仪用放大器电路
经典的运算放大器基本电路大全
![经典的运算放大器基本电路大全](https://img.taocdn.com/s3/m/0b497c1514791711cc79175b.png)
运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。
在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。
1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。
这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。
但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。
在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。
绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。
一般是正负15V,正负12V和正负5V也是经常使用的。
输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。
单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。
正电源引脚接到VCC+,地或者VCC-引脚连接到GND。
将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。
有一些新的运放有两个不同的最高输出电压和最低输出电压。
这种运放的数据手册中会特别分别指明Voh 和Vol 。
需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。
(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。
另外现在运放的供电电压也可以是3V 也或者会更低。
三运放仪表放大器
![三运放仪表放大器](https://img.taocdn.com/s3/m/0d05d0482e3f5727a5e9623d.png)
三运放仪表放大器摘要本系统采用三个OP07双电源单集成运放芯片构成仪表放大器,此放大器能调节将输入差模信号放大100至200倍,同时具有高输入电阻和高共模抑制比,对不同幅值信号具有稳定的放大倍数;电源部分由变压器、整流桥、7812、7912、7805等线性电源芯片组成,可输出+5V、+12V、-12V三路电压。
一、方案论证与比较1.放大器电源的制作方法方案一:本三运放仪表放大器系统采用集成运放OP07,由于OP07是双电源放大器,典型电源电压为,可方便采用市售开关电源或者开关电源芯片制作电源作为OP07的电源输入,开关电源具有的效率高,体积小,散热小,可靠性高等特点,但是因为其内部构造特性,使输出电压带有一定的噪声干扰,不能输出纯净稳定的电压。
方案二:采用线性电源稳压芯片78系列和79系列制作线性电源,使用多输出抽头变压器接入整流桥再接入稳压芯片,输出纯净的线性电源。
2.电源方案论证本系统是一个测量放大系统,其信号要求纯净无噪声干扰,在系统中加入滤波器消除干扰的同时,我们应该考虑系统本身的干扰源并尽量降低干扰。
考虑到开关电源的输出电压不是十分纯净的,带有许多噪声干扰,而线性电源可以稳定输出电压值,虽然线性电源体积较大,效率较低,但是作为测量系统中,我们采用方案二来提高测量的精准度。
3.放大器制作方法方案一:题目要求使输入信号放大100至200倍,可使用单运放构成比例运算放大电路,按负反馈电阻比例运算进行放大,输出电压,此放大电路可以达到预定的放大倍数,但是其对共模信号抑制较差,容易出现波形失真等问题。
方案二:采用三运放构成仪表放大器,这是一种对弱信号放大的一种常用放大器,输出电压。
4.放大器方案论证在测量系统中,通常被测物理量均通过传感器转换为电信号,然后进行放大,因此,传感器的输出是放大器的信号源。
然而,多数传感器的等效电阻均不是常量,他们随所测物理量的变化而变。
这样,对于放大器而言信号源内阻是变量,放大器的放大能力将随信号的大小而变。
仪表放大器电路原理
![仪表放大器电路原理](https://img.taocdn.com/s3/m/8b79a1d6112de2bd960590c69ec3d5bbfd0adad6.png)
仪表放大器是一种特殊的放大器电路,用于测量和放大微弱信号。
它的原理是通过放大输入信号并降低噪声,以便更准确地测量和显示信号。
仪表放大器电路通常由以下几个主要部分组成:
1. 输入级:输入级负责接收和放大输入信号。
它通常由一个差分放大器组成,可以抵消共模噪声并提高信号的共模抑制比。
2. 增益控制:增益控制电路用于调节放大器的增益。
它可以通过改变电阻或电容值来实现。
3. 输出级:输出级负责放大信号并驱动负载。
它通常由一个功率放大器组成,可以提供足够的功率以驱动外部设备。
4. 反馈回路:反馈回路用于控制放大器的增益和稳定性。
它通过将一部分输出信号反馈到输入级来实现。
仪表放大器电路的工作原理是将输入信号放大到适当的范围,并通过反馈回路来保持放大器的稳定性和线性度。
它还可以通过滤波和抑制噪声来提高信号质量。
仪表放大器通常
用于测量仪器、传感器和实验室设备中,以提供准确和可靠的信号放大功能。
仪用放大器设计
![仪用放大器设计](https://img.taocdn.com/s3/m/1a187f1a10a6f524ccbf85f1.png)
仪用放大器使用注意事项。
