常见的资源卫星影像数据区别

合集下载

常见国产卫星遥感影像数据的简介

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司常见国产卫星遥感影像数据的简介本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。

中国资源卫星应用中心产品级别说明◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。

◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。

其中:■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级!◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。

◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可!■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。

国产卫星一、GF-3(高分3号)1.简介2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。

高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。

2.数据时间2016年8月10日-现在3.传感器SAR:1米二、ZY3-02(资源三号02星)1.简介资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。

这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,缩短重访周期和覆盖周期,充分发挥双星效能,长期、连续、稳定、快速地获取覆盖全国乃至全球高分辨率立体影像和多光谱影像。

最全的常见的资源遥感卫星及其数据

最全的常见的资源遥感卫星及其数据

最全的常见的资源遥感卫星及其数据遥感基础与应⽤——常见的资源遥感卫星及其数据学院:资源与环境学院专业:地理信息系统班级:XX级2班学号:201XXXXX姓名:XXX指导教师:XXX时间:2013-4-29常见的资源遥感卫星及其数据前⾔:遥感卫星(remote sensing satellite )⽤作外层空间遥感平台的⼈造卫星。

⽤卫星作为平台的遥感技术称为卫星遥感。

通常,遥感卫星可在轨道上运⾏数年。

卫星轨道可根据需要来确定。

遥感卫星能在规定的时间内覆盖整个地球或指定的任何区域,当沿地球同步轨道运⾏时,它能连续地对地球表⾯某指定地域进⾏遥感。

所有的遥感卫星都需要有遥感卫星地⾯站,卫星获得的图像数据通过⽆线电波传输到地⾯站,地⾯站发出指令以控制卫星运⾏和⼯作。

常见的遥感卫星有美国陆地卫星、法国SPOT卫星、中巴资源卫星等等。

⼀、美国陆地卫星(Landsat系列)陆地卫星(Landsat)是美国地球资源卫星系列。

卫星作⽤是美国⽤于探测地球资源与环境的系列地球观测卫星系统,曾称作地球资源技术卫星(ERTS)。

按传感器可分为三类:1.RBVRBV是陆地卫星1~3号上携带的⼀套传感器,其全称是反束光导管摄像仪,简称RBV.在Lansat-1,Lansat-2上有三个波段:RBV1波段:蓝绿波段,波长范围是0.475µm~0.575µm;RBV2波段:红黄波段,波长范围是0.580µm~0.680µm;RBV3波段:红外波段,波长范围是0.690µm~0.830µm;在Lansat-3上RBV改成两台并列式,只有⼀个全⾊⼯作波段0.505µm~0.705µm,Lansat-1,Lansat-2的RBV的空间分辨率为80m,⽽Lansat-3上的RBV全⾊图像分辨率为40m。

犹豫RBV的图像质量不如MSS,故从Landsat-4开始取消了这种传感器。

不同卫星区别

不同卫星区别

美国陆地卫星(Landsat)TM和MSS遥感数据2009-08-05 10:131.几种常见遥感数据介绍A. 美国陆地卫星(Landsat)TM和MSS遥感数据美国于1961年发射了第一颗试验型极轨气象卫星,70 年代在气象卫星的基础上研制发射了第一代试验型地球资源卫星(Landsat-1、2、3) 。

这三颗卫星上装有返束光导摄像机和多光谱扫描仪MSS,分别有3个和4个谱段,分辨率为80m 。

各国从卫星上接收了约45万幅遥感图像。

80年代,美国分别发射了第二代试验型地球资源卫星 (Landsat—4\5)。

卫星在技术上有了较大改进,平台采用新设计的多任务模块,增加了新型的专题绘图仪TM,可通过中继卫星传送数据。

TM的波谱范围比MSS大,每个波段范围较窄,因而波谱分辨率比MSS图像高,其地面分辨率为30m (TM6的地面分辨率只有120m)。

Landsat—5卫星是1984年发射的,现仍在运行。

90年代,美国又分别发射了第三代资源卫星(Landsat-6,7)。

Landsat-6卫星是1993年发射的,因未能进入轨道而失败。

由于克林顿政府的支持,1999年发射了Landsat-7卫星,以保持地球图像、全球变化的长期连续监测。

该卫星装备了一台增强型专题绘图仪ETM+,该设备增加了一个15m分辨率的全色波段,热红外信道的空间分辨率也提高了一倍,达到 60m 。

美国资源卫星每景影像对应的实际地面面积均为185km × 185km,16天即可覆盖全球一次。

landsat TM、ETM+、MSS 数据免费下载地址:/ortho/index.htm/index.shtml。

卫星影像价格之高分一号、高分二号、资源三号、高分六号卫星价格

卫星影像价格之高分一号、高分二号、资源三号、高分六号卫星价格

高分一号、高分二号、资源三号、高分六号卫星价格卫星类型价格(元/景)最小起订高分一号1号星1500整景高分一号234星2500整景高分二号3000整景/面积资源三号3000整景高分六号卫星3000整景备注景是一幅卫星影像的通俗讲法,例如,一景高分一号1号卫星影像,大小为32.5×32.5公里。

高分一号234星是60公里×60公里高分二号是23.5公里×23.5公里资源三号是50公里×50公里高分六号卫星是90公里×90公里另:卫星是沿着设定的卫星轨道拍摄,拍摄的位置及大小是固定的备注说明:北京揽宇方圆200多颗遥感卫星数据资源,各卫星都有详细的价格体系表,不同行业根据自己遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星影像的价格则主要由以上参数决定。

北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,遥感行业的国家高新技术企业,整合全球200多颗遥感卫星数据资源,遥感卫星影像数据贯穿中国1960年至今的所有商业卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。

分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。

公司拥有完全自主知识产权、高性能、满足大规模遥感数据集中处理的空间大数据管理与服务系统。

架构流程化的处理方案,满足海量遥感数据的集中处理需求。

技术能力优势:1:北京揽宇方圆国内老品牌卫星数据公司,国家遥感行业的高新技术企业,公司注册经营时间久,行业口碑相传,与1800多个行业国家级用户建立了长期稳定的合作关系,在遥感用户当中享有较高的地位。

