浙江工业大学生物化学期末复习知识重点
生物化学期末复习重点总结
一.n解释1.氨基酸的等电点(pI):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。
2. .蛋白质的等电点(pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。
蛋白质溶液的pH大于等电点时,该蛋白质颗粒带负电荷,反正则带正电荷。
3.蛋白质变性:在某些理化因素的作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。
4.核酸的变性:在某些理化因素作用下,核酸分子中的氢键断裂,双螺旋结构松散分开,理化性质改变,失去原有的生物学活性。
5解链温度、溶解温度或Tm:在解链过程中,紫外吸光度的变化△A260达到最大变化值的一半时所对应的温度称为DNA的解链温度。
6.Km:等于酶促反应速度为最大速度一半时的底物浓度。
6.酶的活性中心或活性部位:这些必需基团在一级结构上可能相距很远,但在空间上彼此靠近,组成具有特定空间结构的区域,能和底物特异的结合并将底物转化为产物。
这一区域称为酶的活性中心或活性部位。
辅酶或辅基参与酶活性中心的组成。
7.同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。
8.变构酶:变构效应的剂与酶分子活性中心以外的部位可逆的组合,使酶分子发生构象改变,从而改变了催化活性的酶称为变构酶。
9.酶原的激活:酶原向酶的转化过程称为酶原的激活,酶原的激活实际上是酶的活性中心形成或暴露的过程。
10.糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原成乳酸的过程称为糖酵解。
11.糖的有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化。
是体内糖代谢最主要途径。
12.糖异生:从非糖化合物(乳酸,甘油,生糖氨基酸,丙酮酸)转化为葡萄糖或糖原的过程称为糖异生。
生物科学《生物化学》期末复习要点
生物科学《生物化学》期末复习要点2020生物科学《生物化学》期末复习要点(仅供参考)一、生物分子结构与功能(一)生物分子的组成1、化学元素:蛋白质—N—16%核酸—P—9.9或9.4%2、基本单位:蛋白质——氨基酸(L-α氨基酸-特殊氨基酸-酸性氨基酸、碱性氨基酸-含硫氨基酸、亚氨基酸、芳香族氨基酸、必需氨基酸)——肽键、氨基酸等电点以及计算,除甘氨酸外都有旋光性核酸——核苷酸(β-C-N糖苷键)——3,5磷酸二酯键(碱基-原子定位、核糖-β-D核糖和β-D-2脱氧核糖)基本概念:碱基、核糖、核苷、核苷酸(主要是5’P-核苷酸)游离核苷酸(ATP、GTP、ADP、CTP等)特殊核苷酸(cAMP-腺苷酸环化酶催化分子内二酯键、cGMP)RNA含量:rRNA最多、tRNA稀有碱基最多、mRNA代谢最活跃序列分析:双脱氧核苷酸(核糖第2和第3碳原子脱氧)的引入+聚丙烯氨酰胺凝胶电泳脂类——重点脂肪(甘油+三个脂肪酸)磷脂(甘油与磷酸结合+极性基团)生物膜:流动镶嵌模型-磷脂双分子层为主要骨架-蛋白质决定生物膜的功能-具有流动性和选择透过性脂肪酸:饱和和不饱和之分,人体内不能合成不饱和脂肪酸(必需脂肪酸)线粒体膜:外膜通透性高,内膜通透性低,内膜向内突出增大膜表面积,利于生物代谢维生素与辅酶——分类:水溶性VB和VC-脂溶性ADEKVB1——TPP——丙酮酸脱羧酶——脚气病VB2——FMN、FAD——脱氢酶VPP——烟酸——NAD、NADP——脱氢酶VB3——泛酸——CoA、ACP——酰基载体VB6——吡哆素——PLP、PMP——转氨酶、氨基酸脱羧酶、VH——生物素——羧基载体(丙酮酸、乙酰CoA羧化酶)VB11——叶酸——一碳单位载体(磺胺类药物竞争)VB12——钴胺素—甲基转移硫辛酸——酰基载体(丙酮酸、戊二酸脱氢酶系)VC——坏血病VA——夜盲症 VD——佝偻病 VE——育酚 VK——凝血3、结构:(1)一级结构—蛋白质——氨基酸组成和序列—肽键-氨基端和羧基端肽键特征:具有双键性质,不能自由旋转,比单键短,双键长肽平面:6个原子,反式排列一级结构—核酸——核苷酸的组成和排列顺序——3,5磷酸二酯键,方向5’→3’(2)二级结构—蛋白质——α-螺旋、β-片层、β-转角、无规卷曲各种二级结构特征:重点α-螺旋:螺距、氨基酸之间距离核酸——DNA双螺旋特征(Z-DNA、B-DNA)-碱基配对原则-查伽夫规则(核糖、糖苷键、碱基连接、位置、碱基互补氢键、碱基结构)B-DNA双螺旋结构要点(反向平行、螺旋直径2nm、螺距3.4nm、螺旋一圈10对碱基、右手螺旋、大沟和小沟)稳定因素:碱基堆积力(最主要维持纵向稳定)和氢键(维持横向稳定)(3)高级结构蛋白质——三级结构—非共价力(主要是疏水相互作用)—结构域四级结构—多亚基(非共价力氢键、疏水键、盐键)变性(高级结构破坏,一级结构不变)与复性蛋白质稳定的因素(水化膜与双电层)实例:血红蛋白和肌红蛋白的氧合曲线以及S型的意义。
生物化学考试重点笔记(完整版).