仪表放大器的结构仪表放大器一般是由三个放大器和经过激光调阻修正的电阻网络构成,如图1所示。
在传统的三片运放方式的基础上做一些改进,内部阻值的校准保证用户只需要外接一个电阻即可实现由1到上万倍的增益精确设定,减少了由于增益相关误差带来的数据采集误差,同时这种结构保证其具有高输入阻抗和低输出阻抗,且每一路输入都有输入保护电路以避免损坏器件。
由于采用激光调阻,使其具有低失调电压、高共模抑制比和低温漂。
图1 仪表放大器的结构原理框图图1所示为BB(Burr Brown)公司的INA114、INA118等仪表放大器的结构原理框图及引脚。
在实际应用时,正负电源引脚处应接滤波电容C,以消除电源带来的干扰。
5脚为输出参考端,一般接地。
实际应用中即使5脚对地之间存在很小的电阻值,也将对器件的共模抑制比产生很大的影响,如5欧姆的阻值将导致共模抑制比衰减到80dB。
应用中应考虑的问题1 输入偏置电流回路一般来说,选择差分信号测量的工作方式时,后面的信号放大电路一般直接采用仪表放大器构成。
仪表放大器的输入阻抗非常高,大约达到1010Ω数量级,相应对于差分输入的每个输入端都需要输入偏置电流通道,以提供共模电流反馈回路,例如仪表放大器IN118输入偏置电流大约为±5nA。
由于仪表放大器的输入阻抗非常高,使得输入的偏置电流随输入电压的变化非常小,对差分信号放大不会产生太大影响。
输入偏置电流是仪表放大器(IA)输入三极管所必须的电流,电路设计时必须保证偏置电流有接地的回路,如果电路中没有输入偏置电流通道,传感器的输入将处于浮电位状态,而浮电位值很可能超过放大器所能够允许的共模电压范围(其值与放大器的供电电压相关),使输入放大器饱和而失去放大功能。
(实验中好像是c)针对实际的应用情况,输入偏置电流回路设置可以采用三种基本形式,分别如图2所示。
其中(a)为差分信号源阻抗较高(人体内阻算大还是小?接电极时是否需要导电膏之类的东西,这是人体电阻大约是多少?)时常用的形式,其中的两个接地电阻相等,以保证较高的共模抑制比和减小偏置电流对失调的影响;(b)为信号源阻抗较低时采用的形式(如热电偶);(c)为对称结构常用的形式。
实验报告——设计放大电路
![实验报告——设计放大电路](https://img.taocdn.com/s3/m/675233ce910ef12d2bf9e704.png)
课程名称:电路与电子实验Ⅱ指导老师: yyy 成绩:__________________ 实验名称:集成功放及其应用实验类型:模电同组学生姓名:一、实验目的二、实验原理三、实验接线图四、实验设备五、实验步骤六、实验数据记录七、实验数据分析八、实验结果或结论一、实验目的1.了解仪表放大器与运算放大器的性能区别;2.掌握仪表放大器的电路结构、设计和测试方法;3.学习仪表放大器在电子设计中的应用。
二、实验内容1 .用通用运算放大器设计一个仪表放大器2 .用INA128 精密低功耗仪器放大器设计一个仪表放大器3 .仪表放大器应用:实现电子秤量电路功能三、实验原理●基本放大器性能比对●输入电阻Ri:放大电路输入电压与输入电流之比。
(输入电阻越大,信号电压损失越小,输入电压越接近信号源电压)K:差模电压放大倍数与共模电压放大倍数之比的绝对值。
(一般要求:●共模抑制比CMR放大差模信号,抑制共模信号,即共模抑制比越大越好)●电子秤电路●用单个通用运算放大器设计一个差分放大电路,并与力传感器、零点与增益调节电路、万用表一起构成电子秤。
表1本实验选择该电路图做实验差动放大电路放大倍数为200倍,后面增益调节电路放大倍数7.5倍至12.5倍。
测量时实验箱上COM1与COM2须连接在一起。
●用单片集成仪表放大器INA128构成放大电路,并与力传感器、零点与增益调节电路、万用表一起构成电子秤。
INA128放大电路放大倍数为1000倍,后面增益调节电路放大倍数1.5倍至2.5倍。
测量时实验箱上COM1与COM2须连接在一起。
INA128仪用放大器的电源绝对不能接错!●零点与增益调整电路倍放大后,输出为0.5V,如果想在数字万用表上显示100的数值,可以通过零点与增益调节电路将0.5V直流信号放大两倍,使Vout输出1V的电压信号,万用表选择2V档量程,则在万用表上显示1.000,与被称物体的实际重量相一致,唯一的区别是小数点不对。
谱仪放大器
![谱仪放大器](https://img.taocdn.com/s3/m/f9b515ab534de518964bcf84b9d528ea81c72fe9.png)
tz
1
ln
1
ln
1
达到负峰值时间为
负峰值与正峰值之比为 Vm
tm
2 1
ln
1
2
ln
1
Vm
下冲的后沿部分可以用 度过载问题。
V0tຫໍສະໝຸດ Q Cfet f来表示,尽管其值很小,但是尾部拖得很长。会带来幅
三 极零相消微分网络
为了避免这种大幅度过载效应,需设法不产生长尾部的下 冲,这就不能用简单的高通电路来对电荷灵敏放大器输出 信号进行微分,需要选择一个电路,保证微分之后输出为 单极性信号。
放大器基本参量
计数率过载特性:当计数率比较高时所引起的脉
冲幅度分布的畸变称为放大器的计数率过载。谱仪放 大器的计数率特性主要取决于它的滤波器的响应时间, 由滤波器成形的信号越宽,堆积的可能性越大。
上升时间:探测器输出的信号通常有快的前沿和缓
慢的下降后沿,上升时间主要对信号的前沿而言。放 大器的上升时间过大会使信号产生畸变,结果使信号 幅度变小了。如果放大器上升的时间非常小也带来了 一些不利因素,一则电路变得很复杂,二则增加了电 路本身的噪声,因此需要个合理的取舍。
四 堆积判弃电路原理图
结束
谢谢
参考文献: 《核电子学》 《核辐射探测器与核电子学》
!