2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,专业统一的自主遥感卫星数据查询网址。

卫星影像常见参数介绍

卫星影像常见参数介绍

北京揽宇方圆信息技术有限公司一、光学卫星1.GeoEye-12、IKONOS3、WorldView-14、QuickBird5、FORMOSAT-26、OrbView-27、OrbView-38、ASTER9、Landsat系列10、IRS系列11、RADARSAT-112、日本JERS-1卫星13、ERS卫星14、CBERS-1中巴资源卫星15、法国SPOT卫星16、欧空局ENVISAT卫星17、ALOS卫星18、RapidEye卫星星座19、资源02B卫星介绍二、雷达卫星1、COSMO-Skymed高分辨率雷达卫星2、TerraSARFORMOSAT-2波谱范围18、RapidEye卫星星座RapidEye是一家由国际标准化组织认证的空间地理信息提供商,主要面向全球客户提供包括农业、林业、能源、基础建设、政府部门、安防及突发事件等行业领域方面的解决方案。

RapidEye依靠其专业的卫星专家队伍和一个由5颗卫星组成并且每天能够下载超过4百万平方公里高分辨率、多光谱图像的卫星星座RapidEye及其地面处理和数据存档能力,能够面向客户提供低成本的定制服务。

2008年8月29日,RapidEye5颗对地观测卫星已成功发射升空,目前运行状况良好。

RapidEye产品类型类别1B RapidEye基础产品——经过辐射校正和传感器校正,运用了卫星姿态和星历数据。

3A RapidEye正射产品——经过辐射校正、传感器校正和几何校正,所有产品都采用了DTED1级SRTM DEM或更高精度的DEM。

采用适当的地面控制点该产品可以满足6m精度(1sigma或12.7m CE90),该产品的最高精度可以达到1:25,000NMAS制图标准。

4A RapidEye DEM产品——由合适的影像对提取生成,处理过程在RapidEye地面处理系统里完成。

该产品空间分辨率为30米,主要为需要建立DEM或者需要最新DEM数据的客户设计。

2米分辨率卫星影像图-高分一号、资源三号、高分六号卫星影像选择

2米分辨率卫星影像图-高分一号、资源三号、高分六号卫星影像选择

北京揽宇方圆信息技术有限公司2米分辨率卫星影像图-高分一号、资源三号、高分六号卫星影像选择北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。

遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国领先的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。

1:购买遥感数据请从大型遥感卫星数据公司官方渠道购买(北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证)。

2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网址,全球公众都可以查询,有45颗遥感卫星数据资源,卫星数据资源多。

3:如果某些公司的报价与本公司价格相差很大,您可以随时致电北京揽宇方圆了解是否是正常卫星影像价格,北京揽宇方圆提供全部卫星样例数据下载。

4:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验,12项自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

5:北京揽宇方圆是国家认定的高新技术企业,遥感卫星数据行业领军企业。

6:北京揽宇方圆通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。

一、卫星类型(1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号。

常用卫星数据介绍

常用卫星数据介绍

国外卫星有:WorldView 1/2/3,GeoEye1/2,RapidEye,IKONOS,QuickBird,Spot5,Spot6,Landsat-5 TM,Landsat-7 ETM+,Landsat-8 ALI,Pleiades,Alos,terrasar-x,radarsat-2,全美锁眼卫星全系列(1960-1980),印度Cartosat-1(又名IRA-P5)国内卫星有:HJ-A/B CCD,ZY-02-C,ZY-3,CBERS-3/4,天绘系统,高分系列,资源系列等一、Landsat7卫星的TM/ETM+数据介绍TM是一种遥感器,搭载在美国陆地卫星Landsat系列卫星上。

TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。

有7个波段Landsat-7,星上携带专题制图仪ETM,ETM具有8个波段,其中1-5波段和7波段是多光谱波段,空间分辨率是30米,第六波段是热红外波段,空间分辨率是120米,第8波段为全色波段,分辨率为15米。

景宽185公里,景面积为34225平方公里。

波段介绍:1.TM1 0.45-0.52um,蓝波段对水体穿透强, 该波段位于水体衰减系数最小,散射最弱的部位(0.45—0.55um),对水体的穿透力最大,可获得更多水下信息,用于判断水深,浅海水下地形,水体浑浊度,沿岸水,地表水等;能够反射浅水水下特征,区分土壤和植被、编制森林类型图、区分人造地物类型,分析土地利用。

对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。

2.TM2 0.52-0.60um,绿波段对植物的绿反射敏感该波段位于健康绿色植物的绿色反射率(0.54—-0.55um)附近;对健康茂盛植物的反射敏感, 主要观测植被在绿波段中的反射峰值,这一波段位于叶绿素的两个吸收带之间,利用这一波段增强鉴别植被的能力对绿的穿透力强, 探测健康植被绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种,植被类型和评估作物长势对水体有一定的穿透力,可反映水下特征,水体浑浊度,水下地形,沙洲,沿岸沙地等。

卫星影像数据级别

卫星影像数据级别

标准镶嵌图像
5级
无缝镶嵌图像产品。
产品
广播数据产品 快视图像数据,对用户广播。

北京揽宇方圆信息技术有限公司
卫星影像数据级别
北京揽宇方圆信息技术有限公司
北京揽宇方圆信息技术有限公司,随着遥感卫星技术的普及与开放,各种 遥感影像在城市和区域研究中得到了越来越广泛的应用。北京揽宇方圆国家 遥感行业的高新技术企业,帮助我们低成本获取高质量卫星影像图提供了一 条捷径。
选择卫星数据源 一、卫星类型
(1)光学卫星:worldview1、worldview2、worldview3、worldview4、 quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat 系例、 spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫 星、landsat(etm)、rapideye、alos、kompsat 系例卫星、planet 卫星、北 京二号、高景一号、资源三号、高分一号、高分二号、高分六号、环境卫 星。
(2)雷达卫星:terrasar-x、radarsat-2、alos 雷达卫星、高分三号卫 星、哨兵卫星
(3)侦查卫星:美国锁眼卫星全系例(1960-1980) (4)高光谱类卫星:高分五号、环境小卫星、ASTER 卫星、EO-1 卫星
陆地观测卫星地面系统处理和生产的标准产品类型分为多光谱数据标准产品、高光谱数据 标准产品、SAR 数据标准产品。
校正处理,形成具有地图投影的图像产
产品
品。条带和扫描模式均提供。
经过成像处理、辐射校正和几何校正,
几何精校正产 同时采用地面控制点改进产品的几何精

