流量试验测试系统

流量试验测试系统

设备保养项目表设备名称:流量试验测试系统

超实用!试验检测管理系统

超实用!试验检测管理系统 文章内容检索重点:实验室管理系统、试验检测管理、实验室智能管理系统、实验室设备管理系统、可视化实验室、lims管理系统。 试验检测管理系统已经是一种与时俱进的代表,是一个企业是否能够跟上数据时代的一种标志。企业要想向前发展,数据才是制胜关键。数据管理的好,分析的好就会给企业前进的道路带来顺利。 什么是试验检测管理系统?试验检测管理系统产品生命周期管理(PLM)的组成部分,能帮助企业组建一个准确一致的试验数据资源库,这个资源库管理了试验数据以及围绕试验过程的相关信息。功能强大的辅助工具能够帮助用户高效扩展该系统,并对数据进行有效的分类、索引和计算,提高数据的利用率。 试验检测管理系统是整个企业信息化方案的重要组成部分,因此必然需要同其他IT系统实现信息集成,实现企业内部各种信息的无缝集成,避免形成信息孤岛现象。一般来说,

需要同试验数据管理系统进行集成的系统主要包括产品数据管理(PDM)系统、办公自动化(OA)系统、企业级安全认证(CA)系统等。 试验检测管理系统_TDM系统 许多企业开始关注TDM这一解决方案也进行了各种尝试。然后,大家很快发现经过旷日持久开发出来的TDM并不能达到预期的效果,并存在稳定性和可扩展性等诸多问题。究其原因是因为不同的企业对试验数据管理的需求各不相同,采用定制开发的技术手段所建设的TDM必然不能满足试验数据管理的复杂性和多变性。 NewteraTDM为企业提供了平台化的试验数据管理系统,采用全配置的方式为用户构建量身定制且卓越而久远的TDM系统。通过对NewteraTDM一次投入,不但可以满足企业现有的业务需要,还可以满足未来企业业务拓展的需要,避免建设后又推到重来的情况发生。 试验检测管理系统功能 TDM可以高效地整合各类试验资源,实现对试验计划、试验任务、试验资源、综合信

调节阀流量特性测试

过程控制系统实验报告实验项目: 调节阀流量特性测试学号: 1404210114 姓名: 邱雄 专业:自动化 班级: 3 2017年11月28日

一、实验目得 1、掌握阀门及对象特性测试得方法。 2、了解S值变化对阀门特性得影响。 3、根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下得调节阀流量特性。 2.测定二阶液位对象得阶跃响应特性。 三、实验系统得P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1、接通监控操作站、数据采集站电源预热相关设备。 2、启动监控操作系统设置“采集模式”。选中“采集模式”中得“模拟采 集”。 3、进入调节阀流量测试界面。 4、进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参 数得参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给 定值”为90%,使泵得出口压力(调节器操作面板得测量值)为90%。 6、测试UV-101气动调节阀流量特性。在前面已经打开了相应得球阀, 并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、 95、98、100%增加时与由100、98、95…0%减少时对应得流量(FT-101)。 7、改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度, 使流量(FT-101)为原来(MV全开时)得50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀得流量特性数据如下: UV-1 83 8992 95 98 100

F T-101 93、09 69、85 42、98 28、75 24、81 21、21 15、47 12、43 9、57 7、01 5、04 表(1) U V-1 89 83 80 75 60 30 0 FT-101 5、04 5、12 5、30 5、36 5、4 10、51 12、97 17、87 31、67 59、65 93、06 表(2) 图(1) 调节球阀M10开度,使流量(FT -101)为原来(MV 全开时)得50%,调节阀 开度此时为43。所得数据如下: UV-1 83 89 92 95 98 100 F T-101 49、71 45、12 34、56 25、71 22、01 20、02 14、66 12、50 9、81 7、12 5、04 表(3)