放大器基本参量
噪声及信号噪声比:放大器输出的信息中,总是
由信号、噪声和干扰组成。噪声是由于前置放大器输 出噪声和放大器输入端自身的噪声所决定。通常考虑 放大器输入端的噪声比前置放大器输出端的噪声小一
个量级就能满足要求。
幅度过载特性:放大器工作有一个线性范围,当
超出线性范围很大时,放大器在一段时间内不能恢复 正常工作,在这段时间内低能的射线信号就不能被正 常放大,从而使测量差生误差,这种现象就称为放大 器的幅度过载也称为放大器的阻塞。
ad620用法介绍以及典型电路连接解读
![ad620用法介绍以及典型电路连接解读](https://img.taocdn.com/s3/m/fbc5b010a32d7375a517800f.png)
单片仪表放大器为了满足对更容易应用的仪表放大器的需求,ADI公司研发出单片IC仪表放大器。
这些IC包含对如前所述的三运放和双运放仪表放大器电路的改进,同时提供激光微调的电阻器和其它有益於单片IC的技术。
由於有源器件和无源器件现在都在同一颗管芯内,所以它们能够精密匹配——这保证了器件提供高CMR。
另外,这些器件在整个温度范围内保持匹配,从而保证了在宽温度范围内优良的性能。
IC技术(例如,激光晶圆微调)能够使单片集成电路调整到极高精度并且提供低成本、高量产。
单片仪表放大器的另一个优点是它们可以采用尺寸极小、成本极低的SOIC或MSOP封装,适合用於高量产。
表1提供一个ADI公司仪表放大器性能快速一览表。
图1. AD8221原理图一、采用仪表放大器还是差分放大器尽管仪表放大器和差分放大器有很多共性,但设计过程的第一步应当是选择使用何种类型的放大器。
差分放大器本质上是一个运放减法器,通常使用大阻值输入电阻器。
电阻器通过限制放大器的输入电流提供保护。
它们还将输入共模电压和差分电压减小到可被内部减法放大器处理的范围。
总之,差分放大器应当用於共模电压或瞬态电压可能会超过电源电压的应用中。
与差分放大器相比,仪表放大器通常是带有两个输入缓冲放大器的运放减法器。
当总输入共模电压加上输入差分电压(包括瞬态电压)小於电源电压时,应当使用仪表放大器。
在最高精度、最高信噪比(SNR)和最低输入偏置电流(IB)是至关重要的应用中,也需要使用仪表放大器。
二、单片仪表放大器内部描述1、高性能仪表放大器ADI公司於1971年推出了第一款高性能单片仪表放大器AD520,2003年推出AD8221。
这款仪表放大器采用超小型MSOP封装并且在高於其它同类仪表放大器的带宽内提供增加的CMR。
它还比工业标准AD620系列仪表放大器有很多关键的性能提高。
图2. AD8221的引脚排列AD8221是一种基於传统的三运放结构的单片仪表放大器(见图1)。
仪表放大器实验报告
![仪表放大器实验报告](https://img.taocdn.com/s3/m/3f1db55b366baf1ffc4ffe4733687e21ae45ff64.png)
仪表放大器实验报告
一. 实验目的:
1.利用模电知识分析该仪表放大器输入输出关系, 熟悉其工作原理, 给出该电路的特点。
2.查找相关资料, 给出该类放大器的应用场合及其应用电路(至少一种应用电路设计), 要求给出其输入输出关系。
3.利用软件仿真该仪表放大器, 给出其电路放大倍数和频谱特性, 表明fh和fl。
三.二. 实验用具:
四.6个10K电阻, 1个100K电阻, 一个LM324N集成运放, 导线若干根。
实验原理:
图一
五.如图所示。
它主要是由两级放大电路构成的。
其中A1.A2为同相差分方式输入。
同相输入可以大幅度提高电路的输入阻抗,
减小电路对微弱输入信号的衰减;差分输入可以使电路只对差
模信号放大, 而对共模输入信号只起跟随作用, 使得送到后级
的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得
到提高。
六.实验内容和方法
(1)测量电路放大倍数和频谱宽度B以及上下限截止频率fh和fl。
(2)设计电桥电路, 求该电路输出电压范围。
五. 实验数据处理与结果:
仿真结果: ui1=100mv ui2=0mv uo=119mv A=1.19
fh=469.5khz fl=10.523mhz
六.测量结果: A=1.2fh=818khz fl=11.7hz
分析与讨论:
放大器的增益: A=(1+2R1/R2)*(Rf/R1)
特点: a、极高的差模、共模输入阻抗;b、低输出阻抗;c、精确和稳定的增益;d、极高的共模抑制比。
注: LM324N为双电源供电。
三运放组成的仪表放大器原理分析
![三运放组成的仪表放大器原理分析](https://img.taocdn.com/s3/m/6ffc5d6d58fafab069dc02e3.png)
三运放组成的仪表放大器原理分析仪表放大器与运算放大器的区别是什么?仪表放大器是一种具有差分输入和相对参考端单端输出的闭环增益单元。
大多数情况下,仪表放大器的两个输入端阻抗平衡并且阻值很高,典型值≥109 Ω。