常用雷达卫星影像数据介绍

常用雷达卫星影像数据介绍

北京揽宇方圆信息技术有限公司常用雷达卫星影像数据介绍(1)中国GF-3号卫星高分3号(GF-3)雷达卫星由中国航天科技集团公司五院抓总研制,2016年8月发射升空,是我国首颗分辨率达到1米的C频段多极化合成孔径雷达卫星,具有高分辨率、大成像幅宽、多成像模式等特点,既能实现大范围普查,也能详查特定区域,可满足不同用户对不同目标成像的需求。

(2)德国TerraSAR-X卫星TerraSAR-X卫星是德国宇航中心(DLR)与EADS Astrium公司为了TanDEM-X全球测高任务而联合开发的两颗卫星,雷达工作于X频段,两颗TerraSAR-X卫星分别于2007年6月和2010年6月发射升空,双星编队组网后利用InSAR技术在三年内完成了全球DEM测量。

在顺利完成测高任务的基础上,TerraSAR-X卫星在太空中还开展了大量的科学试验,高质量的雷达图像数据在其他领域也获得了很多应用。

(3)意大利COSMO-SkyMed卫星COSMO-SkyMed是意大利航天局(ASI)和意大利国防部(MoD)共同研发的X频段高分辨率雷达卫星星座,整个星座由四颗卫星编队组成,2007年6月发射第一颗卫星,2010年11月发射了第四颗卫星,目前COSMO-SkyMed的4颗卫星已全部在轨运行,是一个军民两用的对地观测系统。

(4)加拿大RadarSat-2卫星RadarSat-2卫星由加拿大空间署(CSA)与MDA公司合作研制与管理,于2007年12月发射升空,雷达工作于C频段。

RadarSat-2是RadarSat-1卫星的后继星,在图像获取能力及性能方面有了长足的进步。

RadarSat-1/2卫星将很多成像模式首次带入太空,在雷达数据运营管理模式上也有较大的创新,是一颗引领性的卫星,在中国GF-3号卫星身上可以看到很多RadarSat-1/2的影子。

(5)日本ALOS-PalSAR卫星ALOS先进对地观测系列卫星由日本宇宙航空研究开发机构(JAXA)研制与管理,载有三个传感器:全色遥感立体测绘仪(PRISM)、先进可见光与近红外辐射计(AVNIR)和L频段全极化合成孔径雷达(PALSAR)。

2国内常用卫星遥感数据介绍(光学)

2国内常用卫星遥感数据介绍(光学)

波长
多光谱
绿: 510 nm ---580 nm 红: 655 nm ---690 nm
近红外: 780 nm ---920 nm
定位精度(无控制 点) 幅宽 成像角度 重访周期
单片影像日获取能 力
立体 CE90: 4m;LE90:6m
单片 CE90:5m 星下点15.2 km ;单景225 k㎡(15×15 km) 可任意角度成像 2-3天 全色:近700,000 k㎡ / 天 (相当于青海省的面积)
EROS-B 主要优势
➢ 高分辨率 : 0.7m
➢ 影像采集时间: 13:00~14:00 (降交点地方太阳时) * EROS-B卫星影像采集时间不同于IKONOS、 QuickBird等其它 商用高分辨率卫星 (IKONOS、QB采集时间:10:00) → 扩展了紧急需求下的数据获取可能性
➢ 提供最新获取数据、存档数据、立体像对

位精

(圆

有地面控制点时:2m
有精度传输服务器时:3--3.5米
3
WorldView-1样例数据
4
二.QuickBird卫星影像数据
发射时间 发射单位 发射工具 发射位置 轨道高度 轨道倾角 速度 过境时间 轨道周期 回归周期 扫描宽度 精度 像元存储位数 分辨率
影像波段
产品类型
2001年10月18日 美国Digitalglobe公司 Boeing Delta II Vandenberg空军基地,加利福尼亚 450km 97.2度,太阳同步 7.1km/s 地方时10:30 a.m. 93.5分钟 1-6天,视纬度位置(偏离星下点30°) 16.5km×16.5km星下点处 水平23米(CE90%),垂直17米(LE90%)

介绍熟悉的卫星影像及主要特征

介绍熟悉的卫星影像及主要特征

一、卫星影像概述卫星影像是通过人造卫星对地球表面进行拍摄和传输的图像数据。

它可以提供全球范围内的地表信息,为地理信息系统、环境监测、军事侦察等领域提供重要数据支持。

卫星影像具有全球覆盖、高分辨率、多波段、动态监测等特点,被广泛应用于土地利用规划、城市建设、资源勘查等领域。

二、卫星影像的主要特征1.全球覆盖卫星影像可以覆盖整个地球的任何区域,无论是陆地、海洋、冰雪还是沙漠等地形,都能够进行全方位的观测和记录。

2.高分辨率卫星影像具有较高的空间分辨率,可以清晰地展现地表的细微特征,如建筑物、道路、植被等,为地理信息系统的制图和分析提供了重要的数据基础。

3.多波段卫星影像可以通过不同的波段拍摄图像,包括可见光、红外线、微波等,可以对地表物体的反射、辐射等特性进行多角度观测和分析,为各种科学研究和应用提供了多维度的数据支持。