文丘里流量计实验实验报告

文丘里流量计实验实验报告 实验日期:2011.12.22 一、实验目的: 1、学会使用测压管与U 型压差计的测量原理; 2、掌握文丘里流量计测量流量的方法和原理; 3、掌握文丘里流量计测定流量系数的方法。 二、实验原理: 流体流径文丘里管时,根据连续性方程和伯努利方程 Q vA =(常数) H g v p z =++22 γ(常数) 得不计阻力作用时的文丘里管过水能力关系式(1、2断面) h K p z p z g d d d Q ?=?????????? ??+-???? ? ?+???? ??-=γγπ221141222214 1 由于阻力的存在,实际通过的流量Q '恒小于Q 。引入一无量纲系数Q Q '=μ(μ称为流量系数),对计算所得的流量值进行修正。 h K Q Q ?=='μμ h K Q ?' =μ 在实验中,测得流量Q '和测压管水头差h ?,即可求得流量系数μ,μ一般在0.92~0.99之间。 上式中 K —仪器常数 g d d d K 214 141222???? ??-=π h ?—两断面测压管水头差 ??? ? ??+-???? ??+=?γγ2211p z p z h h ?用气—水多管压差计或电测仪测得,气—水多管压差计测量原理如下图所示。

1h ? 2h ? H 3 1H 2H 1z 2z 气—水多管压差计原理图 根据流体静力学方程 γγ22231311 p H h H h H H p = +?-+?--- 得 221121H h h H p p -?+?++=γγ 则 )()(222211212211γγγγp z H h h H p z p z p z +--?+?+++=??? ? ??+-???? ?? + 212211)()(h h H z H z ?+?++-+= 由图可知 )()(4321h h h h h -+-=? 式中,1h 、2h 、3h 、4h 分别为各测压管的液面读数。 三、实验数据记录及整理计算(附表) 文丘里流量计实验装置台号:2 d1=1.4cm d2=0.7cm 水温t=13.1℃ v=0.01226cm 2/s 水箱液面标尺值▽0=38cm 管轴线高程标尺值▽=35.7cm 实验数据记录表见附表 四、成果分析及小结: 经计算 K=17.60cm 2.5/s u=1.064 由实验计算结果看各组数据的相差较大,可以判断实验的精密度不高,实验 与理论值有偏差。误差来源主要有实验测量值的不准确,人为造成的主管因素较大。 五、问题讨论: 为什么计算流量Q 理论与实际流量Q 实际不相等? 答:因为实际流体在流动过程中受到阻力作用、有能量损失(或水头损失),而计算流量是假设流体没有阻力时计算得到的,所以计算流量恒大于实际流量。

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

调节阀流量特性测试

过程控制系统实验报告 实验项目:调节阀流量特性测试 学号:1404210114 姓名:邱雄 专业:自动化 班级: 3 2017年11月28 日

一、实验目的 1.掌握阀门及对象特性测试的方法。 2.了解S值变化对阀门特性的影响。 3.根据对象特点合理选择特性测试方法。 二、实验内容 1.测定不同S值下的调节阀流量特性。 2.测定二阶液位对象的阶跃响应特性。 三、实验系统的P&ID图(管道仪表流程图)、方块图P&ID图: 图(1)

方块图: 四、实验步骤 1.接通监控操作站、数据采集站电源预热相关设备。 2.启动监控操作系统设置“采集模式”。选中“采集模式”中的“模拟采集”。 3.进入调节阀流量测试界面。 4.进入压力调节器操作面板。设置调节器为反作用,比例、积分、微分参数的参考值分别为50%、4秒、0秒,点击选项“自动”进入自动调节。设定“给定值”为90%,使泵的出口压力(调节器操作面板的测量值)为90%。 6.测试UV-101气动调节阀流量特性。在前面已经打开了相应的球阀,并设置为350。分别记录设定值由0、30、60、75、80、83、86、89、92、95、98、100%增加时和由100、98、95…0%减少时对应的流量(FT-101)。 7.改变S值再测试其流量特性。保持UV-101全开,调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,即减小S值。重复第6步。 五、实验数据及结果 测试UV-101气动阀的流量特性数据如下: 表(1) 表(2)