其输入偏置电流也应很低,典型值为 1 nA至50 nA。
与运算放大器一样,其输出阻抗很低,在低频段通常仅有几毫欧(mΩ)。
运算放大器的闭环增益是由其反向输入端和输出端之间连接的外部电阻决定。
与放大器不同的是,仪表放大器使用一个内部反馈电阻网络,它与其信号输入端隔离。
对仪表放大器的两个差分输入端施加输入信号,其增益既可由内部预置,也可由用户通过引脚连接一个内部或者外部增益电阻器设置,该增益电阻器也与信号输入端隔离。
专用的仪表放大器价格通常比较贵,于是我们就想能否用普通的运放组成仪表放大器?答案是肯定的。
使用三个普通运放就可以组成一个仪用放大器。
电路如下图所示:输出电压表达式如图中所示。
看到这里大家可能会问上述表达式是如何导出的?为何上述电路可以实现仪表放大器?下面我们就将探讨这些问题。
在此之前,我们先来看如下我们很熟悉的差分电路:如果R1 =R3,R2 =R4,则VOUT = (VIN2—VIN1)(R2/R1)这一电路提供了仪表放大器功能,即放大差分信号的同时抑制共模信号,但它也有些缺陷。
首先,同相输入端和反相输入端阻抗相当低而且不相等。
在这一例子中VIN1反相输入阻抗等于100 kΩ,而VIN2同相输入阻抗等于反相输入阻抗的两倍,即200 kΩ。
因此,当电压施加到一个输入端而另一端接地时,差分电流将会根据输入端接收的施加电压而流入。
(这种源阻抗的不平衡会降低电路的CMRR。
)另外,这一电路要求电阻对R1 /R2和R3 /R4的比值匹配得非常精密,否则,每个输入端的增益会有差异,直接影响共模抑制。
例如,当增益等于1 时,所有电阻值必须相等,在这些电阻器中只要有一只电阻值有0.1% 失配,其CMR便下降到66 dB(2000:1)。
精密仪用放大器INA114原理及应用
![精密仪用放大器INA114原理及应用](https://img.taocdn.com/s3/m/57e0fbeca300a6c30d229f7c.png)
精密仪用放大器INA114原理及应用摘要:第一章引言INA114是美国BURR—BROWN公司推出的精密仪用放大器,具有成本低、精度高通用性强等优点,三运放结构设计,减小了尺寸,拓宽了应用范围。
利用一个外部电阻器就可在1—10000范围内进行增益调节,内部输入防护可承受高达±40V的共模电压而不会损坏。
INA114具有低失调电压(50μV)、低漂移μV/︒C)和高共模抑制比(当G = 1000时为115dB )。
能在±低电源情况下工作,也可用5V单电源工作。
静态工作电流最大3mA。
第二章INA114结构原理及特点一、特性1.低失调电压: 最大50μV2.低漂移: 最大μV/︒C3.低输入偏流: 最大2nA4.高共模抑制:最小115dB5.输入过压保护:±40V6.宽电源范围: ±2.25 —±18V7.低静态电流: 最大3mA二、应用1.电桥放大器2.热电偶放大器3.RTD感测放大器4.医用放大器5.数据采集三、结构原理图INA114结构原理图如图1所示:图1 结构原理图1. V IN-(脚2):信号反向输入端。
该端与信号同相输入端(脚3)构成差分输入。
2. V IN+(脚3):信号同向输入端。
3.增益调整(脚1、8):该端接外接增益调整电阻器R G。
4. V O(脚6):放大器输出端。
5. Ref(脚5):参考电压输入端,通常接地。
为确保良好的共模抑制,连接必须是低阻抗的,如果一个5 的电阻串接在此脚,将引起共模抑制比典型值下降到80dB(G=1)。
三、工作原理分析1.三运放仪用放大器电路结构仪用放大器的三运放结构,是在差动运放的基础上发展起来的一种比较完善的结构形式,如图2所示,其中,A1、A2为同相放大器,A3为差动放大器,三个运放都具有高输入阻抗、高增益、高共模抑制比、低噪声等特性,且A1、A2性能完全匹配。
图2 三运放仪用放大器电路结构2.工作原理分析(1)当Ui1单独作用,即Ui2 = 0时:Ui2 = 0, UN = 0(2)当U i2单独作用(Ui1= 0)时:Ui1 = 0, UM = 0(3)当Ui1、Ui2同时作用时:当满足电阻匹配条件,即 R5 = R4 , R7 = R6 , R3 = R2时,输出电压为:选择R2~R6=R ,则增益为:因此,INA114的增益为: GR k G Ω+=501 i1121o1U R R R U +='i113o2U R R U -='i2121o2U R R R U +=''i212o1U R R U -=''o1o1o1U U U '''=+122i1i211R R RU U R R +=-o2o2o2U U U '''=+133i2i111R R RU U R R +=-6o o2o14()R U U U R =-6123i2i114()()R R R R U U R R ++=-121)(413216R RR R R R R R G +=++=其中,R是外接电阻器,50k 是内部两个反馈电阻值的和。
仪表放大器电路分析
![仪表放大器电路分析](https://img.taocdn.com/s3/m/e106a3bf360cba1aa811dae7.png)