⽣物化学考试重点笔记(完整版).第⼀章蛋⽩质的结构与功能第⼀节蛋⽩质的分⼦组成⼀、组成蛋⽩质的元素1、主要有C、H、O、N和S,有些蛋⽩质含有少量磷或⾦属元素铁、铜、锌、锰、钴、钼,个别蛋⽩质还含有碘。
2、蛋⽩质元素组成的特点:各种蛋⽩质的含氮量很接近,平均为16%。
3、由于体内的含氮物质以蛋⽩质为主,因此,只要测定⽣物样品中的含氮量,就可以根据以下公式推算出蛋⽩质的⼤致含量:100克样品中蛋⽩质的含量( g % )= 每克样品含氮克数× 6.25×100⼆、氨基酸——组成蛋⽩质的基本单位(⼀)氨基酸的分类1.⾮极性氨基酸(9):⽢氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)⾊氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) ⾕氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2): 天冬氨酸(Asp ) ⾕氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg)组氨酸( His)(⼆)氨基酸的理化性质1. 两性解离及等电点等电点 :在某⼀pH的溶液中,氨基酸解离成阳离⼦和阴离⼦的趋势及程度相等,成为兼性离⼦,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2. 紫外吸收(1)⾊氨酸、酪氨酸的最⼤吸收峰在 280 nm 附近。
(2)⼤多数蛋⽩质含有这两种氨基酸残基,所以测定蛋⽩质溶液280nm的光吸收值是分析溶液中蛋⽩质含量的快速简便的⽅法。
3. 茚三酮反应氨基酸与茚三酮⽔合物共热,可⽣成蓝紫⾊化合物,其最⼤吸收峰在570nm处。
由于此吸收峰值与氨基酸的含量存在正⽐关系,因此可作为氨基酸定量分析⽅法三、肽(⼀)肽1、肽键是由⼀个氨基酸的α-羧基与另⼀个氨基酸的α-氨基脱⽔缩合⽽形成的化学键。
生物化学期末重点总结
生物化学期末重点(zhòngdiǎn)总结生物化学期末(qī mò)重点总结两性离子:一个(yī ɡè)氨基酸分子内部的酸碱反响(fǎnxiǎng)使氨基酸能同时带有正负两种电荷,以这种形式存在(cúnzài)的离子被称为两性离子必须氨基酸:人或动物不能合成或合成量缺乏以维持正常的生长发育,而必须从外界获取等电点:如果在某一PH值下,氨基酸所带正负电荷数目相等,即净电荷为零,在电场中既不向阴极也不向阳极移动。
此时溶液的PH值即为该氨基酸的等电点构型:不对称碳原子上相连的各原子或取代集团的空间排布〔D-构型,L-构型〕氨基酸的主要性质:〔旋光特性、紫外吸收,两性解离〕蛋白质的一级结构:蛋白质肽链中氨基酸的排列顺序,主要靠肽链维系,也称蛋白质的共价结构构象:相同构型的化合物中,与碳原子相连的各原子或取代集团在单键旋转形成的相对空间排列蛋白质的二级结构:肽链主链本省在空间上有规律的折叠和盘绕,不涉及侧链R集团在空间上的关系,是氨基酸残基非侧链集团之间通过氢键作用形成的局部空间结构,是蛋白质的构象单元结构域:指多肽链在二级结构或超二级结构的根底上形成三级结构的局部折叠区,是相对独立的在空间上可识别的三维球状实体蛋白质的三级结构:指在二级结构根底上通过侧链集团的相互作用进一步弯曲折叠蛋白质的四级结构:某些蛋白质分子含有两条多肽链,每一条多肽链都有完整的三级结构,成为蛋白质的亚基超二级结构:在蛋白质分子中,多肽链上由假设干相邻的二级结构单元〔α螺旋,β折叠,β转角等〕彼此相互作用组合在一起,形成有规那么,在空间上能识别的二级结构组合体疏水作用力:指急性集团间的静电力和氢键使极性基团倾向于聚集在一起,因而排斥非极性基团,使疏水集团相互聚集形成的作用力盐析:蛋白质在一定量的中型盐溶液中,其溶解度随盐浓度增加而降低并析出沉淀的现象盐溶:球状蛋白质在稀浓度的中性盐溶液中,其溶解度随浓度的增加而增加的现象蛋白质的变性:在某些物理和化学因素的作用下,蛋白质特定的空间结构被改变,从而导致其理化性质和生物学功能随之改变或丧失,但未导致蛋白质的以及结构的改变特征:1、结构的变化,疏水侧链暴露2、生物活性的丧失,主要特征。
生物化学期末考试知识点归纳
生物化学期末考试知识点归纳三羧酸循环记忆方法一:糖无氧酵解过程中的“1、2、3、4”1:1分子的葡萄糖2:此中归纳为:6个22个阶段;经过2个阶段生成乳酸2个磷酸化;2个异构化,即可逆反应;2个底物水平磷酸化;2个ATP消耗,净得2个分子的ATP;产生2分子NADH3:整个过程需要3个关键酶4:生成4分子的ATP.二:糖有氧氧化中的“1、2、3、4、5、6、7”1:1分子的葡萄糖2:2分子的丙酮酸、2个定位3:3个阶段:糖酵解途径生成丙酮酸丙酮酸生成乙酰CO-A三羧酸循环和氧化磷酸化4:三羧酸循环中的4次脱氢反应生成3个NADH和1个FADH25:三羧酸循环中第5步反应:底物水平磷酸化是此循环中唯一生成高能磷酸键的反应6:期待有人总结7:整个有氧氧化需7个关键酶参与:己糖激酶、6-磷酸果糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合体、拧檬酸合酶、异拧檬酸脱氢酶、a-酮戊二酸脱氢酶复合体一.名词解释:1.蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。
、2.蛋白质的一级结构:是指多肽链中氨基酸的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。
维持其稳定的化学键是:肽键。
蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。
蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-折叠、β-转角和无规则卷曲等。
蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。
因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。
蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。
3..蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。
生物化学期末复习(简答、名词解释)
⽣物化学期末复习(简答、名词解释)⽣物化学期末复习(简答、名词解释)1. 什么是物质代谢?什么是能量代谢?⼆者之间的关系如何?答:物质代谢:研究各种⽣理活性物质(如糖、蛋⽩质、脂类、核酸等)在细胞内发⽣酶促反应的途径及调控机理,包含旧分⼦的分解和新分⼦的合成;能量代谢:研究光能或化学能在细胞内向⽣物能(ATP)转化的原理和过程,以及⽣命活动对能量的利⽤。
能量代谢和物质代谢是同⼀过程的两个⽅⾯,能量转化寓于物质转化过程之中,物质转化必然伴有能量转化。
2. 中间代谢:消化吸收的营养物质和体内原有的物质在⼀切组织和细胞中进⾏的各种化学变化称为中间代谢。
3. 呼吸商(respiratory quotient 简称RQ):指⽣物体在同⼀时间内,释放⼆氧化碳与吸收氧⽓的体积之⽐或摩尔数之⽐,即指呼吸作⽤所释放的CO2 和吸收的O2 的分⼦⽐。
4. ⾃养型⽣物:为能够利⽤⽆机物合成有机物的类型,⼜分为光合⾃养——绿⾊植物,和化能⾃养——硝化细菌等。
5. 异养型⽣物:不能⾃⼰合成有机物,必须依靠⾃养⽣物制造的有机物⽣存。
6. 简述活体内实验及其意义。
答:1)⽤整体⽣物材料或⾼等动物离体器官或微⽣物细胞群体进⾏中间代谢实验研究称为活体内实验,⽤“in vivo”表⽰。
2)活体内实验结果代表⽣物体在正常⽣理条件下,在神经、体液等调节机制下的整体代谢情况,⽐较接近⽣物体的实际。
7. 活体外实验:⽤从⽣物体分离出来的组织切⽚,组织匀浆或体外培养的细胞、细胞器及细胞抽提物进⾏中间代谢实验研究称为活体外实验,⽤“in vitro”表⽰。
8. 简述代谢途径的探讨⽅法答:1)代谢平衡实验;2)代谢障碍实验(代谢途径阻断实验);3)使⽤抗代谢物;4)代谢物标记追踪实验;5)测定特征性酶;6)核磁共振波谱法。
9. 简述糖的⽣理功能答:1)作为⽣物体的结构成分;2)作为⽣物体内的主要能源物质;3)在体内转变为其他物质;4)作为细胞识别的信息分⼦。
生物化学期末考试重点
⽣物化学期末考试重点等电点:在某PH的溶液中,氨基解离呈阳离⼦和阴离⼦的趋势及程度相等,成为兼性离⼦,呈电中性,此时溶液的P H称为该氨基酸的等电点DNA变性:某些理化因素会导致氢键发⽣断裂,使双链DNA解离为单链,称为DNA变性解链温度(Tm):在解链过程中,紫外吸收值得变化达到最⼤变化值的⼀半时所对应的温度酶的活性中⼼:酶分⼦中⼀些必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合,并将底物转化为产物,这⼀区域称为酶的活性中⼼同⼯酶:指催化相同化学反应,但酶蛋⽩的分⼦结构、理化性质、免疫学性质不同的⼀组酶诱导契合:在酶和底物相互接近时,其结构相互诱导、相互变性、相互适应,这⼀过程为酶底物结合的诱导契合⽶⽒常数(Km值):等于酶促反应速率为最⼤反应速率⼀半时的底物浓度酶原的激活:酶的活性中⼼形成或暴露,酶原向酶的转化过程即为。
有氧氧化:葡萄糖在有氧条件下彻底氧化成⽔和⼆氧化碳的反应过程称为有氧氧化三羧酸循环:是指⼄酰CoA和草酰⼄酸缩合⽣成含3个羧基的柠檬酸,再4次脱氢,2次脱羧,⼜⽣成草酰⼄酸的循环反应过程糖异⽣:从⾮糖化合物转化为葡萄糖或糖原的过程称为。
脂肪动员:指储存在脂肪细胞中的⽢油三酯,被酯酸逐步⽔解为游离脂酸和⽢油并释放⼊⾎,通过⾎液运输⾄其他组织,氧化利⽤的过程酮体:是脂酸在肝细胞线粒体中β-氧化途径中正常⽣成的中间产物:⼄酰⼄酸、β-羟丁酸、丙酮脂蛋⽩:⾎浆中脂类物质和载脂蛋⽩结合形成脂蛋⽩呼吸链:线粒体内膜中按⼀定顺序排列的⼀系列具有电⼦传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电⼦最终传递给氧⽣成⽔。
这⼀系列酶和辅酶称为呼吸链或电⼦传递链营养必需氨基酸:体内需要⽽⼜不能⾃⾝合成,必须由⾷物提供的氨基酸⼀碳单位:指某些氨基酸在分解代谢过程中产⽣的含有⼀个碳原⼦的基因半保留复制:DNA⽣物合成时,母链DNA解开为两股单链,各⾃作为模极,按碱基配对规律,合成与模极互补的⼦链、⼦代细胞的DNA。
生物化学重点知识归纳
生物化学重点知识归纳第一章绪论1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。
2.生物化学研究的内容大体分为三部分:①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控第二章糖类化学1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖。
2.单糖的分类:①按所含C原子的数目分为:丙糖、丁糖......②按所含羰基的特点分为:醛糖和酮糖。
3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分。
4.甘油醛是最简单的单糖。
5.两种环式结构的葡萄糖:6.核糖和脱氧核糖的环式结构:(见下图)7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应。
8.蔗糖是自然界分布最广的二糖。
9.多糖根据成分为:同多糖和杂多糖。
同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等;杂多糖以糖胺聚糖最为重要。
10.淀粉包括直链淀粉和支链淀粉。
糖原分为肝糖原和肌糖原。
11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素。
第三章脂类化学1. 亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸。
2. 类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯。
