三、仪用放大器
运算放大器基本电路大全
![运算放大器基本电路大全](https://img.taocdn.com/s3/m/2c0f2c9ec77da26925c5b0ef.png)
运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
经典的运算放大器基本电路大全
![经典的运算放大器基本电路大全](https://img.taocdn.com/s3/m/0b497c1514791711cc79175b.png)
运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
三运放仪表放大器
![三运放仪表放大器](https://img.taocdn.com/s3/m/0d05d0482e3f5727a5e9623d.png)
三运放仪表放大器摘要本系统采用三个OP07双电源单集成运放芯片构成仪表放大器,此放大器能调节将输入差模信号放大100至200倍,同时具有高输入电阻和高共模抑制比,对不同幅值信号具有稳定的放大倍数;电源部分由变压器、整流桥、7812、7912、7805等线性电源芯片组成,可输出+5V、+12V、-12V三路电压。
一、方案论证与比较1.放大器电源的制作方法方案一:本三运放仪表放大器系统采用集成运放OP07,由于OP07是双电源放大器,典型电源电压为,可方便采用市售开关电源或者开关电源芯片制作电源作为OP07的电源输入,开关电源具有的效率高,体积小,散热小,可靠性高等特点,但是因为其内部构造特性,使输出电压带有一定的噪声干扰,不能输出纯净稳定的电压。
方案二:采用线性电源稳压芯片78系列和79系列制作线性电源,使用多输出抽头变压器接入整流桥再接入稳压芯片,输出纯净的线性电源。
2.电源方案论证本系统是一个测量放大系统,其信号要求纯净无噪声干扰,在系统中加入滤波器消除干扰的同时,我们应该考虑系统本身的干扰源并尽量降低干扰。
考虑到开关电源的输出电压不是十分纯净的,带有许多噪声干扰,而线性电源可以稳定输出电压值,虽然线性电源体积较大,效率较低,但是作为测量系统中,我们采用方案二来提高测量的精准度。
3.放大器制作方法方案一:题目要求使输入信号放大100至200倍,可使用单运放构成比例运算放大电路,按负反馈电阻比例运算进行放大,输出电压,此放大电路可以达到预定的放大倍数,但是其对共模信号抑制较差,容易出现波形失真等问题。
方案二:采用三运放构成仪表放大器,这是一种对弱信号放大的一种常用放大器,输出电压。
4.放大器方案论证在测量系统中,通常被测物理量均通过传感器转换为电信号,然后进行放大,因此,传感器的输出是放大器的信号源。
然而,多数传感器的等效电阻均不是常量,他们随所测物理量的变化而变。
这样,对于放大器而言信号源内阻是变量,放大器的放大能力将随信号的大小而变。
实验三集成运算放大器的基本应用
![实验三集成运算放大器的基本应用](https://img.taocdn.com/s3/m/b1e9fc46c5da50e2534d7f1d.png)
实验三 集成运算放大器的基本应用—— 模拟运算电路一、实验目的1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2. 了解运算放大器在实际应用时应考虑的一些问题。
二、实验仪器1.双踪示波器2.万用表3.交流毫伏表三、实验原理在线性应用方面,可组成比例、加法、减法、积分、微分、对数、指数等模拟运算电路。
1)反相比例运算电路电路如图11-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为 i F O U R R U 1-= (11-1)图11-1 反相比例运算电路为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1∥R F 。
2)反相加法电路图11-2 反相加法运算电路电路如图11-2所示,输出电压与输入电压之间的关系为)(2211i F i F O U R R U R R U +-= R 3=R 1∥R 2∥R F (11-2) 3)同相比例运算电路图11-3(a )是同相比例运算电路,它的输出电压与输入电压之间的关系为i F O U R R U )1(1+= R 2=R 1∥R F (11-3) 当R1→∞时,U O =U i ,即得到如图11-3(b )所示的电压跟随器。
图中R 2=R F ,用以减小漂移和起保护作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。
图11-3 同相比例运算电路4)差动放大电路(减法器)对于图11-4所示的减法运算电路,当R1=R2,R3=RF 时,有如下关系式:)(1120i i U U R RF U -= (11-4)图11-4 减法运算电路 5)积分运算电路反相积分电路如图11-5所示。
在理想化条件下,输出电压U 0等于⎰+-=t C i U dt U RCt U 00)0(1)( (11-5)式中U C (0)是t=0时刻电容C 两端的电压值,即初始值。