仪表放大器电路设计与比较智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。
对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。
放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。
仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号范围。
下面从仪表放大器电路的结构、原理出发,设计出四种仪表放大器电路实现方案,通过分析、比较,给出每一种电路方案的特点,为学生进行电子电路实验提供一定的参考。
1.仪表放大器电路的构成及原理仪表放大器电路的典型结构如图1所示。
它主要由两级差分放大器电路构成。
其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。
这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,RF和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。
在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。
由公式可见,电路增益的调节可以通过改变Rg阻值实现。
2.仪表放大器电路设计1)仪表放大器电路实现方案目前,仪表放大器电路的实现方法主要分为两大类:第一类由分立元件组合而成;另一类由单片集成芯片直接实现。
根据现有元器件,文中分别以单运放LM741和OP07,集成四运放LM324和单片集成芯片AD620为核心,设计出四种仪表放大器电路方案。
方案1:由3个通用型运放LM741组成三运放仪表放大器电路形式,辅以相关的电阻外围电路,加上A1,A2同相输入端的桥式信号输入电路,如图2所示。
仪用放大器电路原理
![仪用放大器电路原理](https://img.taocdn.com/s3/m/c8d5b8bb8662caaedd3383c4bb4cf7ec4afeb6ca.png)
仪用放大器电路原理
仪用放大器是一种用于放大、增益、滤波和增强信号的电路。
它可以将微弱的信号放大到适合测量或控制系统的工作范围。
下面是一种常见的仪用放大器电路原理:
1. 差动输入:仪用放大器通常具有差动输入,即两个输入端口,一个是非反相输入(+)端口,另一个是反相输入(-)端口。
通过比较两个输入端口的电压差,仪用放大器可以放大和处理信号。
2. 放大器级:仪用放大器通常由多个级联的放大器组成,每个级别都有自己的增益。
每个级别的放大器可以根据需要进行调整,以实现所需的放大和增益。
3. 反馈:仪用放大器电路通常包含反馈回路,以稳定增益和线性度。
反馈可通过将输出信号的一部分(通常是反相)反馈到放大器的输入端口来实现。
反馈有助于减小误差,提高稳定性和线性度。
4. 滤波:仪用放大器电路可以包含滤波器来削弱或消除噪声和其他无用信号。
滤波器可以是低通、高通、带通或带阻。
5. 输出:仪用放大器的输出通常与测量或控制系统连接,以将放大的信号传输到其他设备或系统中。
总之,仪用放大器电路使用差动输入、放大器级、反馈、滤波
和输出等原理来放大、增益、滤波和增强信号,从而实现对信号的处理和控制。
仪用放大器原理
![仪用放大器原理](https://img.taocdn.com/s3/m/7f23fd7e842458fb770bf78a6529647d26283476.png)
仪用放大器原理仪用放大器是一种专门用于测量信号的电子设备,主要用来放大低电平信号以便于进行必要的测量与分析。
它通常被用来测量如电流、电压、温度、光等信号,并且可以对这些信号进行放大、滤波、采集和转换等操作,通常用于实验室以及产业自动化等领域。
下面将分步骤阐述仪用放大器的原理:1. 仪用放大器的输入电路在仪用放大器中,输入电路又被称为差分输入电路。
它通常由两个电阻和一个放大器构成,这些电阻用于连接放大器的正、负输入端。
对于输入信号,它们被分别分配到这两个输入端,从而产生了一个称为微分信号的变化电压信号。
2. 仪用放大器的放大电路在放大电路中,输入信号通过一个放大器进行放大,这里使用的放大器通常是由差分放大器、电容放大器等构成。
放大器将输入信号的大小增加到一个可测量的范围,然后输出到下一级(或者仪器的输出端)进行后续操作。
3. 仪用放大器的反馈电路反馈电路可以使放大器输出的电信号恢复到输入电信号的大小和形状。
反馈电路通常由电容、电感和电阻组成,它们将无法实现精确度的电信号调整为输入信号,提高了仪器的测量精度。
4. 仪用放大器的滤波电路滤波器是仪用放大器的另外一个重要电路,用于去除输入信号中的噪声、杂波。
通常,我们需要选择适当的滤波器,以便从输入信号中滤除我们不需要的信息。
在滤波器电路中,无法想要的信号通常会被转换为能量,并最终被吸收。