3. 脂肪又称甘油三酯。
下图是甘油三酯、甘油和脂肪酸的结构式:1. 皂化值:水解1克脂肪所消耗KOH的毫克数。
皂化值越大,表示脂肪中脂肪酸的平均分子量越小。
6.磷脂根据所含醇的不同分为甘油磷脂和鞘磷脂。
7.糖脂包括甘油糖脂和鞘糖脂。
8.类固醇是胆固醇及其衍生物,包括胆固醇、胆固醇脂、维生素D、胆汁酸和类固醇激素等。
9.胆汁酸有游离胆汁酸和结合胆汁酸两种形式。
10.类固醇激素包括肾上腺皮质激素(如醛固酮、皮质酮和皮质醇)和性激素(雄激素、雌激素和孕激素)。
11.肾上腺皮质激素具有升高血糖浓度和促进肾脏保钠排钾的作用。
其中皮质醇对血糖的调节作用较强,而对肾脏保钠排钾的作用很弱,所以称为糖皮质激素;醛固酮对水盐平衡的调节作用较强,所以称为盐皮质激素。
生物化学期末复习重点
生物化学期末复习重点一.名词解释1.脱氧核苷酸:是脱氧核糖核酸(DNA)的基本单位。
2.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫增色效应。
3.DNA一级结构:是指将脱氧核苷酸按照有序的顺序排列起来而形成的原始脱氧核苷酸链。
4.DNA复性:在适宜的温度下.分散开的两条DMA链可以完全重新结合成和原来一样的双股螺旋。
这个DNA螺旋的重组过程称为复性。
5.B-DNA:DNA钠盐在较高温度下的纤维结构,是B型双螺旋,称为B-DNA结构。
6.核酸分子杂交:按照互补碱基配对而使不完全互朴的两条多核苷酸相互结合的过程称为分子杂交。
7.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。
8.蛋白质等电点:存在一个PH使蛋白质的表面净电荷为零即等电点。
9.蛋白质三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。
10.变构效应:是寡聚蛋白与配基结合改变蛋白质构象,导致蛋白质生物活性改变的现象。
11.蛋白质变性:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性。
12.酶:是由活细胞产生的在体内外都具有催化作用的一类生物催化剂。
13.酶活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。
14.酶原激活:使酶原转变为有活性酶的作用称为酶原激活。
15.酶活力单位:是指在特定条件(25c其它为最适条件)下,在1分钟内能转化1微摩尔底物的酶量,或是转化底物中1微摩尔的有关基团的酶量。
16.别构酶:具有别构效应的酶称为别构酶。
17.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。
18.固定化酶:是指在一定的空间范围内起催化作用,并能反复和连续使用的酶。
19.EMP:指糖酵解,是细胞将葡萄糖转化为丙酮酸的代谢过程。
生物化学期末复习重点
第1章绪论1、生物化学:主要是从分子水平研究生物体的化学组成及其在生命活动过程中化学变化的一门科学,又称生命的化学2、生物化学主要的研究对象:①生物体的化学组成;②物质与能量代谢及其调节第2章糖类化学1、糖:糖是一类多羟基醛或多羟基酮,或通过水解可以产生多羟基醛或酮的物质2、糖的分类:1)单糖:单糖是最简单的糖,只含一个多羟基醛或多羟基酮单位,分为醛糖和酮糖2)寡糖:又称低聚糖,是由几个(一般为2~10个)3)多糖:多糖由10个以上糖单位组成3、手性碳原子(不对称碳原子):连接有四个原子或原子团的碳原子,在空间呈不对称排布4、对于含有多个手性碳原子的糖分子,其相对构型是根据其分子结构中离羟基最远的手性碳原子连接的-OH来确定的5、葡萄糖分子的特点:1)四个手性碳原子(2、3、4、5);2)距羰基最远的手性碳原子C5上的-OH 在右侧,为D-葡萄糖3)天然葡萄糖为D-(+)-葡萄糖6、单糖的主要化学性质:①成苷反应;②成脂反应;③氧化反应;④还原反应认识糖苷键的位置7、糖苷结构中没有半缩醛羟基,不能转变为开链结构,所以糖苷没有还原性8、氧化反应:托伦试剂银镜班氏试剂砖红色9、凡是能被碱性弱氧化剂氧化的糖,都称为还原糖。
单糖都是还原糖10、二糖:1)麦芽糖:由2分子D-葡萄糖,具有还原性2)蔗糖:由1分子D-葡萄糖和1分子D-果糖以α-1,2-β-糖苷键相连而成,无还原性3)乳糖:由1分子D-半乳糖和1分子D-葡糖糖以β-1,4-糖苷键相连而成,具有还原性11、多糖:(一)同多糖1)淀粉—淀粉是直链淀粉和支链淀粉的混合物,由-D-葡萄糖组成①直链淀粉由D-葡萄糖以α-1,4-糖苷键相连而成线性分子,支链淀粉由D-葡萄糖以α-1,4-糖苷键接成短链,α-1,6-糖苷键相连形成分支②淀粉的主要性质:A.淀粉遇碘呈蓝色B.淀粉在酸或酶的作用下,形成糊精(紫~、红~、无色~2)糖原—由-D-葡萄糖组成,结构与支链淀粉相似,分支比支链淀粉更短、更密,遇碘呈紫红色或红褐色含有α-1,4-糖苷键和α-1,6-糖苷键3)其他多糖:①纤维素:含有β-1,4-糖苷键(二)杂多糖第3章脂质化学1、脂肪是由甘油与脂肪酸形成的三酰甘油(TAG),又称甘油三酯脂类包括:类脂:磷脂、糖脂、类固醇甘油三酯2、脂肪酸的结构:1)大多数天然脂肪酸是含偶数碳原子的直链一元酸2)碳原子数目一般在4~26之间,尤以C16和C18为最多3)结构通式:R-COOH3、根据是否含有碳-碳双键可分为饱和与不饱和脂肪酸4、必需脂肪酸:维持人和动物正常生命活动所必需的,但哺乳动物体内不能合成或合成量不足,需由食物提供的脂肪酸,包括亚油酸,亚麻酸和花生四烯酸5、皂化值:水解1g脂肪所消耗氢氧化钾的毫克数称为皂化值,皂化值越大表示脂肪中的脂肪酸的平均分子量越小6、碘值(或碘价):通常将100g脂肪通过加成反应所消耗碘的克数称为碘值(或碘价),碘值越大表示脂肪中的脂肪酸的不饱和程度越高7、酸败:脂肪长期暴露在空气中,分子中的碳碳双键和酯键发生氧化水解等反应,产生难闻的气味,这种现象称为酸败8、磷脂:1)甘油磷脂—磷脂酸及其衍生物;既含有亲水基又含有疏水基①磷脂酰胆碱:俗称卵磷脂(PC),是各种膜性结构的主要成分,具有协助脂类运输的作用,可用于防治脂肪肝②磷脂酰乙醇胺:俗称脑磷脂(PE),构成生物膜,参与凝血③磷脂酰肌醇(PI)2)鞘磷脂(略)9、类固醇:类固醇是胆固醇及其衍生物体内重要的类固醇:胆固醇、胆固醇酯、维生素D、胆汁酸和类固醇激素等1)胆固醇及其酯:既是其它类固醇化合物的合成原料,又是细胞膜的重要成分两种存在形式:胆固醇和胆固醇酯2)胆汁酸:是人和动物胆汁的主要成分,分为游离型胆汁酸、结合型胆汁酸3)类固醇激素:①肾上腺皮质激素:是由肾上腺皮质分泌的一类激素;皮质醇和皮质酮具有很强的调节糖代谢的作用,故称为糖皮质激素;醛固酮对盐和水的平衡具有较强的调节作用,被称为盐皮质激素②性激素:分为雄激素、雌激素和孕激素。
