点;然后,通过递归的方式创建根节点、左子树和右子树。

2.插入节点:要插入一个节点,首先需要找到插入位置。

如果待插入节点大于当前节点的值,则插入到右子树中,否则插入到左子树中。

如果节点为空,则表示找到了插入位置。

3.删除节点:删除节点有以下几种情况:(1) 待删除节点为叶子节点:直接删除即可;(2) 待删除节点只有一个子节点:用子节点替换待删除节点的位置;(3) 待删除节点有两个子节点:找到待删除节点的后继节点(右子树的最左下角节点),用后继节点替换待删除节点的位置。

二叉树实验报告

二叉树实验报告

二叉树实验报告1 实验目的1、熟悉二叉树的二叉链表存储结构;2、掌握构造二叉树的方法;3、加深对二叉树前序、中序、后序遍历的理解。

2 需求分析2.1 任务1二叉树的二叉链表存储结构及实现,将参考程序中的三段函数代码补齐。

约束条件:沿用源代码中链表结构体。

输入要求:输入一个二叉树链表。

输出要求:若是二叉树链表不为空则对二叉树链表进行先序遍历。

2.2 任务2功能:int HeightBTree(BTNode *bt) 求二叉树的深度。

约束条件:沿用源代码中链表结构体。

输入要求:输入一个二叉树链表。

输出要求:若是二叉树链表为空则返回0,若二叉树链表不为空则统计出该二叉树的深度,然后返回该值。

2.3 任务3功能:void DisplayBTree(BTNode * bt,int i) 输出二叉树第i层的所有节点。

约束条件:沿用源代码中链表结构体。

输入要求:输入一个二叉树链表。

输出要求:若输入的i小于1,或者二叉树链表为空则直接返回,若二叉树链表不为空且i值符合要求,则打印i层所有的节点。

3概要设计3.1任务1void PreOrder(BTNode *bt)该函数首先,你需要定义一个二叉树节点的数据结构,通常包含一个值和两个指向左右子节点的指针。

在先序遍历函数中,首先访问根节点,然后递归地遍历左子树,最后递归地遍历右子树。

并在控制台上输出每个节点的值。

void InOrder(BTNode *bt) 该函数首先判断当前节点是否为空,如果为空则返回。

递归遍历左子树。

访问当前节点,输出节点的值。

递归遍历右子树。

通过这样的递归过程,我们可以实现对整个二叉树的中序遍历。

void PostOrder(BTNode *bt)该函数首先判断当前节点是否为空,如果为空则返回。

递归遍历左子树。

递归遍历右子树。

访问当前节点,输出节点的值。

通过这样的递归过程,我们可以实现对整个二叉树的后序遍历。

3.2任务2int HeightBTree(BTNode *bt)该函数首先判断当前节点是否为空,如果为空则返回0。

二叉树实验报告总结(共10篇)

二叉树实验报告总结(共10篇)

二叉树实验报告总结(共10篇)二叉树实验报告实验报告课程名称算法与数据结构专业学号姓名实验日期算法与数据结构实验报告一、实验目的1.了解二叉树的结构特点及有关概念,掌握二叉树建立的基本算法2.了解二叉树遍历的概念,掌握遍历二叉的算法3.进一步掌握树的结构及非线性特点,递归特点和动态性。

二、实验内容二叉树的实现和运算三、实验要求1.用C++/C完成算法设计和程序设计并上机调试通过。

2.撰写实验报告,提供实验结果和数据。

3.分析算法,并简要给出算法设计小结和心得。

四、算法步骤用户以三元组形式输入二叉树的结点元素及其位置关系,建立二叉树,并打印输出该二叉树。

用户输入选择结点,程序调用BiTNode* Find Node(char tag, BiTNode* node)函数,返回子树的根结点,然后调用BiTreeDepth(BiTree T)函数,求出子树的深度,并输出该值。