图(1) 调节球阀M10开度,使流量(FT-101)为原来(MV全开时)的50%,调节阀开度此时为43。所得数据如下: 表(3) 图(2)

系统设计实验报告

系统设计实验报告——远程在线考试系统

目录软件需求说明书························1 引言··························· 1.1编写目的······················· 1.2背景························· 1.3定义························· 1.4参考资料······················· 2 程序系统的结构························ 3 程序设计说明·························

1引言 1.1编写目的 本文档的编写目的是为远程在线考试系统项目的设计提供: a.系统的结构、设计说明; b.程序设计说明; c. 程序(标识符)设计说明 1.2背景 随着网络技术的飞速发展,现在很多的大学及社会上其它的培训部门都已经开设了远程教育,并通过计算机网络实现异地教育。但是,远程教育软件的开发,就目前来说,还是处于起步的阶段。因此,构建一个远程在线考试系统,还是有很大的实际意义的。 根据用户提出的需求,本项目组承接该系统的开发工作 a.开发软件系统的名称:远程在线考试系统 b.本项目的任务提出者:福州大学软件学院 c.用户:各类大专院校学校、中小学校。 1.3定义 远程在线考试系统 远程在线考试系统是基于用Browser/Web模式下的,可以实现考试题库管理、多用户在线考试、自动阅卷功能的系统。

1.4参考资料 ?GB 8566 计算机软件开发规范 ?GB 8567 计算机软件产品开发文件编制指南?软件设计标准 ?《ASP与SQL-Server2000》清华大学出版社?《可行性研究报告》 ?《项目计划文档》 ? 2程序系统的结构 3程序1(标识符)设计说明

实验室检测系统性能验证

实验室检测系统性能验 证 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

实验室检测系统性能验证 检测系统是指完成一个检验项目所涉及的仪器、试剂、校准品、检验程序、保养计划等的组合。随着检验医学的发展和对质量要求的提高,人们开始认识和关注检测系统的重要性。新添置的检测系统,虽然仪器厂商已经提供了仪器性能的初步参数,但由于地区、实验室之间的差异,个实验室在仪器正式用来检测患者样品和发检验报告前,应重新进行性能评价。这是保证检验质量的一个重要措施,也是实验室认可的要求。实验室如使用的检测系统是公司的系列产品,即使用的是厂商提供的原检测系统,则只需做基本的性能验证。具体方法如下: 一.精密度验证 1.批内精密度:根据CLSI EP15-A文件,取2个水平的标本,同一批次尽可能短时间内连续重复测定20次,CV值必须小于或等于厂家的要求。标准差=方差的算术平方根=s=@sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1));CV%=SD/mean(x1...xn)*100%. 2.批间精密度:参照CLSIEP5-A文件,选取正常水平(Citrol-1)、异常水平(Citrol-2),分别分装成5份,冻存于-20℃冰箱内。每天取出2个水平的质控,分别测定2批次,每批次测2遍,2次间隔大于2h,连续测定5天,计算SD和CV,CV值必须小于或等于厂家的要求。 二.准确度验证 分别取2个水平的定值质控品(Citrol-1,Citrol-2)验证凝血四项的准确度,D-二聚体专用质控品验证其准确度,每个结果重复测定3次,结果应在质控品标识的可控范围内,偏倚应在厂家标识的±10%范围内;同时结合当年卫生部临检中心凝血室间质量评价结果进行评价。 三.检测限验证 只验证以浓度为结果的项目,将FBG和D-Dimer的标准品分别使用配套的OVB 稀释液稀释到厂家标识的浓度检测底限值附近,重复检测10次,记录结果,计算CV,应在厂家标识的±20%范围内,该浓度即为该项目的检测下限。 四.线性验证 只验证以浓度为结果的项目,选取1份接近预期上限的高值血浆样本(H),分别按100%、80%、60%、40%、20%、10%的比例进行稀释,每个稀释度重复检测3次,计算均值。将实测值与理论值作比较(偏离应小于10%),计算回归方程Y=aX+b,厂家要求a在1±范围内,相关系数r≥.