图11-5 积分运算电路如果Ui(t)是幅值为E 的阶跃电压,并设UC(0)=0,则⎰-=-=t t RCE Edt RC t U 001)( (11-6) 此时显然RC 的数值越大,达到给定的U0值所需的时间就越长,改变R 或C 的值积分波形也不同。
运算放大器的应用实验报告
![运算放大器的应用实验报告](https://img.taocdn.com/s3/m/564b2234dc36a32d7375a417866fb84ae55cc35b.png)
运算放大器的应用实验报告仪用运算放大器及其应用实验报告实验报告课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________ 实验名称:仪用运算放大器及其应用实验类型:电路实验同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解仪表放大器与运算放大器的性能区别;2.掌握仪表放大器的电路结构及设计方法;3.掌握仪表放大器的测试方法; 4.学习仪表放大器在电子设计中的应用。
二、实验内容和原理1.用通用运算放大器设计一个仪表放大器(用LM358芯片)2.用INA128 精密低功耗仪器放大器设计一个仪表放大器仪表放大器是一种高增益放大器,其具有差分输入、单端输出、高输入阻抗及高共模抑制比等特点。
仪表放大器采用运算放大器构成,但在性能上与运算放大器有很大的差异。
标准运算放大器的闭环增益由反馈网络决定;而仪表放大器使用了一个与其信号输入端隔离的内部反馈电阻网络,因此具有很高的共模抑制比KCMR,在有共模信号的情况下也能放大很微弱的差分信号。
当前在数据采集、医疗仪器、信号处理等电子系统设计中普遍采用仪表放大器对弱信号进行高精度处理。
常用的仪表放大器可采用由三个运算放大器构成,也可直接选用单片仪表放大器。
单片仪表放大器具有高精度、低噪声、设计简单等特点以成为优选器件。
三、主要仪器设备LM358芯片INA128 精密低功耗仪器放大器四、操作方法和实验步骤两种仪表放大器的性能测量:一、电压增益和最大不失真输出,并计算出共模抑制比输入正弦波,改变输入信号幅度或频率,用示波器监测输出波形,在不失真的情况下,测量输入电压为最大或最小时的电压增益,及最大不失真输出电压,并计算共模抑制比。
二、输出端噪声电压输入为0,用示波器测量峰峰值。
四种常用放大器及应用
![四种常用放大器及应用](https://img.taocdn.com/s3/m/5747b3c370fe910ef12d2af90242a8956becaa20.png)
四种常用放大器及应用常用的四种放大器是:运算放大器、功率放大器、音频放大器和射频放大器。
首先,运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子放大器,它有很多应用。
它具有高增益、高输入阻抗和低输出阻抗的特点。
运算放大器最常见的应用是运算放大电路,用于实现各种算法和信号处理。
运算放大器还可用于比较器、振荡器、多谐波振荡器等电路。
此外,运算放大器还常用于仪器仪表、模拟计算机、数据采集系统和传感器等领域。
其次,功率放大器(Power Amplifier)是用来放大输入信号的功率的放大器,用于驱动负载。
功率放大器通常分为A类、B类、AB类、C类和D类等。
功率放大器广泛应用于音频系统、无线电通信系统、雷达系统和太阳能系统等领域。
其中,音频功率放大器用于扬声器系统,提供足够的功率以产生高音质音乐;无线电通信系统和雷达系统中的功率放大器通常需要驱动天线以产生更大的发射功率;太阳能系统中的功率放大器用于将太阳能电池板的输出电压提高到适合之后的电路或网络使用的电压。
第三种常用放大器是音频放大器,用于增强音频信号的幅度。
音频放大器一般分为低功率放大器和高功率放大器两类。
低功率放大器通常用于便携式音频设备,如手机、MP3播放器等。
高功率放大器则广泛应用于音响系统和放大器组件,以获得更高的音响质量和音响功率。
音频放大器还有各种不同类型,例如A类、B类、AB类和D类音频放大器,它们在功率效率、失真和音质上存在差异。
最后,射频放大器(Radio Frequency Amplifier)是用于放大射频信号的放大器。
射频放大器广泛应用于通信系统、雷达系统、遥控系统、卫星通信系统等领域。
射频放大器通常要求具有高增益、低噪声和高线性度。
根据应用需求,射频放大器也可分为小功率放大器和高功率放大器两类。
小功率射频放大器通常用于低功率无线电设备和无线电接收机,而高功率射频放大器则用于要求更大发射功率的无线电设备。
仪表放大器优势_仪表放大器典型应用及实例
![仪表放大器优势_仪表放大器典型应用及实例](https://img.taocdn.com/s3/m/b85d3233227916888486d7aa.png)
仪表放大器优势_仪表放大器典型应用及实例随着电子技术的飞速发展,运算放大电路也得到广泛的应用。
仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。
仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。