4.动态监测卫星影像拍摄和传输具有连续性和实时性,可以对地表的变化、自然灾害、环境污染等情况进行动态监测和记录,为灾害预警、环境保护等提供了及时的数据支持。

5.精准定位卫星影像可以通过GPS技术进行精准定位,确定图像的地理位置和空间坐标,为地图制作、导航定位等提供准确的空间参考。

6.数据共享卫星影像数据可以通过互联网等方式进行快速传输和共享,为各种应用领域提供了广泛的数据支持,促进了信息的共享和交流。

三、常见卫星影像产品1.高分辨率卫星影像高分辨率卫星影像具有较高的空间分辨率,能够清晰地展现地表的细节特征,如DigitalGlobe公司的WorldView系列卫星影像。

2.中分辨率卫星影像中分辨率卫星影像具有适中的空间分辨率,适用于中小尺度地理信息系统制图、区域规划等领域,如Landsat系列卫星影像。

3.低分辨率卫星影像低分辨率卫星影像用于全球范围的地表监测和环境检测,具有较大的覆盖范围,如NOAA系列卫星影像。

4.多波段卫星影像多波段卫星影像可以通过不同波段的图像数据进行多角度观测和分析,如Sentinel系列卫星影像。

近年来国内外发射的主要资源卫星的技术参数和主要用途

近年来国内外发射的主要资源卫星的技术参数和主要用途

近年来国内外发射的主要资源卫星的技术参数和主要⽤途近年来国内外发射的主要资源卫星的技术参数和主要⽤途Landsat陆地资源卫星Landsat系列卫星已连续观测地球达30年,⽬前只有1984年发射的Landsat-5和1999年发射的Landsat-7仍在运⾏,主要⽤来拍摄陆地遥感图像,涵盖了植物⼟壤⽣物等等。

LandSat- 8携带OLI(陆地成像仪)和TIRS(热红外传感器),TIRS收集地球两个热区地带的热量流失,以了解特别是美国西部⼲旱地区所观测地带⽔分消耗。

Landsat-5、Landsat-7主要参数Landsat-5波谱范围及相应的地⾯分辨率Landsat-7波谱范围及相应的地⾯分辨率:SPOT卫星SPOT系统从1986年开始迄今成功发射了SPOT-1、SPOT-2、SPOT-4、SPOT-5,主要⽤途是为制图和地球资源开发建⽴档案库和⼀个世界范围内可以利⽤的数据库;通过重复观测以改进对植被类型的识别和产量预报试验;为了进⾏图像判释和绘制1/250000⽐例尺的平⾯图以及按1/100000和1/50000的⽐例尺进⾏地图更新,建⽴感兴趣地区的⽴体像对档案库;在空中检验多任务飞⾏平台和线阵照相机。

SPOT主要参数SPOT波谱范围SPOT-5搭载探测器的分辨率和视场⽇本JER-1卫星JER-1被⽤于国⼟调查、农林渔业、环境保护、灾害监测等。

星上传感器为SAR。

JER-1主要参数中巴地球资源卫星(CBERS)中巴地球资源卫星(⼜称资源卫星⼀号)是我国的第⼀颗数字传输型资源卫星,星上三种遥感相机可昼夜观察地球,利⽤⾼码速率数传系统将获取的数据传输回地球地⾯接受站。

卫星设置多光谱观察、对地观察范围⼤、数据信息收集快,并宏观、直观,特别有利于动态和快速观察地球地⾯信息,兼有SPOT-1和Landsat -4的主要功能。

CBERS-1主要参数CBERS-1 传感器及波谱范围QuickBird卫星QuickBird卫星是美国DigitalGlobeg公司于2001年10⽉18⽇发射成功的⾼分辨率遥感卫星,空间分辨率达到了0.61⽶,是⽬前全球最⾼分辨率商业卫星,该卫星数据将对政府决策、城市规划、房地产开发、测绘、⼟地等提供巨⼤的参考和决策价值,可在农作物估产、灾害防治、农业规划等多⽅⾯发挥其积极作⽤。

主要卫星数据及特征

主要卫星数据及特征

主要卫星数据及特征1. NOAA卫星NOAA卫星是美国国家海洋大气局的第三代实用气象观测卫星,第一代称为“泰罗斯”(TIROS)系列(1960-1965年),第二代称为“艾托斯”(ITOS)/NOAA系列(1970-1976年),其后运行的第三代称为TIROS--N/NOAA系列。

NOAA的轨道是接近正圆的太阳同步轨道,轨道高度为870千米和833千米,轨道倾角为98.9°和98.7°,周期为101.4分钟。

NOAA的应用目的是日常的气象业务,平时有两颗卫星运行。

由于一颗卫星可以每天至少可以对地面同一地区进行两次观测,所以两颗卫星就可以进行四次以上的观测。

NOAA携带的探测仪器主要有高分辨率辐射计(AVHRR/2)和泰罗斯垂直分布探测仪(TOVS)NOAA(National Oceanic and Atmospheric Administration)隶属于美国商业部,其主要职能是负责管理全球海洋、大气、空间、太阳等数据的收集和相关研究工作,并将研究成果应用于科学研究,为美国社会及大众提供相关服务。

特别是制作灾害性天气警报、制作海洋、大气图表,引导海洋及沿海资源的合理开发和利用,研究改善维持人类生存的环境策略,及提高人们对环境的了解。

NOAA于1970年10月正式成立,成为联邦政府机构仅仅只有三十三年的历史,但其发展还是相当迅速的。

NOAA由包括国家天气局NWS(National Weather Service),相当于我国中国气象局,国家海洋局NOS(National Ocean Service), 国家渔业局NMFS(National Marine Fisheries Service), 国家环境卫星数据信息局NESDIS(National Environmental Satellite, Data and Information S ervice), 和NOAA研究机构NR(NOAA Research)五个主要机构提供相关服务,此外与NOAA合作的观测人员组成了一个超过一万人的网络,主要由全国的志愿者构成,这些人员也都通过专门培训,其观测的数据已经成为美国气候观测资料的一个重要组成部分,和来自NWS,美国海军、空军、FAA及世界其他各国气象部门的资料一起存放在北卡全球最大的气候数据中心NCDC(国家气候数据中心)。