《生物化学》期末复习大纲
第一章1.生物化学是一门以生物体为对象、研究生命现象的化学本质的科学。
它也是研究生物体的化学组成与性质以及在生命过程中的化学变化的一门科学。
2.生物化学要研究构成生物机体各种物质得组成、结构、性质及生物学功能。
这部分内容称为静态生物化学(或有机生物化学)。
3.生物化学要研究生物体内各种物质的化学变化、与外界进行物质和能量交换的规律,即物质代谢与能量代谢,称为动态生物化学(或代谢生物化学)。
4.生物化学要研究重要生命物质的结构与功能的关系,以及环境对机体代谢的影响,从分子水平来阐明生命现象的机制和规律,称为功能生物化学(或机能生物化学)。
第二章1.糖的定义:多羟基醛、多羟基酮以及它们的缩聚物和衍生物。
2.根据能否水解和水解后的产物将糖类分为:单糖、寡糖、多糖。
3.糖的生物学功能:(1)能量物质——淀粉和糖原是重要的体内能源(2)碳源物质——提供碳原子或者碳骨架(3)结构组分——纤维素和细菌多糖是细胞壁组分(4)其他重要生物功能——复合糖类和寡糖具有重要生物功能,如作为信号识别的分子4.单糖的开链结构:将单糖的醛基或酮基写上方,碳原子依次往下,以距醛基(或酮基)最远的不对称碳原子为准,羟基在左为L-型,羟基在右为D-型5.单糖环式结构的构型:对Fischer式而言,凡半缩醛上的羟基与决定直链构型的羟基处于同侧为α型,处于不同侧为β型。
6.单糖环式结构的构型:Haworth式中环外碳原子在环平面上方的为D型,反之为L型;不论是D型还是L型,半缩醛羟基与环外碳原子是异侧的为α异头物,同侧的为β异头物。
7.在蔗糖中,葡萄糖和果糖的半缩醛羟基都参与成苷反应,故互为配基和糖基。
蔗糖没有还原性。
8.乳糖:还原性糖。
由一分子α-葡萄糖和一分子β-半乳糖缩合而成,单糖之间通过β(1→4)糖苷键连接。
9.麦芽糖:还原性糖。
麦芽糖由2分子的α葡萄糖通过α(1→4)糖苷键连接而成。
10.纤维二糖:还原性糖。
由2分子的葡萄糖通过β(1→4)糖苷键连接。
《生物化学》期末背诵重点总结
《生物化学》期末背诵重点总结(-)名词解释1、肽单元(peptide unit):参与肽键的6个原子C宀、C、0、N、H、位于同一平面,和C® 在平面上所处的位置为反式构型,此同一平面上的6个原子构成了所谓的肽单元。
2、分子伴侣(molecular chaperone): 一类保守的蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠。
3、蛋白质的四级结构(quaternary)与亚基(subunit):体内许多功能性蛋白质分子含有二条或两条以上多肽链,每一条多肽链都有完整的三级结构,成为蛋白质的亚基。
蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
4、协同效应(cooperativity): 一个亚基与其配体(Hb中的配体为0?)结合后,能影响此寡聚体中另一个亚基与配体结合能力的现象,称为协同效应。
如果是促进作用则称为正协同效应,如果是抑制作用则称为负协同效应。
5、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。
6、Motif (模体):在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。
7、Domain (结构域):分子量较大的蛋白质常可折叠成多个结构较为紧密且稳定点的区域,各行使其功能,称为结构域。
8、pl (等电点):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,成电中性,此时溶液的pH称为该氨基酸的等电点。
9、蛋白质的复性:若蛋白质变性的程度较轻,去除变性因素后,有些蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性。
10、盐析:是将硫酸核、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定性因素去除而沉淀。
生物化学期末复习知识点
九、十四、1.合成代谢:生物体利用小分子或大分子的结构元件转变为自身大分子的过程。
分解代谢:有机营养物质通过一系列反应转变为小分子的简单物质的过程。
物质代谢:构成生物体组成成分的糖、脂、蛋白质、核酸等的合成与分解代谢。
能量代谢:伴随物质代谢产生的机械能、化学能、热能以及光能、电能的相互转化。
2.新陈代谢的特点:温和反应;逐步进行;受到调控;(生物代谢体系是长期进化中逐步形成,逐步完善的。
)3.高能化合物:水解可以释放5千卡以上自由能的化合物。
ATP是细胞内化学能的共同载体,含有高的磷酸基团转移势能。
ATP水解释放一个磷酸基团,可以释放7.3千卡自由能。
ATP是生物体内主要的高能化合物。
ATP不是能量贮存者。
4.ATP的生成:○1底物水平磷酸化:代谢物脱氢后,分子内部能量重新分布,使无机磷酸酯化,从而使ADP变为ATP。
○2氧化磷酸化:在生物氧化过程中伴随着ATP的生成代谢物被氧化时释放出的电子通过一系列电子传递体传递到O2的过程中伴随ATP的生成。
(指在生物氧化过程中伴随着ATP生成的作用。
)○3光合磷酸化:电子由光系统II传递到光系统I的过程中发生了磷酸化,这磷酸化是由光能推动,称光合磷酸化。