3.用户可以选择是否继续执行程序,若继续,则输入1,否则输入0,结束程序。

五、主程序代码:int main(void){BiTree T;TElemType e1;char node; // node为用户选择输入的结点//int b,choose; // b为以选定结点为子树的深度,choose为实现多次选择输入的标志//BiTNode* a; // a为选定结点为子树的根结点//choose=1; // 多次选择的标志,当choose为1时运行程序,为0时结束程序// InitBiTree(T);printf(构造空二叉树后,树空否?%d(1:是0:否), 树的深度=%d\n,BiTreeEmpty(T),BiTreeDepth(T));e1 = Root(T);if(e1 != Nil)#ifdef CHARprintf(二叉树的根为: %c\n,e1);#endif#ifdef INTprintf(二叉树的根为: %d\n,e1);#endifelseprintf(树空,无根\n); //三元组构建二叉树striile(x!=end){AddNode(T, x[0], x[1], x[2]);GetUserWord(x);} //输出树PrintTreeLevel( T );//以三元组形式输入任意二叉树(以大写字母表示结点),求以任意一选定结点为子树的深度。

二叉树的实验报告

二叉树的实验报告

实验题目二叉树的操作实验报告一、实验目的与要求1、用二叉链表作为存储结构,建立一棵二叉树。

2、分别按先序、中序和后序遍历二叉树,输出各遍历序列。

3、编写交换二叉树中所有结点左右孩子的非递归算法。

二、实验方案算法思想:二叉树的遍历可以大致分为先序,中序和后序遍历。

先序遍历:1.访问根节点 2.先序遍历左子树 3.先序遍历右子树中序遍历:1.中序遍历左子树 2.访问根节点 3.中序遍历右子树后序遍历:1.后序遍历左子树 2.后序遍历右子树 3.访问根节点程序:#include<stdio.h>#include<math.h>#define NULL 0#define maxsize 100typedef struct BiTNode{struct BiTNode *lchild,*rchild;char data;}BiTNode,*BiTree;BiTree Creat(char *s,int k){BiTree p;if(s[k]=='\0'||k>maxsize)return NULL;else{p=(BiTNode *)malloc(sizeof(BiTNode));p->data=s[k];p->lchild=Creat(s,2*k+1);p->rchild=Creat(s,2*k+2);return p;}}void Preorder(BiTree p)/*前序遍历*/{if(p){printf("[%c]",p->data);Preorder(p->lchild);Preorder(p->rchild);}}void Inorder(BiTree p)/*中序遍历*/{if(p){Inorder(p->lchild);printf("[%c]",p->data);Inorder(p->rchild);}}void Postorder(BiTree p)/*后序遍历*/{if(p){Postorder(p->lchild);Postorder(p->rchild);printf("[%c]",p->data);}}void conver(BiTree p)/*交换该二叉树中所有结点左右孩子的递归算法,用中序遍历输出*/ {BiTree t;if(p){t=p->lchild;p->lchild=p->rchild;p->rchild=t;conver(p->lchild);printf("[%c]",p->data);conver(p->rchild);}}main(){BiTree root=NULL;int i=0;char a[maxsize]={'\0'};printf("******** Welcome to my design *******\n\n");printf("Build a BiTree with LevelorderTraversal:\n");gets(a);/*用一个数组存放一连串的字符串*/printf("-------------------------\n");while(a[i]!='\0')i++;root=Creat(a,0);/*建立二叉树*/printf("\nPreorder Traversal:\n");/*前序遍历*/Preorder(root);printf("\n-------------------------\n");printf("\nInorder Traversal:\n");/*中序遍历*/Inorder(root);printf("\n-------------------------\n");printf("\nPostorder Traversal:\n");/*后序遍历*/Postorder(root);printf("\n-------------------------\n\n");/*交换该二叉树中所有结点左右孩子的递归算法,用中序遍历输出*/printf("The conver order(inorder):\n");conver(root);printf("\n-------------------------\n\n\n");printf(" ** THE END ** \n");getch();}三、实验结果和数据处理四、结论本次实验过程中主要遇到的问题有以下几点:1.错误ercaishu.c 85: 参数'e' 的类型不匹配在调用'push' 时在PreOrderTraverse 函数中,2.错误ercaishu.c 125: 指针转换后指向不匹配类型在swap 函数中,把void swap(BiTree *T)的*号去掉。

二叉树操作实验报告

二叉树操作实验报告

实验报告实验名称:对二叉树的操作。

实验内容:1、按中序遍历结果从小到大的顺序建立一棵含有n个结点的二叉树,采用二叉链表存储;2、中序、前序、后序改二叉链表;3、输入一个数据,访问任一结点进行查找,如果有则返回“查找成功。