调节阀的特性及选择(DOC)

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

汽轮机高调门流量特性优化试验方案

汽轮机高调门流量特性优化 试验方案 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

皖能马鞍山发电有限公司2号机组汽轮机高调门流量特性优化试验方案 2013年4月10日

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 负责单位:安徽科讯电力技术服务中心 协作单位:皖能马鞍山发电有限公司 起日期:2013年4月10日14:00——20:00 负责人:张兴 工作人员:张兴、施壮 编写 ____________ 审阅 ____________ 审核____________ 批准____________

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 1、试验目的 为提高皖能马鞍山发电有限公司2号机组运行的安全性和经济性,根据合同要求,我单位计划于2013年4月10日对2号机组汽轮机高调门进行流量特性测试及优化,并完成2号机组汽轮机进行单/顺阀切换试验。 2、试验条件 (1)、机组在设计的正常工况下稳定运行,负荷能从额定负荷(汽机高调门全开时)至60%左右的额定负荷范围之间变化。 (2)、试验过程中由运行人员手动控制燃料量维持主汽压力稳定。 (3)、信号测量设备应满足精度要求并有效期内的检定合格证书。数据记录通过分散控制系统进行。 (4)、历史数据站工作正常,能完成对主汽压力、调节级压力、给定值、流量指令、阀位指令/开度、功率等参数的采集,并能生成*.csv或*.xls格 式文件,且数据分辨率满足测试要求。 3、试验内容 通过汽轮机高调门流量特性测试及参数优化试验,根据机组实际特性及标准流量参考线对多阀、单阀流量特性进行统一整定。 4、试验方法及步骤 各高调门单个流量特性测试

Web应用程序设计综合实验报告材料

Web应用程序设计综合实验报告题目:网上购物系统 学生姓名: XXX 学号: XXXXXXXXXXX 院(系): XXXXXXX 专业: XXXXXXXXXX 指导教师: XXXXXXXXXX 2014 年 7月 6 日

1、选题背景 随着计算机技术的发展和网络人口的增加,网络世界也越来越广播,也越来越来越丰富,网上商城已经成为网上购物的一股潮流。互联网的跨地域性和可交互性使其在与传统媒体行业和传统贸易行业的竞争中是具有不可抗拒的优势。在忙碌丰富的社会生活中,人们开始追求足不出户就能买到心仪的商品,是越来越多的上网爱好者实现购物的一种方式,对于企业来说,网络交易能大大提高交易速度、节约成本。在这种形势下,传统的依靠管理人员人工传递信息和数据的管理方式就无法满足企业日益增长的业务需求,因而开发了这样一个具有前台后台的网上商城系统,以满足购物者和企业的需求。 因此这次毕业设计题目就以目前现有的网上商城系统为研究对象,研究一般的网上商城的业务流程,猜测其各个功能模块及其组合、连接方式,并分析其具体的实现方式,最后使用Java加web服务器和数据库完成一个网上商城系统的主要功能模块。通过这样一个设计,可以提高自己Java编程的水准,也练习了怎样构建一个完整的系统,从系统的需求分析到设计,直至编码、测试并运行,熟悉并掌握一个完整的Web开发流程,为今后工作打下基础。 1.1设计任务 从以下几个方面实现网络商城的基本功能: 1、用户部分: (1)用户的登录和注册,用户必须注册才能购物,注册时系统会对注册信息进行验证,进入系统或是结账时,用户可以进行登录,登录时,如果密码错误,系统会进行验证并提示错误。 (2)浏览商品,实现用户可以在网络商店中随意浏览商品,商品按类别分类,方便用户查找不同类别的商品 (3)购物车管理,能实现添加商品、删除商品、更新商品的功能。 (4)生成订单,查看购物车后单击下一步则生成订单信息表,一旦提交订单,则购物车就不能被改变。 2、管理员部分:

流量计性能测试实验(DOC)