所有遥感卫星数据资源参数及特点总结

所有遥感卫星数据资源参数及特点总结

所有遥感卫星数据资源参数及特点总结遥感卫星是一种利用卫星技术收集地球上的信息和数据的设备,它可以对地球上的陆地、水域和大气进行观测和监测。

遥感卫星数据资源非常丰富,包括了多个参数和特点。

以下是对其中一些常见的遥感卫星数据资源参数及特点的总结:1.光谱范围:遥感卫星可以通过测量不同波段的光谱信息来获取地球上的不同特征。

常见的光谱范围包括可见光、红外线和微波等。

不同波段的光谱范围可以提供不同的信息,比如可见光波段可以用于识别陆地和水域,红外线波段可以用于测量地表温度等。

2.空间分辨率:遥感卫星可以提供不同的空间分辨率,即在地球上观测的最小尺度。

空间分辨率决定了卫星观测到的地面细节的程度。

通常来说,较高的空间分辨率可以提供更精细的地表特征,但也会导致数据量增加和处理难度提高。

3.时间分辨率:遥感卫星可以提供不同的时间分辨率,即观测地球的时间间隔。

时间分辨率对于监测地球上的变化非常重要。

高时间分辨率可以提供更频繁的观测,有助于监测地球上的动态过程,比如冰川变化、植被生长和灾害监测等。

4.数据格式:遥感卫星数据可以有不同的格式,比如栅格数据和矢量数据。

栅格数据是以像素为单位的网格数据,适合于图像显示和处理。

矢量数据可以表示地理空间中的点、线、面等要素,适合于地理信息系统(GIS)的分析和建模。

6.数据处理:遥感卫星数据需要进行一系列的预处理和处理步骤,比如影像几何校正、辐射校正和分类等。

这些处理步骤可以提高数据质量和可用性,并提取出关键的地表信息。

总之,遥感卫星数据资源丰富多样,包括了光谱范围、空间分辨率、时间分辨率、数据格式、数据传输和数据处理等参数和特点。

这些参数和特点决定了遥感卫星数据的质量和适用范围,对于地球观测和监测具有重要意义。

随着遥感卫星技术的不断发展,我们可以期待更高分辨率、更频繁观测的遥感卫星数据资源的出现,为地球科学和环境保护等领域的研究提供更多有用的信息。

矿产资源勘查中的遥感与卫星影像技术

矿产资源勘查中的遥感与卫星影像技术

矿产资源勘查中的遥感与卫星影像技术矿产资源勘查是指通过一系列的技术手段和方法,对地下矿产资源进行调查、评估和利用的过程。

在这个过程中,遥感与卫星影像技术的应用正在成为越来越重要的工具。

本文将探讨遥感与卫星影像技术在矿产资源勘查中的应用,并重点介绍其原理、方法和优势。

一、遥感与卫星影像技术概述遥感是指通过对地面物体的无接触式观测,获取地物信息的一种技术手段。

卫星影像是遥感技术中最常用的工具之一,利用卫星搭载的光学、雷达等传感器获取地球表面的图像数据。

这些数据通过卫星传输到地面,经过处理与分析后,提供给矿产资源勘查工作中的决策者使用。

二、遥感与卫星影像技术在矿产资源勘查中的应用2.1 全球定位系统(GPS)和遥感技术的结合全球定位系统(GPS)是遥感技术与卫星影像技术相结合的重要应用之一。

它通过卫星导航系统提供的定位信息,结合遥感图像的解译和分析,可以准确地确定矿区的地理位置、边界和形状。

这为矿产资源的勘探和储量评估提供了基础数据,并为后续的勘探工作提供定位依据。

2.2 地质构造解译与矿产区域划分在矿产资源勘查中,遥感与卫星影像技术可以通过获取地表形态、地震地壳形貌和矿区的地质构造分布等信息,帮助科研人员进行地质构造解译和矿产区域划分。

通过解译遥感图像中的地质构造特征,可以确认矿床的位置、规模和富集程度。

这为矿产资源的勘查和开发提供了重要依据,并降低了勘查风险。

2.3 矿区环境监测与生态环境保护矿产资源的开发与利用往往对环境产生不可忽视的影响。

通过遥感与卫星影像技术,可以定期监测矿区的环境变化,并对其进行评估与保护。

例如,通过获取卫星影像数据,可以实时监测矿区周边植被覆盖度、土壤侵蚀情况和水体污染程度。

这种监测方式提高了对矿区生态环境保护的效果,并帮助矿产资源勘查单位遵循环境保护的要求。

2.4 矿物识别与矿产资源调查遥感与卫星影像技术可以通过对矿区进行多光谱和高光谱遥感数据的分析,实现矿物的识别与分析。

常见的资源卫星影像数据区别

常见的资源卫星影像数据区别

一.遥感数据基础知识:太阳辐射经过大气层到达地面,一部分与地面发生作用后反射,再次经过大气层,到达传感器。

传感器将这部分能量记录下来,传回地面,即为遥感数据。

目前用于遥感的电磁波段有紫外线、可见光、红外线和微波。

航空与航天飞行器运行快、周期短,可获得多时相数据。

以美国陆地卫星5号(Landsat 5 )为例,Landsat 5每天环绕地球14.5圈,覆盖地球一遍所需时间仅16天,而气象卫星的周期更短(1天或半天)。

由于探测距离远,传感器所获得的地面影像覆盖的空间范围较大。

它距离地表的高度是705.3 km,对地球表面的扫描宽度是185 km,一幅TM图像可以全部覆盖我国海南岛大小的面积。

不同的卫星传感器获得的同一地区的数据以及同一传感器在不同时间获得的同一地区的数据,均具有可比性.(1)遥感平台遥感平台是装载传感器的运载工具,按高度分为:地面平台:为航空和航天遥感作校准和辅助工作。