”,没有则返回“查找不成功。

”4、设计一个析构函数,释放结点空间。

实验代码:#include<iostream.h>class node{private:int data;class node *left;class node *right;void Release(class node *a);public:void create(int a);void inorder(class node *q);void preorder(class node *m);void postorder(class node *n);void seek(class node *l,int k);~node();};typedef class node treenode;//重定义二叉树结点类型。

typedef treenode *zz;//重新定义指针。

zz root,p;void node::create(int x){zz s;int flag=0;//结点成功插入后flag=1。

s=new treenode;s->data=x;s->left=NULL;s->right=NULL;if(root==NULL)root=s;else{p=root;while(!flag)if(x<p->data)if(p->left==NULL){p->left=s;flag=1;}elsep=p->left;elseif(p->right==NULL){ p->right=s;flag=1; }elsep=p->right;}}void node::inorder(zz q){if(q!=NULL){inorder(q->left);cout<<q->data<<" ";inorder(q->right);}}void node::preorder(zz m){if (m==NULL)return;else{cout<<m->data<<" ";preorder(m->left);preorder(m->right);}}void node::postorder(zz n){if (n==NULL)return;else{postorder(n->left);postorder(n->right);cout<<n->data<<" ";}}void node::seek(class node *l,int k){if(l==NULL)cout<<"查找失败,不存在该数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7)将当前对头出栈,len++,打印出队元素
(8)如果出队元素的左子树的根节点不为空则入队,len--.
(9)如果出队元素的右子树的根节点不为空则入队,len--.
4、
(1)利用指针temp指向根节点,并初始化一个队列。
(2)将temp指向的当点节点入队。并声明当前层最大节点数为0
(3)重复指向以下所有步骤,直到遇到break语句。若遇到break语句则结束整个程序并返回最大节点数。
}
if(top <= 0)return;
top--;
p = Stack[top];
printf("%c",p->data);
p = p->rchild;
}
}
intmain()
{
BitNode *root;
root = CreateTree();
printf("前序遍历结果");
PreOrder(root);
2、在前序遍历的过程中利用中间变量交换左右子树。
3、利用队列。当上一层中的数据全部出队(遍历)完毕再遍历本层节点。
4、高度:获取所有节点到根节点的最长路径。宽度:在层次遍历的基础上,返回最多节点的层的节点数。
算法描述:可以用自然语言、伪代码或流程图等方式
1、创建树:
(1)声明节点
(2)输入当前节点,若输入为#则当前节点为空,否则为当前节点申请空间。
InOrder(T->lchild);
printf("%c",T->data);
InOrder(T->rchild);
}
BitTree *Exchange(BitTree *T)
{
BitTree *temp;
if(T == NULL)returnNULL;
temp = T->lchild;
T->lchild = T->rchild;
(4)用变量len记录队列中二叉树当前层的节点数。
(5)若len为0则结束整个程序,否则执行第六步。
(6)当len>0(即队列中还有前层的节点时)重复七~九步。否则执行第十步。
(7)将当前对头出栈,len++,打印出队元素
(8)如果出队元素的左子树的根节点不为空则入队,len--.
(9)如果出队元素的右子树的根节点不为空则入队,len--.
(2)后序遍历当前节点的左子树。
(3)后序遍历当前节点的右子树。
(3)打印当前节点的data。
2、
(1)若当前节点为空则返回NULL,结束。否则执行下一步。
(2)利用中间变量temp交换当前节点的左右子树。
(3)交换当前的点左子树根节点的左右子树。
(4)交换当前节点右子树根节点的左右子树。
(4)返回根节点。
二、实验题目与要求
1.每位同学按下述要求实现相应算法:以二叉链表为存储结构,实现二叉树的创建、遍历算法
1)问题描述:在主程序中提供下列菜单:
1…建立树
2…前序遍历树
3…中序(非递归)遍历树
4…后序遍历树0…结束
2)实验要求:
①定义下列过程:
CreateTree():按从键盘输入的前序序列,创建树