中南大学 仪器与自动检测实验报告 冶金科学与工程院系冶金专业班级 姓名学号同组者同班同学 实验日期2013 年 4 月 08 日指导教师 实验名称:流量计性能测试实验 一、实验目的 1.掌握流量计性能测试的一般实验方法; 2.了解倒U型压差计的使用方法; 3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线; 4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。 二、实验原理 流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。 1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量: V= a·?h /τ(1) 式中:V——管内流体的流量,L/s; a——体积系数,即计量筒内水位每增加1cm所增加的水的体积,本实验中a=0.6154 L/cm;

?h ——计量筒液位上升高度,?h = h1- h0,cm ; h1——计量筒内水位的初始读数,cm ; h0——计量筒内水位的终了读数,cm ; τ ——与?h 相对应的计量时间,s 。 测出与V 相对应的孔板流量计(或文丘里流量计)的压差读数R ,即可在直角坐标纸上标绘出对应流量计的V ~R 标定曲线。 其中, R ——孔板流量计(或文丘里流量计)的压差读数,cm 。 2.孔流系数C0与雷诺数Re 关系测定 流体在管内的流量和被测流量计的压差R 存在如下的关系: 3 00102??? ?=ρ P C A V (2) 其中,2 10-???=?g R P ρ (3) 2 00102??= Rg A V C (4) 式中: A0——孔板流量计的孔径(或文丘里流量计喉径)的截面积,m2,本实验中孔板孔d0=17.786mm ,文丘里流量计喉径d0=19.0mm ; C0——孔板流量计(或文丘里流量计)的孔流系数; g ——重力加速度,g=9.807m/s2。 又知 μ ρ du = Re (5) 式中: Re ——雷诺数; d ——水管的内径,m ,本实验中d =0.0238m ; ρ—— 流体的密度,kg/m3; μ—— 流体的粘度,Pa ·s 。 u ——水管内流体流速,m/s,

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

复合函数下火电330MW机组阀门流量特性试验过程分析 郭严昊

复合函数下火电330MW机组阀门流量特性试验过程分析郭 严昊 摘要:为了提高机组运行的稳定性和经济性,汽轮机组改造后需要对阀门的流 量特性重新进行试验,以某发电有限责任公司(以下简称“某公司”)330MW机组为例进行试验,该机组控制逻辑中阀位函数为复合函数,经过试验,得出了复合 函数下切合机组实际情况的阀门流量特性曲线,为同类型机组的试验提供参考。 关键词:火电机组;阀门;流量;特性 目前,大部分火电机组汽轮机采用数字电液控制系统(DEH)控制,DEH具 有阀门管理和单顺阀切换功能。由于各阀门制作安装的差异、长期运行的磨损、 检修改造过程中设备和组态的变动,或者是设计行程和实际行程不一致等原因, 都可能导致阀门流量和原来流量的特性曲线不一样[1]。如果汽轮机阀门流量特性 曲线与阀门实际流量特性不符,重叠度设置不合理,在机组变负荷和一次调频时,可能出现负荷突变和调节缓慢的问题[2],在单阀/顺序阀切换时,可能因切换前 后相同负荷指令下蒸汽流量不同而引起机组负荷大幅波动。 阀门流量特性曲线是阀门开度与通过阀门流量的对应关系,如果与实际流量 曲线相差较大,在机组变负荷和一次调频时可能会出现负荷突变和调节缓慢的问题。某厂330MW机组大修改造后为了提高机组的运行稳定性和经济性,重新对 阀门的流量特性进行了试验,计算出切合机组实际情况的阀门流量特性曲线,使 机组在单阀/顺序阀切换过程更平稳,负荷扰动更小,AGC调节品质更高,主汽温度、主汽压力等参数更为稳定。 1 设备概况 某公司汽轮机为上海汽轮机有限公司生产的N330-16.7/537/537型亚临界一次中间再热、单轴、双缸双排汽、凝汽式汽轮机,高中压部分采用合缸结构,高压汽 缸为双层缸,中压汽缸为单层缸,低压缸采用双流反向三层缸结构。高压通流部分 由1级单列调节级(冲动式)和14级压力级(反动式)所组成。高压喷嘴组安 装于蒸汽室,14级隔板均装于高压静叶持环上,高压静叶持环由汽缸支承。主蒸 汽经过布置在高中压缸两侧的2个主汽阀和4个调节汽阀从位于高中压缸中部的 上下各2个进汽口进入蒸汽室和调节级,然后再流经高压缸各级。 分散控制系统(DCS)是某控制工程有限公司生产的XDPS400+分散控制系统。DCS功能包括单元机组数据采集系统(DAS)、模拟量控制系统(MCS)、协调控制系统(CCS)、燃烧管理系统(BMS)、顺序控制系统(SCS)、旁路控制系统(BPS)、吹灰程序控制系统、厂级监控信息系统(SIS)以及发电机、变压器组 和厂用电控制功能等;DCS系统由DPU及其组件、OPU操作员站、以太网总线、 工程师站等构成。 汽轮机电液控制系统(DEH)采用了某控制工程有限公司的DEH控制系统实现其控制功能,由两个控制柜(DPU 11/31、DPU12/32)、一套DEH工程师工作站和 一套DEH操作员站组成。DEH系统的执行机构包括4个高压调节阀油动机(GV)、2个高压主汽阀油动机(TV)、2个中压主汽阀油动机(RSV)和2个中压调节阀油动机(IV)。其中高压调节阀、中压调节阀、高压主汽阀油动机由电液伺服阀实现连续控制;中压主汽阀油动机由电磁阀实现二位控制。 2 采集原始阀门流量特性数据 试验开始前建立趋势组,包含的参数有:DEH负荷设定、总阀位指令、机组 功率、调节级压力、主汽压力、主汽温度、GV1~GV4阀位输出指令、GV1~GV4