一对e- 从 FADH2传递到O2产生1.5分子ATP;一对e- 从NADH传递到O2 产生2.5分子ATP;5.生物氧化:生物的一切活动皆需要能。
能来源为糖、脂质、蛋白质在体内的氧化。
这些有机物在活细胞内氧化分解产生CO2、H2O并放出能的作用。
实际上是需氧细胞呼吸作用中的一系列氧化还原作用。
原核细胞的呼吸链存在于质膜上,真核细胞的呼吸链存在于线粒体内膜上。
呼吸链的氧化磷酸化在线粒体内膜上进行。
十、1. α,β-淀粉酶:都能水解α-1,4苷键,但不能水解α-1,6苷键。
α-1,6葡萄糖苷酶:水解α-1,6苷键。
2.糖酵解第一阶段总结:从G开始,磷酸化,异构,磷酸化;消耗2分子ATP 。
调控点:已糖激酶,磷酸果糖激酶。
生物化学重点笔记
生物化学重点笔记生物化学是一门研究生物体化学组成和生命过程中化学变化规律的科学。
它涵盖了广泛的领域,从分子水平理解生命现象,对于医学、农业、食品科学等众多领域都具有重要意义。
以下是一些生物化学的重点知识。
一、蛋白质蛋白质是生物体内最为重要的大分子之一。
(一)结构1、一级结构:指蛋白质多肽链中氨基酸的排列顺序。
通过肽键连接氨基酸,形成线性的链状结构。
2、二级结构:包括α螺旋、β折叠等。
α螺旋是通过氢键维持稳定的右手螺旋结构;β折叠则是伸展的多肽链通过氢键形成的片层结构。
3、三级结构:是指整条多肽链在二级结构的基础上进一步折叠、盘绕形成的三维空间结构。
主要的化学键包括疏水作用、氢键、离子键和范德华力等。
4、四级结构:对于由多条多肽链组成的蛋白质,各条多肽链之间的相对空间位置关系即为四级结构。
(二)功能1、催化功能:如酶。
2、结构支持:如胶原蛋白构成结缔组织。
3、运输功能:如血红蛋白运输氧气。
4、免疫功能:例如抗体。
(三)蛋白质的性质1、两性解离:在不同的 pH 条件下,蛋白质会带上正电荷或负电荷。
2、沉淀反应:通过加入盐、有机溶剂等可使蛋白质沉淀。
3、变性与复性:变性是指蛋白质的空间结构被破坏,丧失活性;在一定条件下,变性的蛋白质有可能复性。
二、核酸核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
(一)DNA1、结构:双螺旋结构,由两条反向平行的脱氧核苷酸链通过碱基互补配对形成。
2、功能:携带遗传信息,是遗传物质。
3、复制:半保留复制,保证了遗传信息的准确传递。
(二)RNA1、种类:包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)。
2、 mRNA:携带遗传信息,指导蛋白质的合成。
3、 tRNA:在蛋白质合成过程中转运氨基酸。
4、 rRNA:参与核糖体的组成。
三、酶酶是生物体内具有催化作用的蛋白质或 RNA。
(一)特性1、高效性:能显著加快反应速度。
2、专一性:对特定的底物和反应具有高度的选择性。
浙江工业大学生物化学期末复习知识重点
1.糖异生和糖酵解的生理学意义: 糖酵解和糖异生的代谢协调控制,在满足机体对能量的需求和维持血糖恒定方面具有重要的生理意义。
2.简述蛋白质二级结构定义及主要类别。
定义:指多肽主链有一定周期性的,由氢键维持的局部空间结构。
主要类别:α-螺旋,β-折叠,β-转角,β-凸起,无规卷曲3.简述腺苷酸的合成途径.IMP在腺苷琥珀酸合成酶与腺苷琥珀酸裂解酶的连续作用下,消耗1分子GTP,以天冬氨酸的氨基取代C-6的氧而生成AMP。
4.何为必需脂肪酸和非必需脂肪酸?哺乳动物体内所需的必需脂肪酸有哪些?必需脂肪酸:自身不能合成必须由膳食提供的脂肪酸常见脂肪酸有亚油酸、亚麻酸非必须脂肪酸:自身能够合成机单不饱和脂肪酸5.简述酶作为生物催化剂与一般化学催化剂的共性及其个性?共性:能显著的提高化学反应速率,是化学反应很快达到平衡个性:酶对反应的平衡常数没有影响,而且酶具有高效性和专一性6.简述TCA循环的在代谢途径中的重要意义。
1、TCA循环不仅是给生物体的能量,而且它还是糖类、脂质、蛋白质三大物质转化的枢纽2、三羧酸循环所产生的各种重要的中间产物,对其他化合物的生物合成具有重要意义。
3、三羧酸循环课供应多种化合物的碳骨架,以供细胞合成之用。
7.何为必需氨基酸和非必需氨基酸?哺乳动物体内所需的必需氨基酸有哪些?必需氨基酸:自身不能合成,必须由膳食提供的氨基酸。
(苏氨酸、赖氨酸、甲硫氨酸、色氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸)8.简述蛋白质一级、二级、三级和四级结构。
一级:指多肽链中的氨基酸序列,氨基酸序列的多样性决定了蛋白质空间结构和功能的多样性。
二级:指多肽主链有一定周期性的,由氢键维持的局部空间结构。
三级:球状蛋白的多肽链在二级结构、超二级结构和结构域等结构层次的基础上,组装而成的完整的结构单元。
四级:指分子中亚基的种类、数量以及相互关系。
9.脂肪酸氧化和合成途径的主要差别?β-氧化:细胞内定位(发生在线粒体)、脂酰基载体(辅酶A)、电子受体/供体(FAD、NAD+)、羟脂酰辅酶A构型(L型)、生成和提供C2单位的形式(乙酰辅酶A)、酰基转运的形式(脂酰肉碱)脂肪酸的合成:细胞内定位(发生在细胞溶胶中)、脂酰基载体(酰基载体蛋白(ACP))、电子受体/供体(NADPH)、羟脂酰辅酶A构型(D型)、生成和提供C2单位的形式(丙二酸单酰辅酶A)、酰基转运的形式(柠檬酸)10.酮体是如何产生和氧化的?为什么肝中产生酮体要在肝外组织才能被利用?生成:脂肪酸β-氧化所生成的乙酰辅酶A在肝中氧化不完全,二分子乙酰辅酶A可以缩合成乙酰乙酰辅酶A:乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A(HMG-CoA),后者分裂成乙酰乙酸;乙酰乙酸在肝线粒体中可还原生成β-羟丁酸,乙酰乙酸还可以脱羧生成丙酮。
生物化学重点笔记(基本知识)
生物化学重点绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。