综上所述,仪用放大器的原理其实就是基于差分放大器的放大、滤波电路以及反馈电路的工作原理。
它处理的信号主要来源于传感器等一些低电平信号和传入的放大器输入端,经过放大、滤波、反馈等电路进行处理,最终转换为正常大小的电信号,并以输出信号的形式提供给用户。
纳伏信号放大电路设计
![纳伏信号放大电路设计](https://img.taocdn.com/s3/m/a48edb66814d2b160b4e767f5acfa1c7aa0082b1.png)
纳伏信号放大电路设计引言:纳伏信号放大电路是一种常用的电子电路,用于放大微弱的纳伏电压信号。
在很多应用中,如传感器信号放大、生物信号测量等领域,纳伏信号放大电路起到了至关重要的作用。
本文将介绍纳伏信号放大电路的设计原理、常用的放大电路结构和一些注意事项。
一、设计原理:纳伏信号放大电路的设计原理基于放大器的工作原理。
放大器是一种能够放大电压、电流或功率的电子器件。
纳伏信号放大电路通常使用放大器将微弱的输入信号放大到合适的幅度,以便后续的处理和分析。
二、常用的放大电路结构:1. 运算放大器放大电路:运算放大器是一种常用的放大电路,它具有高增益、低失真、输入阻抗高等特点。
在纳伏信号放大电路中,可以使用运算放大器来放大输入信号。
常见的运算放大器放大电路有反馈放大电路、差分放大电路等。
2. 仪器放大器放大电路:仪器放大器是一种专门用于放大微小信号的放大器。
它具有高精度、低噪声、高共模抑制比等特点。
在纳伏信号放大电路中,仪器放大器广泛应用于传感器信号放大、生物信号测量等领域。
3. 运算放大器与仪器放大器结合的放大电路:在一些对信号质量要求较高的应用中,可以将运算放大器和仪器放大器结合起来使用,以实现更好的放大效果。
这种结合的放大电路既具有运算放大器的高增益特点,又具有仪器放大器的高精度特点。
三、注意事项:1. 噪声控制:在纳伏信号放大电路设计中,噪声是一个重要的考虑因素。
要注意选择低噪声的元器件,并合理布局电路,以减少噪声的干扰。
2. 输入阻抗:纳伏信号放大电路的输入阻抗应尽量大,以避免对输入信号的干扰。
可以使用高输入阻抗的运算放大器或仪器放大器来实现。
3. 输出电压范围:纳伏信号放大电路的输出电压范围应适当选择,以保证放大后的信号不会超出后续处理电路的工作范围。
4. 温度漂移:纳伏信号放大电路的温度漂移对于一些需要高精度的应用来说是一个重要的考虑因素。
要选择具有较小温度漂移特性的元器件,并进行温度补偿。
5. 电源稳定性:纳伏信号放大电路对电源的稳定性要求较高,要选择稳定性好的电源,并采取合适的电源滤波措施。
LM324仪表放大器
![LM324仪表放大器](https://img.taocdn.com/s3/m/e51541016bd97f192279e933.png)
LM324仪表放大器电路
摘要:仪表放大器电路以其高输入阻抗、高共模抑制比、低漂移等特点在传感器输出的小信号放大领域中得到了广泛应用。
该电路是以一个四运放集成电路LM324为核心实现的仪表放大器电路,它的特点是将4个功能独立的功放集成在同一个集成芯片里,这样大大减少了各运放由于制造工艺不同带来的器件性能差异。
主要芯片LM324参数:
工作温度:0—70℃
增益带宽积:1MHz
仪表放大器电路简介:
仪表放大器电路的典型结构如图1所示。
它主要由两级差分放大器电路构成。
其中运放A1、A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱信号的衰减;差分输入可以使电路只对差模信号放大,而对共模信号只起跟随作用,使得送到后级的的差模信号与共模信号的幅值之比(共模抑制比CMRR)得到提高。
这样在以运放A3为核心的部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。
在R1=R2,R3=R4,R5=Rf的条件下,图一电路的增益为:G=(1+2R1/Rg)(Rf/R3),电路增益的调节可以通过改变Rg阻值实现。
LM324仪表放大器电路:
电路接线图:
电路描述:
一:该电路是在图3由LM324组成的仪表放大器电路的基础上,又增加了一级同相比例放大电路,放大倍数为1+71
R R f (可以通过调节Rf1的阻值,调节放大
倍数),所以整个电路的放大倍数A=(1+2R1/Rg)(Rf/R3)(1+
71R R f )
二:在最后一级放大电路中加入了直流偏置电路
实测结果:。
仪表放大器典型结构输出公式推导
![仪表放大器典型结构输出公式推导](https://img.taocdn.com/s3/m/f556b2bbed3a87c24028915f804d2b160b4e86cb.png)
仪表放大器典型结构输出公式推导仪表放大器(Instrumentation Amplifier)是一种特殊的差分放大器,常用于放大微弱信号,同时具备高输入阻抗、高共模抑制比和高增益等特点。
它的典型结构由两个差动放大器和一个缓冲放大器组成,可以通过推导输出公式来深入理解其工作原理。