本文首先介绍了仪表放大器的原理及特点,其次介绍了仪表放大器的优势,最后介绍了仪表放大器典型应用及实例。
仪表放大器的原理仪表放大器电路的典型结构如图1所示。
它主要由两级差分放大器电路构成。
其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得共模抑制比得到提高。
这样在以运放A3为核心部件组成的差分放大电路中,在共模抑制比要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。
在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:Au=(1+2R1/Rg)(Rf/R3)。
由公式可见,电路增益的调节可以通过改变Rg阻值实现,仪表放大器典型结构见图1。
仪表放大器的特点仪表放大器是一种高增益、直流耦合放大器,它具有差分输入、单端输出、高输入阻抗和高共模抑制比、低噪声、低线性误差、低失调电压和失调电压漂移、低输入偏置电流和失调电流误差等特点。
仪表放大器的优势1、高共模抑制比仪表放大器具有能够消除任何共模信号(两输入端电位相同)而放大差模信号(两输入端电位不同)的特性。
为了使仪表放大器能正常工作,要求它既能放大微伏级差模信号,同时又能抑制几伏的共模信号,实现这种功能的仪表放大器必须具有很高的共模抑制能力。
共模抑制比的典型值为70- 100dB.通常,在高增益时,CMRR 的性能会得到改善,即。
仪表放大器 原理
![仪表放大器 原理](https://img.taocdn.com/s3/m/45a5206d59fb770bf78a6529647d27284a733764.png)
仪表放大器原理
仪表放大器是一种电路设备,用于将输入信号放大并输出至仪表显示。
其基本原理是通过放大器电路对输入信号进行放大,以便能够更好地显示在仪表上。
仪表放大器的核心部件是放大器,根据不同的应用需求,可以选择使用不同类型的放大器,如运放放大器、电子管放大器等。
放大器接收输入信号,经过放大后输出到仪表上。
在仪表放大器中,通常还会加入一些辅助电路来实现对输入信号的处理和调节。
比如,可以加入滤波电路来滤除输入信号中的噪音和干扰,提高信号的纯净度;还可以加入增益调节电路,以便根据需求调节放大倍数。
此外,在仪表放大器中,还需要考虑输入和输出的匹配问题,以确保输入信号的准确度和稳定性。
通常会根据输入信号的幅度范围和仪表的灵敏度要求,选择合适的放大倍数和增益值。
最终,经过放大和处理后的信号将输出至仪表上,实现对输入信号的具体量化和显示。
仪表放大器的设计和调试是一个复杂的过程,需要考虑到多个因素如电路的稳定性、信号的准确度和仪表的精度等。
总结来说,仪表放大器通过放大器电路对输入信号进行放大,再经过处理和调节,将信号输出至仪表显示。
其原理主要涉及信号放大、滤波和增益调节等。
通过合理的设计和调试,能够实现对输入信号的准确量化和显示。
运放使用指南
![运放使用指南](https://img.taocdn.com/s3/m/7df970c33186bceb19e8bb57.png)
运放使用指南1、反相放大器(The Inverting Amplifier )基本反相放大器电路如图1所示。
其中,i V R R V ⨯-=12o ,213||R R R =,当12R R 的数值远小于op 开环增益时,这个数值就是反相放大器的增益,运算放大器的输入阻抗就是1R 的值,闭环增益单位增益带宽闭环增益带宽+=1在设计时要注意的是:3R 的阻值应该等于1R 和2R 的并联阻值,以减小输入偏置电流所带来的失调电压。
闭环增益输入失调电压输出失调电压⨯=。
运放输入端失调电压的主要来源是偏置电流(Input bias current )和输入失调电压(Input offest voltage )。
对于一个给定的op ,输入失调电压就已经确定了,但是由于输入失调电流所带来的失调电压与所采用的电路的结构有关系。
为了在不使用使调整电路的情况下,减小输入偏置电流所带来的失调电压,应该使得同相输入端和反相输入端对地直流电阻相等,使得由于偏置电流在输入电阻上压降所带来的失调电压相互抵消。
在低内阻信号源的放大器中,op 的输入失调电压将成为失调电压误差的主要来源。
在高输入阻抗的情况下,失调电压可以采用3R 的阻值来调整,利用输入偏置电流在其上的压降来对输入失调电压做补偿(即用这个得到的压降来抵消输入失调电压)。
在交流耦合时,失调电压并不显得很重要。
这时的主要问题是:失调电压减小了输入电压峰——峰值的线性动态范围。
工作范围在闭环状态下的op 和其反馈网络的增益——频率特性为了实现稳定,op 和反馈环路对任何频率的信号,在环路增益大于1时的环路相移的角度绝对不能超过o180。
在实践上,为了达到稳定条件,相移角度不应该接近o180。
对于一个给定的op 放大器电路,在进行电容补偿是需要在稳定性和带宽之间进行权衡。
加大补偿电容可以提高稳定性。
但是牺牲了放大器的增益带宽,反之亦然。
2、同相放大器(The Non-Inverting Amplifier )图2是高输入阻抗的同相放大器电路,其闭环放大倍数121R R +=, V io图1 反相放大器其3dB 带宽闭环增益单位增益带宽=。