流量计实验报告

流量计实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:成绩: 班级:学号:姓名:教师:李成华 同组者: 实验三、流量计实验 一、实验目的(填空) 1.掌握孔板、文丘利节流式流量计的工作原理及用途; 2.测定孔板流量计的流量系数 ,绘制流量计的校正曲线; 3.了解两用式压差计的结构及工作原理,掌握其使用方法。 二、实验装置 1、在图1-3-1下方的横线上正确填写实验装置各部分的名称: 本实验采用管流综合实验装置。管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图1-3-1示。

F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路 图1-3-1 管流综合实验装置流程图

说明:本实验装置可以做流量计、沿程阻力、局部阻力、流动状态、串并联等多种管流实验。其中V8为局部阻力实验专用阀门,V10为排气阀。除V10外,其它阀门用于调节流量。 另外,做管流实验还用到汞-水压差计(见附录A)。 三、实验原理 1.文丘利流量计 文丘利管是一种常用的量测有压管道流量的装置,见图1-3-2属压差式流量计。它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的管道上。在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,就可计算管道的理论流量Q ,再经修正得到实际流量。 2.孔板流量计 如图1-3-3,在管道上设置孔板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上比压计,通过量测两个断面的测压管水头差,可计算管道的理论流量

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的围之,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

节流机构流量特性试验台的研制_张保青

文章编号:1005)0329(2004)08)0054)03 节流机构流量特性试验台的研制 张保青,马善伟,张川,陈江平,陈芝久 (上海交通大学,上海200030) 摘要:从节流机构流量特性研究方法和研究现状出发,分析了目前节流机构流量特性研究存在的问题,并介绍了基于/液环法0的节流机构流量特性试验台。与传统试验方法相比,该试验台具有测试范围广、系统稳定性好、投资费用少、节能等优点。 关键词:节流机构;流量特性;试验台 中图分类号:T B65文献标识码:A Development of Test Bench on Flow Characteristic of the Throttle Mechanism ZHANG Bao-qing,MA Shan-wei,ZHANG Chuan,CHEN Jiang-ping,C HE N Zh-i jiu (Shanghai Jiaotong Uni versity,Shanghai200030,China) Abstract:The method and status on flow characteristic of the throttle mechanis m are presented,moreover,the problems on reseaching the throttle mechanism at present are analyzed,and a new test bench based on liquid ring method(LRM)is https://www.360docs.net/doc/037131654.html,pared