我们来看一下仪表放大器的典型结构。
如图所示,仪表放大器由两个差动放大器(A1和A2)和一个缓冲放大器(A3)组成。
差动放大器A1和A2的作用是增益输入信号,并且具备高共模抑制比。
它们的输出分别为V1和V2,差模增益为G1。
通过差动对输入信号进行放大,可以减小共模干扰的影响。
缓冲放大器A3的作用是将差动放大器的输出信号进行缓冲,以提供给后续的测量或控制电路使用。
它的增益为G2,输出信号为Vo。
接下来,我们通过推导来得到仪表放大器的输出公式。
我们假设差动放大器A1和A2的增益为G1,差模输入电压为Vd,共模输入电压为Vc。
根据差模和共模输入的关系,我们有:Vd = (V2 - V1) / 2Vc = (V1 + V2) / 2差动放大器的增益G1为:G1 = Vd / Vc其中,Vd和Vc可以分别表示为:Vd = (V2 - V1) / 2Vc = (V1 + V2) / 2将上述表达式代入差动放大器的增益公式,我们可以得到:G1 = (V2 - V1) / (V1 + V2)接下来,我们考虑缓冲放大器A3的增益为G2,输入信号为差动放大器的输出信号Vd。
根据缓冲放大器的增益公式,我们有:Vo = G2 * Vd将Vd的表达式代入,我们可以得到:Vo = G2 * (V2 - V1) / (V1 + V2)仪表放大器的输出公式为:Vo = G1 * G2 * (V2 - V1) / (V1 + V2)通过推导输出公式,我们可以看到仪表放大器的输出信号与差动输入信号的差值成正比,同时与差动输入信号的和值成反比。
这样设计可以使得仪表放大器具备高共模抑制比,能够有效地消除共模干扰的影响。
利用四通道单刀单掷开关ADG1611和仪表放大器AD620构建低成本可编程增益仪表放大器电路
![利用四通道单刀单掷开关ADG1611和仪表放大器AD620构建低成本可编程增益仪表放大器电路](https://img.taocdn.com/s3/m/dbbf92f0ba0d4a7302763a52.png)
Rev.0“Circuits from the Lab” from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a labenvironment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 电路笔记CN-0146连接/参考器件利用ADI公司产品进行电路设计 1 Ω导通电阻、±5 V四通道单刀单掷开关ADG1611放心运用这些配套产品迅速完成设计。
欲获得更多信息和技术支持,请拨打4006-100-006或访问AD620精密仪表放大器/zh/circuits。
AD8221精密仪表放大器利用四通道单刀单掷开关ADG1611和仪表放大器AD620构建低成本可编程增益仪表放大器电路电路功能与优势四个单刀单掷开关与四个精密电阻相连,利用这些开关便可控制外部增益设置电阻值R,从而设置增益值。
高输入阻抗仪器放大器电路
![高输入阻抗仪器放大器电路](https://img.taocdn.com/s3/m/40af465ec850ad02de804127.png)
一、实验目的1.掌握原理图绘制的一般方法步骤。
2.掌握常用原理图元器件库的使用。
3.掌握元器件及常用对象的放置和属性编辑。
4.掌握PCB电路板图设计的方法步骤。
二、实验内容图1高输入阻抗仪器放大器电路原理图三、实验步骤1.新建项目文件创建一个新的项目文件,命名为“高输入阻抗仪器放大器电路.PrjPCB”,保存到“高输入阻抗仪器放大器电路”文件夹中。
2.新建原理图文件创建一个新的原理图文件,命名为“高输入阻抗仪器放大器电路.SchDoc”,保存到“高输入阻抗仪器放大器电路”文件夹中。
3.设置图样参数在原理图设计窗口中双击图纸边框,或者通过菜单栏中的“Design/Document Options…”命令,打开“Document Options”对话框。
如图2所示。
图纸大小设置为A4,捕获栅格为5。
图2“Document Options”对话框5.查找元器件在“Library”面板中,单击“Search...”按钮,输入元器件名称,在“Scope”区域选择搜索范围,开始搜索元件。
6.放置编辑元件属性图3 “Component Properties”对话框7. 放置电源和接地符号图4 放置元件和电源的电路原理图8.连线按键盘“Page Up”键,使原理图中的元件清晰地显示在编辑平面上。
单击连线工具栏按钮开始连线。
9.放置网络标号1)单击“Wiring”工具栏内的放置网络标号按钮,光标变为十字状,如图5所示。
2)按下键盘上的Tab按钮,在弹出如图6所示的“Net Label”对话框中进行修改为“-12v”,单击“OK”按钮,再将光标移到放置网络标号的第4脚的导线上,放置位置如图1所示。
单击鼠标左键定位。
图5 放置网络标号图6 放置输出点属性对话框10.保存单击工具栏中的存盘图标或执行菜单命令File/Save。
绘制完成后如图7所示。