三运放组成的仪表放大器原理分析
![三运放组成的仪表放大器原理分析](https://img.taocdn.com/s3/m/6ffc5d6d58fafab069dc02e3.png)
三运放组成的仪表放大器原理分析仪表放大器与运算放大器的区别是什么?仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。
大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。
其输入偏置电流也应很低,典型值为 1 nA至50 nA。
与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。
运算放大器的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。
与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。
对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。
专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。
使用三个普通运放就可以组成一个仪用放大器。
电路如下图所示:输出电压表达式如图中所示。
看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。
在此之前,我们先来看如下我们很熟悉的差分电路:如果R1 =R3,R2 =R4,则VOUT = (VIN2—VIN1)(R2/R1)这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。
首先,同相输入端和反相输入端阻抗相当低而且不相等。
在这一例子中VIN1反相输入阻抗等于100 kΩ,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 kΩ。
因此,当电压施加到一个输入端而另一端接地时,差分电流将会根据输入端接收的施加电压而流入。
(这种源阻抗的不平衡会降低电路的CMRR。
)另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。
例如,当增益等于1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有0.1% 失配,其CMR便下降到66 dB(2000:1)。
三运放仪表放大器工作原理
![三运放仪表放大器工作原理](https://img.taocdn.com/s3/m/ca6411567f21af45b307e87101f69e314332fa30.png)
三运放仪表放大器工作原理一、三运放仪表放大器简介三运放仪表放大器是一种常用于电子测量与控制系统中的重要电路组件。
它能够提供高精度和稳定性的放大器功能,常用于信号调理、传感器接口、自动控制等领域。
本文将详细探讨三运放仪表放大器的工作原理。
二、三运放仪表放大器的基本结构三运放仪表放大器的基本结构由三个运算放大器、一个稳流源和几个电阻组成。
其中,稳流源提供稳定的直流偏置电流,电阻用于设置放大倍数和偏置电流。
运算放大器则起到信号放大、滤波和输出的作用。
2.1 运算放大器的作用运算放大器是三运放仪表放大器中最关键的元件。
它能够将输入信号放大,并根据反馈电路的设计提供所需的增益和频率响应。
2.2 稳流源的作用稳流源是三运放仪表放大器中的一种特殊电路。
它能够提供预定的电流,用于保持运算放大器工作在合适的工作状态,同时还能提高系统的稳定性。
2.3 电阻的作用电阻在三运放仪表放大器中起到两个主要作用:设置放大倍数和偏置电流。
通过选择适当的电阻值,可以实现所需的放大倍数,并通过电阻网络将输入信号与运算放大器连接。
三、三运放仪表放大器的工作原理三运放仪表放大器通过运算放大器、稳流源和电阻的合理组合,实现对输入信号的放大和调理。
下面将详细讨论其工作原理。
3.1 输入信号放大当输入信号进入三运放仪表放大器时,首先经过电阻网络,将信号与运算放大器连接。
运算放大器将输入信号放大并输出,放大倍数由电阻网络的设计决定。
3.2 滤波在运算放大器输出信号的同时,反馈电阻网络将一部分输出信号反馈到运算放大器的负输入端。
通过合理设计反馈电阻的值,可以实现对输出信号频率特性的调整,从而实现滤波的效果。
3.3 输出经过放大和滤波后的信号将被输出到目标设备或下一级电路中。
输出信号的幅度和频率响应取决于三运放仪表放大器的设计以及反馈电路的参数。
3.4 稳定性和精度三运放仪表放大器在设计时需要考虑稳定性和精度的问题。
通过合理选择运算放大器的参数、稳流源的设计和电阻的匹配,可以提高系统的稳定性和精度。
10种运算放大器
![10种运算放大器](https://img.taocdn.com/s3/m/91d614343968011ca30091e8.png)
10种不同类型的运算放大器介绍一.OP07C运算放大器OP07C是一款低失调低漂移运算放大器。