to the traditional method,LRM has great advantage on wide test range,better s tability,less i nvestments and energy-saving. Key words:the throttle mechanis m;flow characteristic;test platform 1前言 节流机构是制冷系统中最重要的部件之一,它直接控制着蒸发器制冷剂的流量和蒸发器出口的过热度。节流机构与系统其它主要部件的良好匹配是改善系统运行并适应系统负荷变化的基础: (1)在压缩式制冷系统/四大件0的研究中,最薄弱的是节流元件,尚有不少盲区。影响节流机构流量系统的因素:工质的特性、工质的流动情况、几何参数等,众家说法不一。莉井浩对系统进行了研究[1],并得出线性阀的流量系数不仅与工质的物性有关,还与阀的几何参数有关,而Davies 和Daniels则认为流量系数仅仅与工质的流动情况有关[2]。 (2)各种先进的控制算法应用于制冷系统,最终亦是通过执行机构即节流机构施加到对象中[3]。当选用电子膨胀阀作为系统的节流机构时,膨胀阀自身的流量特性则是改善系统控制特性,补偿蒸发器非线性最重要的因素之一。 (3)试验研究是节流机构流量特性研究最常用也是最为有效的手段,目前,常用的研究方法主要有氮气法和气环法等。由于氮气与制冷剂在通过节流机构时存在相变与否的本质差别,理论研究与试验验证均表明此法存在着较大偏差(约大20%),气环法则由于更换制冷剂较麻烦,一般仅仅适用于一种制冷剂的研究,因此有必要寻求新的实验研究方法。 (4)由于电子膨胀阀具有可以按预置的调节规则动作、调节范围宽、调节反应快等优点,逐渐应用于各种制冷系统,因此开发、研制具有良好流量特性且能与各种制冷系统匹配的电子膨胀阀显得非常重要。 鉴于这些问题我们研制了基于/液环法0的节流机构流量特性试验台,它具有测试范围广、操作简单、工况容易稳定、更换制冷剂方便、节能等优 收稿日期:2003)09)22

软件测试技术实验报告——图书管理系统测试报告

图书管理系统测试报告

1简介 1.1编写目的 本测试报告描述了对图书管理系统的压力测试和对登录和注册功能的黑盒 测试,根据测试结果指导开发人员对软件产品进行完善和优化,给用户提供一份 客观的软件质量报告。本方案的主要读者为软件开发项目管理者、软件工程师、系统维护工程师、测试工程师、客户代表等。 测试流程: 制定测试计划开发测试脚本创建测试场景分析测试结果监视性能指标运行场景测试1.2系统简介 项目名称:图书管理系统 项目简介:本项目探讨了一个基于J2的图书管理系统的设计和实现。基于 J2下的图书管理系统用语言开发处理程序,选择强大的作为开发工具,用交互式 网站界面设计技术( )开发前台界面,后台数据库选择。本系统实现了基本的对书 籍信息、读者信息、借阅信息、归还信息、查询信息进行管理和操作等功能,可 以满足普通用户、管理员的需求。

1.3术语和缩略词参考资料 1)响应时间:客户端从给服务器发送一个请求开始直到完全接受了服务器反馈信息为止,这期间所用的时间称为响应时间。 2)吞吐率:即应用系统在单位时间内完成的交易量,也就是在单位时间内,应用系统针对不同的负载压力,所能完成的交易数量。 3)点击率:每秒钟用户向服务器提交的请求数。 4)图书管理系统项目开发计划,需求规格说明书,概要设计说明书,详细设计说明书。 5)黑盒测试:英文是。又称功能测试或者数据驱动测试。 6)等价划分测试:等价划分测试是根据等价类设计测试用例的一种技术。

2测试概要 2.1测试用例设计 2.1.1黑盒测试: 1)边界值法 用边界值法设计用户注册测试用例: a)先等价划分 b)边界值分析

并联管路特性及流量分配实验(总)