航空平台:80 km以下的平台,包括飞机和气球。

航天平台:80 km以上的平台,包括高空探测火箭、人造地球卫星、宇宙飞船、航天飞机。

人造地球卫星的类型:低高度、短寿命卫星:150~350 km,用于军事。

中高度、长寿命卫星:350~1800 km,地球资源。

高高度、长寿命卫星:约3600 km,通信和气象。

(2)遥感数据类型按平台分地面遥感、航空遥感、航天遥感数据。

按电磁波段分可见光遥感、红外遥感、微波遥感、紫外遥感数据等。

按传感器的工作方式分主动遥感、被动遥感数据。

(3)遥感数据获取原理;(4)传感器a.传感器定义:传感器是收集、探测、记录地物电磁波辐射信息的工具。

它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。

b.传感器的分类按工作方式分为:主动方式传感器:侧视雷达、激光雷达、微波辐射计。

被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM(1,2)、HRV、红外扫描仪等。

高分7号卫星影像级别区分及命名规则

高分7号卫星影像级别区分及命名规则

高分7号卫星影像级别区分及命名规则
高分7号卫星影像级别区分及命名规则一般按照空间分辨率和影像处理精度进行划分。

下面是一种常见的高分7号卫星影像级别区分及命名规则:
1. 高分辨率级别(HR):此级别的影像具有较高的空间分辨率,可呈现更精细的地貌和地物细节,适用于精细的地物识别与提取。

常见的分辨率为1米-2米。

2. 中分辨率级别(MR):此级别的影像具有适中的空间分辨率,适用于一般的遥感应用需求,包括土地利用、植被监测、水体提取等。

常见的分辨率为5米-10米。

3. 低分辨率级别(LR):此级别的影像具有较低的空间分辨率,适用于大范围、快速的遥感监测与分析,例如城市扩张、预警监测等。

常见的分辨率为30米-50米。

4. 超低分辨率级别(VLR):此级别的影像具有非常低的空间分辨率,适用于大范围、宏观的遥感观测,例如气候监测、环境变化监测等。

常见的分辨率为100米-300米。

对高分7号卫星影像的命名规则一般包括以下信息:
1. 卫星名称:标识为高分7号卫星。

2. 影像级别:表示影像所属的级别,如HR、MR、LR、VLR 等。

3. 影像日期:表示影像的获取日期,一般以年月日的形式进行表示。

4. 地理位置:表示影像所覆盖的地理范围,可以通过指定的行政区划、经纬度范围等方式进行描述。

例如,一个命名为"GF7_HR_20220101_Beijing"的高分7号卫星影像可以表示为:高分7号卫星的高分辨率级别影像,于2022年1月1日获取,覆盖北京地区。

10种常见的遥感卫星数据简介

10种常见的遥感卫星数据简介

10种常见的遥感卫星数据简介10种常见的遥感卫星数据简介1、Landset卫星第一颗陆地卫星是美国于1972年7月23日发射的Landset卫星,这是世界上第一次发射的真正的地球观测卫星。

迄今Landsat已经发射了6颗卫星。

Landsat-4和Landsat-5进入高约705km的近图形太阳同步轨道,每一圈运行的时间约为99分钟,每16天覆盖全球一次,第17天返回到同一地点的上空,星上除了带有与前三颗基本相同的多波段扫描仪(MSS)外,还带有一台专题成像仪(TM),它可在包括可见光,近红外和热红外在内的7个波段工作,MSS的IFOV 为80米,TM的IFOV除6波段为120米以外,其它都为30米。

MSS、TM的数据是以景为单元构成的,每景约相当地面上185×170km2 的面积,各景的位置根据卫星轨道所确定的轨道号和由中心纬度所确定的行号进行确定Landsat的数据通常用计算机兼容磁带(CCT)提供给用户。

Landsat的数据现在被世界上十几个的地面站所接收,主要应用于陆地的资源探测,环境监测,它是世界上现在利用最为广泛的地球观测数据。

2、SPOT卫星SPOT卫星是法国研制发射的地球观测卫星,第一颗SPOT卫星于1986年2月发射成功。

1990年2月发射了第2号星,第3号星已于1994年发射。

SPOT采用高度为830公里,轨道倾角为98.7度的太阳同步准回归轨道,通过赤道时刻为地方时上午10:30。

回归天数为26天。

但由于采用倾斜观测,所以实际上4-5天就可对同一地区进行重复观测。

SPOT携带两台相同的高分辨率遥感器HRV,采用CCD的电子式扫描,具有多光谱和全色波段两种模式。

由于HRV 装有可变指向反射镜,能在偏离星下点±27°(最大可达30°)范围内观测任何区域,所以通过斜视观测平均二天半就可以对同一地区进行高频率的观测,缩短了重复观测的时间。

此外,通过用不同的观测角观测同一地区,可以得到立体视觉效果,能进行高精度的高程测量与立体制图。

多种遥感卫星影像对比比较

多种遥感卫星影像对比比较

几种遥感卫星数据产品的分级介绍遥感卫星数据产品的类别:一般按照数据产品获取方式,包含光学数据产品、雷达数据产品、被动微波数据产品、激光数据产品、重力卫星数据产品等。

遥感卫星数据产品的分级:为了便于数据产品的生产、应用和销售等,根据数据间的相互关系划分等级。

数据产品的分级一般针对同一类型、同一卫星平台或同一传感器的数据产品进行。

m odis的全称为中分辨率成像光谱仪modis是搭载在terra和aqua卫星上的一个重要的传感器,是卫星上唯一将实时观测数据通过x波段向全世界直接广播,并可以免费接收数据并无偿使用的星载仪器,全球许多国家和地区都在接收和使用modis数据。