生产厂家主要有德州仪器公司和AD公司。
这款运算放大器具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施。
OP07同时具有输入偏置电流低和开环增益高的特点,这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。
目前价格为1.5元/个—2元/个。
特点:1)低噪音2)没有外部组件要求3)输出电压范围广. . . 0 to ±14 V Typ4)供电电压范围广. . . ±3 V to ±18 V5)超低偏移:150μV最大6)低输入偏置电流:1.8nA 。
7)超稳定,时间:2μV/month最大8)高电源电压范围:±3V至±18V相关参数介绍:电气特性:虚拟通道连接= ± 15V ,二.LT1812 具有关断功能的运算放大器LT1812是LINEAR公司生产推出的一款具有良好的DC特性的低功耗,高速率,高转换率的运算放大器。
它采用具有电流反馈特性的电压反馈式电路结构,因而具有更低的电源电流,输入偏移电压和输入偏置电流及更高的DC增益,LT1812自身的关断特性使得芯片的电源电流仅为50uA,从而大大降低了功耗。
主要运用于带宽放大器,缓冲器,有源滤波器,有线设备,数据采集系统及音频,射频等领域。
目前报价10元/个。
特点:1)具有100MHz 的增益带宽,且增益稳定。
2)转换速率高。
3)具有关断功能,停机模式中的电源电流为50μA4)30ns 稳定时间至0.1%,5V 阶跃相关参数:工作范围:-40ºC 至85ºCTA = 25°C, VS = ±5V, VCM = 2.5V 括号内为测量条件(与上表参数数值相同的省三.LM318 高速运算放大器LM318是一款高速单运放。
仪表放大器原理
![仪表放大器原理](https://img.taocdn.com/s3/m/4bddfff4970590c69ec3d5bbfd0a79563d1ed468.png)
仪表放大器原理仪表放大器是一种常见的电子仪器,用于放大微弱的信号以便于测量和显示。
它在仪器仪表、自动控制系统、通信系统等领域有着广泛的应用。
仪表放大器的原理是通过放大输入信号,使其能够被后续的电路处理和显示。
本文将介绍仪表放大器的工作原理及其应用。
仪表放大器的工作原理主要是利用放大器的放大功能,将微弱的输入信号放大到合适的范围内,以便于后续的处理和显示。
在仪表放大器中,放大器通常采用运算放大器(Operational Amplifier,简称Op-Amp)作为核心元件。
运算放大器具有高输入阻抗、低输出阻抗、大增益等特点,可以很好地满足仪表放大器的放大要求。
仪表放大器通常由输入端、放大电路和输出端组成。
输入端接收待放大的信号,放大电路利用运算放大器将输入信号放大,输出端将放大后的信号输出到后续的电路或显示器上。
在实际应用中,仪表放大器通常还包括滤波电路、校准电路等辅助电路,以提高放大器的性能和稳定性。
仪表放大器的应用范围非常广泛。
在仪器仪表中,仪表放大器常用于模拟量的放大和处理,如电压、电流、温度等信号的放大和显示。
在自动控制系统中,仪表放大器常用于信号采集和处理,如传感器信号的放大和调理。
在通信系统中,仪表放大器常用于信号的放大和补偿,以保证信号的传输质量。
仪表放大器的设计和应用需要考虑多方面的因素。
首先是放大器的性能指标,如增益、带宽、失调电压等,需要根据实际需求进行选择和优化。
其次是电路的稳定性和可靠性,需要考虑电路的抗干扰能力和工作环境的影响。
最后是电路的成本和功耗,需要在满足性能要求的前提下尽量降低成本和功耗。
总之,仪表放大器作为一种常见的电子仪器,在各个领域都有着重要的应用。
通过对仪表放大器的工作原理和应用进行深入了解,可以更好地理解和应用这一技术,为相关领域的工程和科研工作提供有力的支持。
希望本文能够对读者有所帮助,谢谢阅读!。
三个运算放大器组成的电路
![三个运算放大器组成的电路](https://img.taocdn.com/s3/m/13e2fe9d370cba1aa8114431b90d6c85ec3a888d.png)
三个运算放大器组成的电路
首先,我们可以讨论三运放电路的基本连接方式。
在最简单的情况下,三个运算放大器可以被连接成一个非反馈放大器,其中每个运算放大器都独立地放大输入信号。
这种配置通常用于需要多个独立放大器的应用,例如音频混音器等。
其次,我们可以讨论三运放电路的反馈连接方式。
其中一种常见的方式是将三个运算放大器连接成一个仪表放大器,这种连接方式可以用于测量微小信号并抑制共模噪声。
另一种常见的方式是将三个运算放大器连接成一个有源滤波器,这种连接方式可以用于滤波和信号调理应用。
此外,我们还可以讨论三运放电路的比较器连接方式。
通过适当连接,三个运算放大器可以组成一个多通道比较器,用于比较多个输入信号并输出相应的比较结果。
这种连接方式通常用于控制和决策系统中。
最后,我们可以讨论三运放电路的混频器连接方式。
通过适当连接,三个运算放大器可以组成一个混频器,用于将两个输入信号进行混频处理。
这种连接方式通常用于通信系统和雷达系统中。
总的来说,三个运算放大器组成的电路可以以多种方式连接,用于各种不同的信号处理应用。