PreOrderTree():前序遍历树(递归)
InOrderTree():中序(非递归)遍历树
LaOrderTree():后序遍历树(递归)
②每位同学在实验过程中要单步运行程序,跟踪二叉树的创建过程与前序遍历的递归过程。
3)注意问题:
①注意理解递归算法的执行步骤。
②注意字符类型数据在输入时的处理。
③重点理解如何利用栈结构实现非递归算
2.编写算法交换二叉树中所有结点的左、右子树
T->lchild = CreateTree();
T->rchild = CreateTree();
}
returnT;
}
voidPreOrder(BitNode *T)
{
if(T == NULL)return;
printf("%c",T->data);
PreOrder(T->lchild);
PreOrder(T->rchild);
3、
(1)利用指针temp指向根节点,并初始化一个队列。
(2)将temp指向的当点节点入队。
(3)重复指向以下所有步骤,直到遇到break语句。
(4)用变量len记录队列中二叉树当前层的节点数。
(5)若len为0则结束整个程序,否则执行第六步。
(6)当len>0(即队列中还有前层的节点时)重复指向以下所有步骤。否则执行第三步。
printf("\n");
printf("中序遍历结果");
InOrder(root);
printf("\n");
printf("后序遍历结果");
PostOrder(root);
printf("\n");
return0;
}
2、
#include<stdio.h>
#include<stdlib.h>
typedefcharElemtype;
1)问题描述:编写一算法,交换二叉树中所有结点的左、右子树
2)实验要求:以二叉链表作为存储结构
3.试编写按层次顺序遍历二叉树的算法
1)问题描述:编写按层次顺序遍历二叉树的算法
2)实验要求:以二叉链表作为存储结构
4.编写算法求二叉树高度及宽度。
1)问题描述:二叉树高度是指树中所有节点的最大层数,二叉树宽度是指在二叉树的各层上,具有节点数最多的那一层上的节点总数。
输出:
4、
输入:ABH##FD###E#CK##G##
输出:
算法时间复杂度分析
1、O(n).
2、O(n).
3、O(n).
4、O(n).
四、收获与体会
学了二叉树之后顿时感觉之前的内容有多简单了。二叉树中用到很多递归算法,看起来很难懂。需要一步一步的跟下去才能理解,但是理解还远远不够,关键是是自己能写出来属于自己的递归算法。经过长时间的练习,我已经能写出来一些简单的递归算法了,但是稍微难一点的就写不出来了。后面的图还更难。革命尚未成功,诸君还需努力呐。我相信经过自己不屑的练习,我会提高的!
printf("\n中序遍历交换后的二叉树:");
InOrder(root);
printf("\n");
return0;
}
3、
#include<stdio.h>
#include<stdlib.h>
#defineMaxSize 100
typedefcharElemtype;
typedefstructBitTree
}
voidPostOrder(BitNode *T)
{
if(T == NULL)return;
PostOrder(T->lchild);
PostOrder(T->rchild);
printf("%c",T->data);
}
voidInOrder(BitNode *T)
{
BitNode *p,*q;
BitNode *Stack[MaxSize];
(3)将输入的值赋给当前节点的data域,并前序建立当前节点的左子树和右子树。
(4)返回当前节点。
前序遍历树:
(1)若当前节点为空则返回上一级函数,否则打印当前节点。
(2)前序遍历当前节点的左子树。
(3)前序遍历当前节点的右子树。
中序遍历树:
(1)声明一个顺序栈,并用p指针指向当前节点。
(2)若当前节点和栈不同时为空则重复进行下一步。否则程序结束
{
Elemtype data;
structBitTree *lchild;
structBitTree *rchild;
}BitTree;
typedefBitTree Elementtype;
typedefstructQueueNode
{
Elementtype *base;
intfront;
intrear;
实验报告
学院(系)名称:计算机与通信工程学院
姓名
* *
学号
********
专业
计算机科学与技术
班级
2015级*班
实验项目
实验三:二叉树操作
课程名称
数据结构与算法
课程代码
0661013
实验时间
年月日第节
实验地点
7-***
考核标准
实验过程
25分
程序运行
20分
回答问题
15分
实验报告
30分
特色
功能
5分
考勤违纪情况
inttop = 0;
p = T;
while(!(p == NULL && top == 0))
{
while(p != NULL)
{
if(top < MaxSize-1)
{
Stack[top] = p;
top++;
}else{
printf("栈溢出");
exit(0);
}
p = p->lchild;
(10)当前层最大节点数等于上一层最大节点数和当前队列中的节点数中较大的一个。
执行第三步。
算法的实现和测试结果:包括算法运行时的输入、输出,实验中出现的问题及解决办法等
相关文档
最新文档