MODIS自2000年4月开始正式发布数据。

用途可用于对地表、生物圈、固态地球、大气和海洋进行长期全球观测。

MODIS仪器的对地观测:MODIS仪器的地面分辨率为250m、500m和1000m,扫描宽度为2330km。

在对地观测过程中,每秒可同时获得6.1兆比特的来自大气、海洋和陆地表面信息,日或每两日可获取一次全球观测数据。

MODIS仪器的多波段数据:特点优势MODIS仪器与NOAA卫星和陆地卫星相比,有以下特点和优势:1.空间分辨率大幅提高。

空间分辨率提高了一个量级,由NOAA的千米级提高到了MODIS的百米级。

2.时间分辨率有优势。

一天可过境4次,对各种突发性、快速变化的自然灾害有更强的实时监测能力。

3.光谱分辨率大大提高。

有36个波段,这种多通道观测大大增强了对地球复杂系统的观测能力和对地表类型的识别能力。

MODIS数据产品分级• 0级:数据是对卫星下传的数据报解除CADU外壳后,所生成的CCSDS 格式的未经任何处理的原始数据集合,其中包含按照顺序存放的扫描数据帧、时间码、方位信息和遥测数据等。

• 1级:对没有经过处理的、完全分辨率的仪器数据进行重建,数据时间配准,使用辅助数据注解,计算和增补到0级数据之后为1级数据。

1A:是对Level 0数据中的CCSDS包进行解包所还原出来的扫描数据及其他相关数据的集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.遥感数据基础知识:太阳辐射经过大气层到达地面,一部分与地面发生作用后反射,再次经过大气层,到达传感器。

传感器将这部分能量记录下来,传回地面,即为遥感数据。

目前用于遥感的电磁波段有紫外线、可见光、红外线和微波。

航空与航天飞行器运行快、周期短,可获得多时相数据。

以美国陆地卫星5号(Landsat 5 )为例,Landsat 5每天环绕地球14.5圈,覆盖地球一遍所需时间仅16天,而气象卫星的周期更短(1天或半天)。

由于探测距离远,传感器所获得的地面影像覆盖的空间范围较大。

它距离地表的高度是705.3 km,对地球表面的扫描宽度是185 km,一幅TM 图像可以全部覆盖我国海南岛大小的面积。

不同的卫星传感器获得的同一地区的数据以及同一传感器在不同时间获得的同一地区的数据,均具有可比性.(1)遥感平台遥感平台是装载传感器的运载工具,按高度分为:地面平台:为航空和航天遥感作校准和辅助工作。

航空平台:80 km以下的平台,包括飞机和气球。

航天平台:80 km以上的平台,包括高空探测火箭、人造地球卫星、宇宙飞船、航天飞机。

人造地球卫星的类型:低高度、短寿命卫星:150~350 km,用于军事。

中高度、长寿命卫星:350~1800 km,地球资源。

高高度、长寿命卫星:约3600 km,通信和气象。

(2)遥感数据类型按平台分地面遥感、航空遥感、航天遥感数据。

按电磁波段分可见光遥感、红外遥感、微波遥感、紫外遥感数据等。

按传感器的工作方式分主动遥感、被动遥感数据。

(3)遥感数据获取原理;(4)传感器a.传感器定义:传感器是收集、探测、记录地物电磁波辐射信息的工具。

它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。

b.传感器的分类按工作方式分为:主动方式传感器:侧视雷达、激光雷达、微波辐射计。

被动方式传感器:航空摄影机、多光谱扫描仪(MSS)、TM、ETM(1,2)、HRV、红外扫描仪等。

c.传感器的组成收集器:收集来自地物目标镜、天线。

探测器:将收集的辐射能转变成化学能或电能。

处理器:将探测后的化学能或电能等信号进行处理。

输出:将获取的数据输出。

传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。

d.传感器的工作原理是收集、量测和记录来自地面目标地物的电磁波信息的仪器,是遥感技术的核心部分。

根据传感器的工作方式分为:主动式和被动式两种。

主动式:人工辐射源向目标物发射辐射能量,然后接收目标物反射回来的能量,如雷达。

被动式:接收地物反射的太阳辐射或地物本身的热辐射能量,如摄影机、多光谱扫描仪(MSS、TM、ETM、HRV)。

(5)遥感应用的电磁波波谱段紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000 m以下。

可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。

红外线:波长范围为0.76~1000μm ,根据性质分为近红外、中红外、远红外和超远红外。

微波:波长范围为1 mm ~1 m ,穿透性好,不受云雾的影响。

(6)大气窗口TM1-4紫外可见光Radarsat1000.8~2.5cm微波TM660~708~14 μm 远红外NOAA 的AVHRR3.5~5.5 μm 中红外TM7802.0~3.5 μm 近-中红外TM5801.5~1.8 μm 近红外、SPOT 的HRV>900.3~1.3 μm近红外应用举例透射率/%波段大气窗口(7)光谱曲线 a.植物的光谱曲线b.土壤的光谱曲线二.遥感数据1.遥感数据的分辨率图像的空间分辨率:指像素所代表的地面范围的大小,即扫描仪的瞬时视场,或地面物体能分辨的最小单元。

是指陆地卫星成像时的地面采样大小,在图像上就称为像元,是图像的最小成像单元。

MSS4-MSS7 79 mMSS8 240 mTM1-TM5,TM7 30 mTM6 120 mETM6 60 mPAN 15 m波谱分辨率:传感器能分辨的最小波长间隔。

间隔越小,波谱分辨率越高。

2.地球资源卫星数据以探测陆地资源为目的的卫星叫陆地资源卫星。

目前,主要的陆地资源卫星有:美国Landsat陆地卫星(MSS、TM、ETM传感器);法国陆地观测SPOT卫星(HRV 传感器);欧空局地球资源卫星(ERS);俄罗斯钻石卫星(ALMAZ);日本地球资源卫星(JERS);印度遥感卫星(IRS);中-巴地球资源卫星(CBERS)。

(CCD、WFI、IRMSS传感器)(1)Landsat数据陆地卫星Landsat,1972年发射第一颗,已连续31年为人类提供陆地卫星图像,共发射了7颗,产品主要有MSS,TM,ETM,属于中高度、长寿命的卫星。

陆地卫星的运行特点:(a)近极地、近圆形的轨道;(b )轨道高度为700~900 km ; (c )运行周期为99~103 min/圈; (d )轨道与太阳同步。