不同的连接方式可以实现不同的功能,包括放大、滤波、比较和混频等。
希望这些信息能够帮助你更好地理解三运放电路的应用和连接方式。
三运放仪表放大器
![三运放仪表放大器](https://img.taocdn.com/s3/m/1fe4fce6d0d233d4b14e69db.png)
三运放仪表放大器摘要本系统采用三个OP07双电源单集成运放芯片构成仪表放大器,此放大器能调节将输入差模信号放大100至200倍,同时具有高输入电阻和高共模抑制比,对不同幅值信号具有稳定的放大倍数;电源部分由变压器、整流桥、7812、7912、7805等线性电源芯片组成,可输出+5V、+12V、-12V三路电压。
一、方案论证与比较1.放大器电源的制作方法方案一:本三运放仪表放大器系统采用集成运放OP07,由于OP07是双电源放大器,典型电源电压为,可方便采用市售开关电源或者开关电源芯片制作电源作为OP07的电源输入,开关电源具有的效率高,体积小,散热小,可靠性高等特点,但是因为其内部构造特性,使输出电压带有一定的噪声干扰,不能输出纯净稳定的电压。
方案二:采用线性电源稳压芯片78系列和79系列制作线性电源,使用多输出抽头变压器接入整流桥再接入稳压芯片,输出纯净的线性电源。
2.电源方案论证本系统是一个测量放大系统,其信号要求纯净无噪声干扰,在系统中加入滤波器消除干扰的同时,我们应该考虑系统本身的干扰源并尽量降低干扰。
考虑到开关电源的输出电压不是十分纯净的,带有许多噪声干扰,而线性电源可以稳定输出电压值,虽然线性电源体积较大,效率较低,但是作为测量系统中,我们采用方案二来提高测量的精准度。
3.放大器制作方法方案一:题目要求使输入信号放大100至200倍,可使用单运放构成比例运算放大电路,按负反馈电阻比例运算进行放大,输出电压,此放大电路可以达到预定的放大倍数,但是其对共模信号抑制较差,容易出现波形失真等问题。
方案二:采用三运放构成仪表放大器,这是一种对弱信号放大的一种常用放大器,输出电压。
4.放大器方案论证在测量系统中,通常被测物理量均通过传感器转换为电信号,然后进行放大,因此,传感器的输出是放大器的信号源。
然而,多数传感器的等效电阻均不是常量,他们随所测物理量的变化而变。
这样,对于放大器而言信号源内阻是变量,放大器的放大能力将随信号的大小而变。
放大器的作用与原理
![放大器的作用与原理](https://img.taocdn.com/s3/m/3fd3f323974bcf84b9d528ea81c758f5f61f2988.png)
放大器的作用与原理1. 引言放大器是电子设备中常见的一种电路,它的主要作用是将输入信号增强到更高的幅度,以便驱动其他设备或输出到负载中。
放大器广泛应用于音频、视频、通信等领域,成为现代电子技术中不可或缺的部分。
本文将详细介绍放大器的作用与原理,包括放大器的基本概念、分类、工作原理和常见应用等内容。
2. 放大器的基本概念放大器是一种能够增强信号幅度的电路。
在放大器中,输入信号被放大后输出,放大倍数由放大器的增益决定。
放大器通常由一个或多个电子器件(如晶体管、真空管等)组成,通过对输入信号施加适当的放大倍数,使信号得以放大。
放大器的基本概念可以用以下方程表示:Vout = Av * Vin其中,Vout为输出信号的幅度,Vin为输入信号的幅度,Av为放大倍数。
3. 放大器的分类根据放大器的不同特性和应用需求,放大器可以分为多种不同类型。
下面介绍一些常见的放大器分类。
3.1 按信号类型分类•音频放大器:用于放大音频信号,常见于音响设备、扬声器等。
•射频放大器:用于放大射频信号,常见于无线通信系统、雷达等。
3.2 按工作原理分类•线性放大器:输出信号与输入信号成比例关系,保持波形不失真。
•非线性放大器:输出信号与输入信号的关系非线性,常用于调制解调等应用。
3.3 按放大器结构分类•电压放大器:以电压为输入和输出的放大器,常见于音频设备。
•电流放大器:以电流为输入和输出的放大器,常见于电源控制、电机驱动等。
•功率放大器:以功率为输入和输出的放大器,常见于无线通信系统、音响设备等。
4. 放大器的工作原理放大器的工作原理是通过在电路中引入放大器器件,如晶体管、真空管等,利用它们的放大特性来实现信号的放大。
4.1 单管放大器原理以晶体管为例,晶体管放大器是一种常见的放大器类型。
晶体管分为三个区域:发射区、基极区和集电区。
晶体管工作时,通过控制基极电流来控制集电区的电流,从而实现信号的放大。
晶体管放大器的工作原理如下: 1. 输入信号通过耦合电容进入晶体管的基极区,控制基极电流。
三运放仪表放大器共模抑制比
![三运放仪表放大器共模抑制比](https://img.taocdn.com/s3/m/672fbc997e192279168884868762caaedd33ba24.png)
三运放仪表放大器共模抑制比【知识】深度解析三运放仪表放大器共模抑制比导语:在电子领域中,三运放仪表放大器是一种常用的电路,具有广泛的应用场景。
其中,共模抑制比是评估三运放仪表放大器性能的重要指标之一。
本文将深入探讨三运放仪表放大器共模抑制比的概念、应用和影响因素,帮助读者全面理解这一主题。