二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。
2.动态生物化学阶段:是生物化学蓬勃发展的时期。
就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。
3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。
2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。
其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。
3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。
4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。
5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。
第一章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。
构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。
2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。
二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.糖异生和糖酵解的生理学意义: 糖酵解和糖异生的代谢协调控制,在满足机体对能量的需求和维持血糖恒定方面具有重要的生理意义。
2.简述蛋白质二级结构定义及主要类别。
定义:指多肽主链有一定周期性的,由氢键维持的局部空间结构。
主要类别:α-螺旋,β-折叠,β-转角,β-凸起,无规卷曲3.简述腺苷酸的合成途径.IMP在腺苷琥珀酸合成酶与腺苷琥珀酸裂解酶的连续作用下,消耗1分子GTP,以天冬氨酸的氨基取代C-6的氧而生成AMP。
4.何为必需脂肪酸和非必需脂肪酸?哺乳动物体内所需的必需脂肪酸有哪些?必需脂肪酸:自身不能合成必须由膳食提供的脂肪酸常见脂肪酸有亚油酸、亚麻酸非必须脂肪酸:自身能够合成机单不饱和脂肪酸5.简述酶作为生物催化剂与一般化学催化剂的共性及其个性?共性:能显著的提高化学反应速率,是化学反应很快达到平衡个性:酶对反应的平衡常数没有影响,而且酶具有高效性和专一性6.简述TCA循环的在代谢途径中的重要意义。
1、TCA循环不仅是给生物体的能量,而且它还是糖类、脂质、蛋白质三大物质转化的枢纽2、三羧酸循环所产生的各种重要的中间产物,对其他化合物的生物合成具有重要意义。
3、三羧酸循环课供应多种化合物的碳骨架,以供细胞合成之用。
7.何为必需氨基酸和非必需氨基酸?哺乳动物体内所需的必需氨基酸有哪些?必需氨基酸:自身不能合成,必须由膳食提供的氨基酸。
(苏氨酸、赖氨酸、甲硫氨酸、色氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸)8.简述蛋白质一级、二级、三级和四级结构。
一级:指多肽链中的氨基酸序列,氨基酸序列的多样性决定了蛋白质空间结构和功能的多样性。
二级:指多肽主链有一定周期性的,由氢键维持的局部空间结构。
三级:球状蛋白的多肽链在二级结构、超二级结构和结构域等结构层次的基础上,组装而成的完整的结构单元。
四级:指分子中亚基的种类、数量以及相互关系。
9.脂肪酸氧化和合成途径的主要差别?β-氧化:细胞内定位(发生在线粒体)、脂酰基载体(辅酶A)、电子受体/供体(FAD、NAD+)、羟脂酰辅酶A构型(L型)、生成和提供C2单位的形式(乙酰辅酶A)、酰基转运的形式(脂酰肉碱)脂肪酸的合成:细胞内定位(发生在细胞溶胶中)、脂酰基载体(酰基载体蛋白(ACP))、电子受体/供体(NADPH)、羟脂酰辅酶A构型(D型)、生成和提供C2单位的形式(丙二酸单酰辅酶A)、酰基转运的形式(柠檬酸)10.酮体是如何产生和氧化的?为什么肝中产生酮体要在肝外组织才能被利用?生成:脂肪酸β-氧化所生成的乙酰辅酶A在肝中氧化不完全,二分子乙酰辅酶A可以缩合成乙酰乙酰辅酶A:乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A(HMG-CoA),后者分裂成乙酰乙酸;乙酰乙酸在肝线粒体中可还原生成β-羟丁酸,乙酰乙酸还可以脱羧生成丙酮。
氧化:乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸内缺乏β-酮脂酰辅酶A转移酶和乙酰乙酸硫激酶,所以肝中产生酮体要在肝外组织才能被利用。
11.试说明葡萄糖至丙酮酸的代谢途径,在有氧与无氧条件下有何主要区别?(1) 葡萄糖至丙酮酸阶段,只有甘油醛-3-磷酸脱氢产生NADH+H+ 。
NADH+H+代谢去路不同, 在无氧条件下去还原丙酮酸; 在有氧条件下,进入呼吸链。
(2) 生成ATP的数量不同,净生成2mol ATP; 有氧条件下净生成7mol ATP。
葡萄糖至丙酮酸阶段,在无氧条件下,经底物磷酸化可生成4mol ATP(甘油酸-1,3-二磷酸生成甘油酸-3-磷酸,甘油酸-2-磷酸经烯醇丙酮酸磷酸生成丙酮酸),葡萄糖至葡糖-6-磷酸,果糖-6-磷酸至果糖-1,6-二磷酸分别消耗了1mol ATP, 在无氧条件下净生成2mol ATP。
在有氧条件下,甘油醛-3-磷酸脱氢产生NADH+H+进入呼吸链将生成2×2.5mol ATP,所以净生成7mol ATP。
12.简述两条主要呼吸链的组成及电子传递顺序,并标明其产生ATP的位置。
组成:NADH脱氢酶复合物,细胞色素bc1复合物,细胞色素氧化酶。
电子从NADH到氧是通过这三个复合物的联合作用。
而电子从FADH2到氧是通过琥珀酸-CoQ还原酶复合物、细胞色素bc1复合物和细胞色素氧化酶的联合作用。
13.在生物体内起到传递电子作用的辅酶是什么?烟酰胺脱氢酶类(NAD、NADP+)、黄素脱氢酶类(FMN、FAD)、铁硫蛋白类(Fe-S)、辅酶Q、细胞色素类14.说明淀粉、糖原和纤维素的结构和性质的主要区别。