Landsat 轨道参数Landsat 数据系列MSS1,MSS2,MSS3,MSS4(1972.7.23遥感数据卫星名称TM1-TM7七个波段Landsat-8与MSS4-MSS7相同)1999.4.15Landsat-7RBV 全色波段1993.10.5Landsat-6MSS4,MSS5,MSS6,MSS7,MSS81984.3.1Landsat-5RBV1,RBV2,RBV31982.7.16Landsat-4MSS4,MSS5,MSS6,MSS71978.3.5Landsat-3RBV1,RBV2,RBV31975.1.22Landsat-2MSS4,MSS5,MSS6,MSS7Landsat-1发射日期Landsat 卫星的传感器TM数据是第二代多光谱段光学——机械扫描仪,是在MSS基础上改进和发展而成的一种遥感器。

TM采取双向扫描,提高了扫描效率,缩短了停顿时间,并提高了检测器的接收灵敏度。

ETM数据是第三代推帚式扫描仪,是在TM基础上改进和发展而成的一种遥感器。

MSS数据是一种多光谱段光学—机械扫描仪所获得的遥感数据。

Landsat 卫星的TM传感器Landsat 卫星的ETM传感器MSS的波谱段通道号光谱段颜色波长范围/μm MSS4 绿0.5~0.6MSS5 红0.6~0.7MSS6 红~近红外0.7~0.8MSS7 近红外0.8~1.1MSS8 远红外10.4~12.6 TM数据(…)的波谱段ETM 数据(…)的波谱段可见光1.55~1.75ETM5蓝绿波段0.45~0.52ETM1—近红外0.52~0.90 μm ETM8(PAN )近红外波段2.08~2.35μm ETM7热红外波段10.4~12.5μm ETM6近红外波段μm 近红外波段0.76~0.90μm ETM4红波段0.63~0.69μm ETM3绿红波段0.52~0.60μm ETM2μmMSS 数据获取原理图:TM数据获取的传感器Landsat卫星图像特征光谱特性:由于各种地物组成的物质成分、结构、理化性质的差异,导致不同的地物对电磁波的反射存在着差异,并且致使地物的热辐射性质也不完全相同。

同一地物在不同的波谱段,其反射的电磁波与热辐射也有差异。

反映在图像上为:相同地物在不同波谱段的图像上色调会不同。

这叫做地物的光谱效应。

MSS的光谱效应MSS4:0.5~0.6μm,对水体有一定的透视能力,能判读出水下地形。

MSS5:0.6~0.7μm,对水体有一定的透视能力,对海水中的泥沙流、河流中的悬浮物有明显的反映;能区分死树和活树,活树色调较深。

MSS6:0.7~0.8μm,水体为暗色,对地物的湿度有明显反映;能反映植物的健康状况。

MSS7:0.8~1.1μm,与MSS6相似,但水体更黑,湿地色调更黑;能明显区分植物的健康状况。

MSS8:10.4~12.6μm,反映地物的热辐射性质。

地表温度高,热辐射就强,色调就浅。

TM的光谱效应TM1对水体有较强的透视能力。

TM2-TM4与MSS4-MSS6相似。

TM5,TM7属于近红外波段,对岩石有明显的区分能力,对植物也有明显的反映,属于反射峰值。

TM6与MSS8相同。

ETM+的光谱特性除PAN波段外,其余与TM相同。

(2)SPOT数据1978年起,以法国为主,联合比利时、瑞典等欧共体某些国家,设计、研制了一颗名为“地球观测实验系统”(SPOT)的卫星,也叫做“地球观测实验卫星”。

SPOT1,1986年2月发射,至今还在运行。

SPOT2,1990年1月发射,至今还在运行。

SPOT3,1993年9月发射,1997年11月14日停止运行。

SPOT4,1998年3月发射,至今还在运行。

SPOT5, 2002年5月4日凌晨当地时间1时31分,在法属圭亚那卫星发射中心由阿里亚娜4号火箭运载成功发射。

中等高度(832 km)圆形近极地太阳同步轨道。

主要成像系统:高分辨率可见光扫描仪(HRV,HRG),VEGETATION,HRS。

SPOT卫星的轨道参数SPOT卫星的运行SPOT 卫星群的组合SPOT 的HRV 波谱段20 红0.61~0.68 分辨率光谱特性光谱段10 m绿—红全波段0.51~0.73 μm20 m 近红外0.79~0.89 μm m μm 20 m 绿0.50~0.59 μmSPOT1~3号卫星上携带两台HRV 传感器。

SPOT 的HRG 、HRS 波谱段分辨率光谱特性光谱段 5绿~红全波段0.49~0.715 20 近红外0.78~0.89 20 红0.61~0.67 20 绿0.50~0.58 /m/ μmSPOT5卫星上HRG (高分辨率几何装置)与HRV 基本相同。

HRS 是SPOT5特有的一个高分辨率立体成像装置,工作波段0.48~0.71 μm 。

HRV 数据采集原理HRV 是推帚式扫描仪。

探测元件为4根平行的CCD 线列,每根探测一个波段,每线含3 000(HRV1~3)或6 000(PAN 波段)个CCD 元件。

SPOT 传感器(3)QuickBird数据美国DigitalGlobe公司的高分辨率商业卫星,于2001年10月18日在美国发射成功。

卫星轨道高度450 km,倾角98,卫星重访周期1~6 d(与纬度有关)。

QuickBird图像,目前是世界上分辨率最高的遥感数据,为0.61 m,幅宽16.5 km。

可应用于制图、城市详细规划、环境管理、农业评估QuickBird数据的光谱段Quickbird传感器为推扫式成像扫描仪QuickBird 传感器结构图0.610.45~0.902.44近红外:2.44红:2.44绿:2.44蓝:分辨率波段范围多波段全波段0.76~0.900.63~0.690.52~0.600.45~0.52/ m / μm数据类型(4)CBERS数据中巴地球资源卫星(CBERS)是我国第一代传输型地球资源卫星,包含中巴地球资源卫星01星、中巴地球资源卫星02星和中巴地球资源卫星02B星三颗卫星组成。

相关文档
最新文档