一、什么是三运放仪表放大器共模抑制比?1.1 三运放仪表放大器的基本原理三运放仪表放大器是由三个运算放大器组成的电路,常用于测量电压、电流等信号。
它的基本原理是将输入信号分别连接到两个运放器的正输入端和负输入端,并将它们的输出通过差动放大器进行运算。
这样,三运放仪表放大器的输出即为输入信号的差值。
1.2 共模抑制比的定义共模抑制比是评估三运放仪表放大器对共模信号抑制能力的指标。
在理想情况下,三运放仪表放大器只输出差模信号,对于共模信号应该完全抑制。
共模抑制比是用来衡量三运放仪表放大器对共模信号抑制能力的大小的一个指标。
二、三运放仪表放大器共模抑制比的应用和意义2.1 应用场景三运放仪表放大器广泛应用于测量和控制系统中,特别是在精密测量仪器、传感器信号处理和自动控制系统中。
其高共模抑制比使其能够有效地滤除共模干扰信号,提高测量和控制系统的信号质量和精度。
2.2 重要意义共模抑制比是评价三运放仪表放大器性能好坏的指标之一。
具有高共模抑制比的三运放仪表放大器能够更好地抑制共模干扰信号,提高系统的可靠性和稳定性。
共模抑制比的好坏还与电路噪声的抑制、电源噪声的滤除等方面密切相关。
三、影响三运放仪表放大器共模抑制比的因素3.1 运放器的性能参数三运放仪表放大器的共模抑制比与运放器的性能参数密切相关。
运放器的开环增益、共模抑制比和输入偏置电流等参数会直接影响三运放仪表放大器的共模抑制比。
在选用和设计三运放仪表放大器时,需要对运放器的性能参数进行合理的选择和匹配。
3.2 外部电路的设计除了运放器的性能参数之外,外部电路的设计也对三运放仪表放大器的共模抑制比有一定的影响。
运算放大器的参数选型与应用
![运算放大器的参数选型与应用](https://img.taocdn.com/s3/m/637a2d2ab94ae45c3b3567ec102de2bd9605dee2.png)
运算放大器的参数选型与应用一、运算放大器的参数1.基本参数:(1)增益(A):运算放大器的放大能力,通常以电压增益或电流增益表示。
(2)输入阻抗(Rin):运算放大器对输入信号源的接收能力,一般较高,以保持输入信号源的电路完整性。
(3)输出阻抗(Rout):运算放大器提供给负载的输出能力,一般较低,以最大限度地传递放大的信号。
(4)带宽(B):运算放大器能够放大信号的频率范围。
(5)共模抑制比(CMRR):运算放大器对共模信号的抑制能力。
2.典型参数:(1)输入偏置电压(Vio):运算放大器非平衡输入端的直流电压差异。
(2)输入偏置电流(Iio):运算放大器非平衡输入端的直流电流差异。
(3)输入偏置电流温漂(Iio TC):运算放大器输入偏置电流随温度变化的程度。
(4)输入失调电压(Vos):漏电流通过输出端电阻引起的电压差。
(5)输出失调电压(Vos):输出电压与期望输出电压之间的差异。
二、运算放大器的选型1.输入信号要求:根据要放大的信号类型,确定所需的运算放大器是单电源还是双电源,是直流耦合还是交流耦合。
2.增益和带宽需求:根据系统设计的需求,选择具有足够放大增益和带宽的运算放大器。
3.供电电源需求:选择适合实际供电电源范围的运算放大器。
4.共模抑制比要求:根据具体应用的共模干扰程度确定所需的共模抑制比。
5.工作温度和封装要求:根据实际工作温度和应用环境,选择适合的运算放大器封装。
三、运算放大器的应用1.模拟电路放大:2.滤波器设计:3.比较器设计:4.阻容电路设计:5.仪器放大器设计:总结:运算放大器作为一种重要的电子元件,具有广泛的应用领域。
在使用运算放大器时,需要根据具体应用的需求来选择合适的运算放大器型号,并根据参数来进行电路设计和调试。
运算放大器的应用非常灵活,可以用于模拟电路放大、滤波器设计、比较器设计、阻容电路设计和仪器放大器设计等。
运算放大器在实际中的应用
![运算放大器在实际中的应用](https://img.taocdn.com/s3/m/8b5271b5d1d233d4b14e852458fb770bf68a3b55.png)
运算放大器在实际中的应用运算放大器(Operational Amplifier,简称OP-AMP)是一种具有高增益、高输入阻抗和低输出阻抗的集成电路,广泛应用于各种电子设备和系统中。
它可以对电压、电流和功率进行放大、滤波、求和、积分、微分等运算,是现代电子技术中不可或缺的关键元件之一。
本文将从不同领域的实际应用中,介绍运算放大器的重要作用。
一、信号放大与测量运算放大器最常见的应用就是作为信号放大器。
在测量领域中,运算放大器可以将微弱的信号放大到足够的幅度,以便被后续的电路或仪器进行处理和分析。
例如,在传感器信号采集中,运算放大器可以将传感器输出的微弱电压信号放大到可测量的范围,提高系统的灵敏度和测量精度。
二、滤波器运算放大器还可以用于构建各种滤波器电路,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器可以滤除不需要的频率成分,提高信号的质量和可靠性。
在音频领域,运算放大器被广泛应用于音频放大器、音频滤波器和音频调节器等电路中,使音乐和语音信号更加纯净和清晰。
三、比较器运算放大器还可以作为比较器使用,用于比较两个输入信号的大小。