图7 绘制完成的“高输入阻抗仪器放大器电路”原理图10.设置PCB板1、在主菜单中选择“Design”→“Board Options…”命令“Board Options”对话框。
lm358放大电路
![lm358放大电路](https://img.taocdn.com/s3/m/82c13fc8710abb68a98271fe910ef12d2af9a9a9.png)
lm358放大电路LM358放大电路是一种基本的放大器电路,广泛应用于模拟电路中。
它是一种双运放电路,内置有两个运放,因此可以构成多种不同的放大器电路。
下面就对LM358放大电路进行详细介绍。
一、LM358放大电路的基本原理LM358是一种双运放电路,它的基本原理是利用运放的放大功能和反馈电路来实现放大器的功能。
运放的放大功能使得输入信号经过放大后输出,而反馈电路则可以控制放大倍数和稳定性,从而达到放大器的设计要求。
二、LM358放大电路的分类LM358放大电路可以分为以下几类:1.非反馈放大电路非反馈放大电路是不带反馈电路的放大器,它的输出信号只受到输入信号和运放本身的放大能力的影响。
由于没有反馈电路,因此非反馈放大电路具有较高的增益和带宽,但稳定性不如反馈放大电路。
2.反馈放大电路反馈放大电路是通过给运放的输出信号加上反馈电路来实现放大功能的,它可以分为正反馈和负反馈两种类型。
在正反馈放大电路中,输出信号和输入信号同相,增益呈倍增关系,而在负反馈放大电路中,输出信号和输入信号反相,增益较小但稳定性较好。
3.比较器电路比较器电路是一种将输入信号与某个参考电压进行比较的电路,它的输出信号只有两种状态:高电平和低电平。
LM358可以构成一种简单的比较器电路,可以用于电压判断、触发器等应用。
三、LM358放大电路的应用LM358放大电路有广泛的应用,可以用于以下几个方面:1.仪器仪表在仪器仪表中,放大器电路常用于信号检测、信号放大和滤波等方面。
LM358放大电路可以作为基础模块,构建各种仪器仪表的放大器和滤波电路。
2.电源管理在电源管理中,LM358放大电路可以作为电压比较器、电流检测器和温度传感器等基础模块,用于各种电源管理应用。
3.传感器放大电路传感器放大电路可以将传感器输出的微弱信号放大到足够的水平,以便交给控制器处理。
LM358放大电路可以作为传感器放大电路的基础模块,用于各种传感器应用。
四、LM358放大电路的设计在设计LM358放大电路时,需要考虑以下几个方面:1.放大倍数的选择放大倍数是放大电路设计时的一个重要参数,需要根据实际应用场景进行选择。
仪表放大器电路设计
![仪表放大器电路设计](https://img.taocdn.com/s3/m/fe4ad35d3b3567ec102d8a04.png)
仪表放大器电路设计技术分类:模拟设计现代电子技术西安邮电学院崔利平0 引言智能仪表仪器通过传感器输入的信号,一般都具有“小”信号的特征:信号幅度很小(毫伏甚至微伏量级),且常常伴随有较大的噪声。
对于这样的信号,电路处理的第一步通常是采用仪表放大器先将小信号放大。
放大的最主要目的不是增益,而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。
仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号范围。
本文从仪表放大器电路的结构、原理出发,设计出四种仪表放大器电路实现方案,通过分析、比较,给出每一种电路方案的特点,为电路设计爱好者、学生进行电子电路实验提供一定的参考。
1 仪表放大器电路的构成及原理仪表放大器电路的典型结构如图1所示。
它主要由两级差分放大器电路构成。
其中,运放A1,A2为同相差分输入方式,同相输入可以大幅度提高电路的输入阻抗,减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大,而对共模输入信号只起跟随作用,使得送到后级的差模信号与共模信号的幅值之比(即共模抑制比CMRR)得到提高。
这样在以运放A3为核心部件组成的差分放大电路中,在CMRR要求不变情况下,可明显降低对电阻R3和R4,Rf和R5的精度匹配要求,从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力。
在R1=R2,R3=R4,Rf=R5的条件下,图1电路的增益为:G=(1+2R1/Rg)(Rf/R3)。
由公式可见,电路增益的调节可以通过改变Rg阻值实现。
2 仪表放大器电路设计2.1 仪表放大器电路实现方案目前,仪表放大器电路的实现方法主要分为两大类:第一类由分立元件组合而成;另一类由单片集成芯片直接实现。
根据现有元器件,文中分别以单运放LM741和OP07,集成四运放LM324和单片集成芯片AD620为核心,设计出四种仪表放大器电路方案。
方案1 由3个通用型运放LM741组成三运放仪表放大器电路形式,辅以相关的电阻外围电路,加上A1,A2同相输入端的桥式信号输入电路,如图2所示。