结构:淀粉:天然淀粉由直链淀粉和支链淀粉组成;糖原:与支链淀粉相似分支较支链淀粉更多,但分支较短;纤维素:是一种线性的由D—吡喃葡基以β—1,4糖苷键连接的没有分支的同多糖。
性质的主要区别:直链淀粉水溶性较相等分子质量的支链淀粉差,淀粉与碘有显色反应,直链淀粉为蓝色,支链淀粉问紫红色;糖原:较易分散在水中,与碘反应呈红紫色;纤维素:微晶束相当,含有大量羟基而具有亲水性;羟基上H被取代后可制不同类型的高分子化合物。
15.什么是Tm值?哪些因素影响Tm值的大小?Tm值:紫外吸收的增加量达到最大增量一半时的温度称为溶解温度(Tm)因素:G-C对含量(经验公式:(G-C)%=(Tm-63.9)×2.44)、溶液的离子浓度、溶液的PH、变性剂16. 氧化磷酸化与底物水平磷酸化的区别。
氧化磷酸化:生物体通过生物氧化所产生的能量,除一部分用以维持体温外,大部分可以通过磷酸化作用转移至高能磷酸化合物A TP中,此中伴随放能的氧化作用而进行的磷酸化作用。
底物水平磷酸化:是在被氧化的底物发生磷酸化作用,即在底物氧化的过程中,形成了某些高能磷酸化合物,这些高能磷酸化合物通过酶的作用使ADP生成ATP。
17.说明缺乏维生素相关的脚气病的发病机理,为什么常吃粗粮的人不容易得脚气病?在正常情况下,神经组织的能量来源是靠糖氧化供给,当维生素B1缺乏时,丙酮酸与α-酮戊二酸den氧化脱羧反应均发生障碍,丙酮发生堆积,使病人的血、尿和脑组织中的丙酮含量增多,出现多发性神经炎、皮肤麻木、心力衰竭、肌肉萎缩等症状,称为脚气病。
18. 激烈运动后人们会感到肌肉酸痛,几天后酸痛感会消失,利用生化机制解释该现象。
激烈运动时,肌肉组织中氧气供应不足,酵解作用加强,生成大量的乳酸,会感到肌肉酸痛,经过代谢,乳酸可转换为葡萄糖等其他化合物,彻底氧化为CO2和H2O,因乳酸含量减少而酸痛感会消失。
19. 说明生物体内H2O、CO2和A TP都是怎样生成的?1、水:生物体内水生成主要有以下几个生理过程:A、蛋白质合成(脱水缩合);B、DNA复制和RNA合成;C、呼吸作用(有氧呼吸第三阶段);D、光合作用暗反应阶段等。
2、CO2:呼吸作用(有氧呼吸第二阶段及生成酒精的无氧呼吸第二阶段)3、ATP:A、呼吸作用(有氧呼吸第一、二、三阶段);B、光合作用光反应阶段20. 简述维生素B6与辅酶的关系,并列举利用维生素B6作为辅酶参与的代谢途径。
磷酸吡哆醛和磷酸吡哆胺为维生素B6在生物体内的活性形式,二者分别为吡哆醛和吡哆胺的磷酸酯,在在生物体内可以互相转化。
磷酸吡哆醛在氨基酸代谢中的转氨酶及脱羧酶的辅酶,参加催化涉及氨基酸的各种反应。
例如在天冬氨酸氨基转移酶催化的转氨基反应中,通过乒乓反应机制,谷氨酸的氨基先转移到磷酸吡哆醛中,生成α—酮戊二酸和磷酸吡哆胺,磷酸吡哆胺的氨基在转移到草酰乙酸上,生成天冬氨酸。
21. 解释酶的活性部位、必需基团及二者关系。
活性部位:在整个酶分子中,只有一小部分区域的氨基酸残基参与对底物的结合与催化作用,这些特异的氨基酸残基比较集中的区域称为酶的活性部位。
也称活性中心。
必需基团:酶分子中与酶活性密切相关的基团称作酶的必需基团。
联系:必需基团空间结构上彼此靠近,组成特定空间结构的区域,它能与底物特异结合,并将底物转变为产物,这一区域称为酶的活性中心。
22. 影响酶促反应速率的因素有哪些?图示并详细说明各因素影响酶反应速率的原因?酶浓度、底物浓度、PH、温度、激活剂、抑制剂、酶的别构23. 什么是酶的抑制剂?有哪些类型?通过改变酶必需基团的化学性质从而引起酶活力降低或丧失的作用称为的作用称为抑制作用,具有抑制作用的物质称为抑制剂。
类型:不可逆抑制剂、可逆抑制剂(竞争性抑制剂、非竞争性抑制剂、反竞争性抑制剂)24. 什么是糖酵解?图示糖酵解途径,并说明其生理意义。
1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程称为糖酵解。
(图示看书);生理意义:在满足机体对能量的需求和维持血糖恒定的方面具有重要的生理学意义。
25. 简述生物膜流体镶嵌模型。
流动镶嵌模型不仅强调了膜脂、膜蛋白的互动作用,还强调了膜的动态性质。
26. 简述磷酸戊糖途径的生物学意义。
1.戊糖磷酸途径生成的还原辅酶II(NADPH)可参与多种代谢反应。
2.戊糖磷酸途径中产生的核糖-5-磷酸是核酸生物合成的必需原料,并且核酸中的核糖的分解代谢也可通过此途径进行。
核糖类化合物还与光合作用密切相关。
3.通过转酮及转醛醇基反应使丙糖、丁糖、戊糖、己糖、庚糖相互转化。
4.在植物中赤鲜糖-4-磷酸与甘油酸-3-磷酸可合成莽草酸,后者可转变成多酚,也可以转变成芳香氨基酸如色氨酸及吲哚乙酸等。
27. 什么是DNA变性和复性?DNA变性后理化性质如何变化?变性:指双螺旋区氢键断裂,空间结构破坏,形成单链无规线团状态的过程。
复性:变性核酸的互补链在适当条件下重新缔合成双螺旋的过程。
变化:核酸变性后,260nm的紫外吸收值明显增加,即产生增色反应。
同时粘度下降,浮力密度升高,生物学功能部分或全部丧失。
28. 什么是蛋白质变性和复性?蛋白质变性后理化性质如何变化?蛋白质的变性:天然蛋白质受物理或化学因素的影响,其分子内部原有的高度规律性结构发生变化,致使蛋白质的理化性质和生物学性质都有所改变,但蛋白质的一级结构不被破坏。
蛋白质的复性:在适当条件下变性蛋白质可恢复其天然构象和生物活性。
变化:溶解度降低,易形成沉淀析出,结晶能力丧失,球状蛋白变性后分子形状也发生改变。
29. 说明括号中双糖所含单糖的种类、糖苷键的类型及有无还原性?(麦芽糖、蔗糖、乳糖和纤维二糖)单糖种类糖苷键还原性麦芽糖α-D-葡萄糖α-(1→4)糖苷键有乳糖α-D-葡萄糖、β-D-半乳糖β-(1→4)糖苷键有蔗糖α-D-葡萄糖α、β-(1→2)糖苷键无纤维二糖β-D-葡萄糖β-(1→4)糖苷键有30. 简述四大类生物大分子的组成。
蛋白质:由氨基酸组成,(C、H、O、N、S);核酸:戊糖、含氮碱、核苷、核苷酸(元素:C、H、O、N、P);糖类:多羟基醛或酮及其缩聚物和某些衍生物。