当一个输入信号的电压高于另一个输入信号时,输出信号为高电平;反之,输出信号为低电平。
比较器常用于电压判别、开关控制、电路保护等应用中。
例如,在电源管理中,运算放大器可以监测电池电压,当电池电压过低时,触发报警或切断电路以保护电池和设备。
四、积分与微分运算运算放大器还可以实现积分和微分运算。
通过将电容和电阻与运算放大器相结合,可以构建积分器和微分器等电路。
在控制系统中,积分器可以用于控制系统的稳定性和抑制噪声;微分器可以用于快速响应和抑制低频干扰。
例如,在自动控制系统中,运算放大器可以作为PID控制器的核心部件,实现对温度、湿度、速度等参数的精确控制。
五、运算放大器的反馈电路运算放大器的反馈电路是其应用中的重要组成部分。
通过巧妙地构建反馈电路,可以改变运算放大器的增益、频率响应和稳定性等特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节仪器放大器(三运放)
在工业测量,医疗仪器以及各种传感器探测等应用中,信号是由传感器对各种物理量(如:温度、压力、流量、血流等)进行相应的变换而来的。
这些换能器产生的信号往往很微弱,而且其中其中包含有很高的共模电压信号及各种共模干扰。
被测对象有一定的(甚至很高)的内阻。
如:人体的心电信号为1mv左右,而共模电压可能达到10V左右,(共模/差模=10000倍),人体的阻抗几千欧到几百千欧。
基本作用:仪用放大器常用来精确放大载于高共模电压上的微弱差动信号。
主要特点:
①差动输入,具有很高的共模抑制比;
②有很高的电压增益;
③低噪声;
④高输入阻抗。
应用领域:
①信号放大。
如:扩散硅压力传感器,应变计、热电偶和电阻式
热探测器;
②医用仪器仪表:心电、脑电等人体生物信号的放大。
3.1基本仪用放大器的工作原理
⑴电路结构:
仪用放大器是在差动放大器基础上发展起来的一种比较完善的放大器。
它由三个运放(A1、A2、A3)和一些精密电阻(R1--R7)构成。
A1、A2为高输入阻抗的同相放大器。
A3为差动放大器。
注意:两个同相放大器不是通过R1直接接地而是相连。
这是很有必要的,下面加以说明。
⑵电路分析:
①A3为差动放大器,取匹配电阻R5=R4,R7=R6,采用电路理论
中的迭加原理及运放的虚短虚断的概念可以求出放大器的输
出为:
②仪用放大器的差模放大信号为:
可见,放大器只要求R5=R4,R7=R6两个电阻匹配。
若将A1、
A2接成两个独立的同相放大器,另外需要保证A1、A2的放大
器数相等,两个R1相等,否则会带来较大误差。
这在制造时
有很大的困难。
③通常选取R2--R6为同一电阻R,则:
差模放大倍数:
由上式可见,只要改变R1,即可改变增益,很方便。
④讨论:制造时,应尽量将A1,A2特性相等,R2和R3,R4
和R2,R1和R7要尽量配成对,才能减少电路的误差。
由于A1和A2为近似相同的同相放大器,由共模电压引起的输出也近似相等,位差动放大器A3相差后可以补偿掉A1和
A2共模放大倍数引起的误差。
这时放大器的共模误差主要取决
于A3的共模抑制比。
由于A1A2具有相同的温度漂移特性,通
过差动放大器A3的相减作用而达到补偿,改善了其温度特性。
⑤仪用放大器已被制造成一块集成的放大器。
其内部各电阻对运
放较好地保证匹配关系。
器件中温度特性也比较一致。
可以在
很宽的温度范围内保证放大器数的精度和稳定性。
3.2应用举例
(1)压力测量
(2)心电信号测量
3.3 仪用放大器输入端的屏蔽保护接线方式(减少干扰,改善CMR)
测量对象和仪器放大器之间通常有一段距离,为了减少外部对输入端引起的干扰和保证不因漏电引起输入阻抗降低,一般对输入引线采用屏蔽电缆加以保护。
电缆屏蔽层不能直接接地,而是采用电位自举电路,保持屏蔽电位跟踪输入信号电位。
这减少了电缆芯线与屏蔽间的电位差,降低了电缆对运放输入阻抗的分流作用,保证具有高的输入阻抗。
电缆的屏蔽作用同时有效地保护输入端,避免了来自外部电场的干扰。
电路连接方法示意如下:
3.4集成仪用放大器输入端的扩展应用
仪器放大器除了以电压输出外,也可以采用电流输出,即输出负载中的电流比于输入电压的差值,而与负载无关。
以下是电流输出型仪器放大器的种接法。
⑴负载电阻不是接在A3的输出端,而是接在同相端。
A3为V—I
变换电路。
⑵当集成仪用放大器不外设A3同相端的引出脚时,就不能采用上图的电路。
3.5几种实际的集成仪器放大器
制造模拟器件的著名公司:
(a).Burr-Brown公司已被TI收购。
(b).AD (Analog Device)公司
(c).MAXIM美信公司
(d).National Semiconductor国家半导体公司
仪用放大器的增益设定有两种方法:
⑴固定增益仪器放大器:外接电阻设定增益。
如:BB公司的INA101,AD521等。
⑵引脚可编程增益仪器放大器
增益电阻集成在芯片内。
通过改变引脚的连接可以得到:1,10,100和1000倍的放大。
如:模拟器件公司的AD524,AD621等。
(3)放大器接地问题
课后练习
1.查找阅读AD621:Low Drift, Low Power Instrumentation Amplifier。