实验四 并联管路特性及流量分配实验 实验类型: 综合性实验 学 时:2 适用对象:热能与动力工程专业、建筑环境与设备工程专业 一、实验目的 1、了解并联管路特性及并联管路中阀门开度变化时的流量分配情况; 2、掌握并联管路特性曲线(h w -q V 或p w -q V )的绘制方法,明确各支路存在流量偏差的原因。 二、实验要求 1、在并联管路中,当各支路流量控制球阀处于全开时,绘制各支路的管路特性曲线和并联管路特性曲线;计算采用不同方法测量总流量的相对误差,分析各支路存在流量偏差的原因。 2、将任意三条支路上的流量控制球阀完全关闭,绘制其余两支路流量控制球阀处于两种不同开度时各支路的管路特性曲线和两支路并联管路特性曲线,分析管路特性曲线在流量控制球阀处于不同阀门开度时的变化趋势及其原因; 3、比较不同支路的阻力特性曲线,并分析存在差别的原因。 三、实验原理 1、并联管路特点 (1)并联管路的流动损失特性:并联管路中各支路的流动损失相等,即 h w = h w i (m ) (41) (2)并联管路的流量特性:并联管路的总流量等于各支路的流量之和,即 1 N V V i i q q ==∑ (m 3/s ) (42) 而对于每一支路,其能量损失可按串联管路计算,故 2 2 w 1 1 () 2N M j i i j k i Vi j k j l h k q d g υλζ===+=∑∑ (m) (43a ) 或者以压强损失表示为, '2 w i wi i Vi p gh k q ρ?== (Pa) (43b ) 以上公式即为并联管路的水力计算式,利用这些公式,即可解决并联管路中流量分配,水头计算以及管径选择等问题。 2、参数测量 在本实验中,并联管路的总流量V q 采用三角堰流量计测量,按下式计算 5 2 1.4tg 2 V q H θ =? (m 3 /s ) (44) 式中 q V ——并联管路的总流量,m 3 /s ;

自动控制完整系统综合实验综合实验报告

综合实验报告 实验名称自动控制系统综合实验 题目 指导教师 设计起止日期2013年1月7日~1月18日 系别自动化学院控制工程系 专业自动化 学生姓名 班级 学号 成绩

前言 自动控制系统综合实验是在完成了自控理论,检测技术与仪表,过程控制系统等课程后的一次综合训练。要求同学在给定的时间内利用前期学过的知识和技术在过程控制实验室的现有设备上,基于mcgs组态软件或step7、wincc组态软件设计一个监控系统,完成相应参数的控制。在设计工作中,学会查阅资料、设计、调试、分析、撰写报告等,达到综合能力培养的目的。

目录 前言 (2) 第一章、设计题目 (4) 第二章、系统概述 (5) 第一节、实验装置的组成 (5) 第二节、MCGS组态软件 (11) 第三章、系统软件设计 (14) 实时数据库 (14) 设备窗口 (16) 运行策略 (19) 用户窗口 (21) 主控窗口 (30) 第四章、系统在线仿真调试 (32) 第五章、课程设计总结 (38) 第六章、附录 (39) 附录一、宇光智能仪表通讯规则 (39)

第一章、设计题目 题目1 单容水箱液位定值控制系统 选择上小水箱、上大水箱或下水箱作为被测对象,实现对其液位的定值控制。 实验所需设备:THPCA T-2型现场总线控制系统实验装置(常规仪表侧),水箱装置,AT-1挂件,智能仪表,485通信线缆一根(或者如果用数据采集卡做,AT-4 挂件,AT-1挂件、PCL通讯线一根)。 实验所需软件:MCGS组态软件 要求: 1.用MCGS软件设计开发,包括用户界面组态、设备组态、数据库组态、策略组态等,连接电路, 实现单容水箱的液位定值控制; 2.施加扰动后,经过一段调节时间,液位应仍稳定在原设定值; 3.改变设定值,经过一段调节时间,液位应稳定在新的设定值。

相关文档
最新文档