Analog turbo-networks in VLSI The next step in turbo decoding and equalization
Esoteric N-03T网络音频传输系统说明书
Network Audio Transpor tN-03TVersatile Range of System PlansEver since we were first established, Esoteric’s philosophy has centered on modular audio systems, breaking audio down into separate devices and refining each one to achieve maximum audio quality. The N-03T network audio transport system can be combined with Esoteric’s range of D/A converters (D series) and Super Audio CD players (K series) to build your system just the way you want it.USB XLR/RCAGrandioso K111.2 384/32 2.8 192/24Grandioso D1 5.6 384/32 - 192/24D-02X 11.2 384/32 2.8 192/24D-05X 11.2 384/32 2.8 192/24K-01Xs 11.2 384/32 2.8 192/24K-01X + VUK-K01Xs 11.2384/322.8192/24K-01X 5.6 384/32 2.8 192/24K-01+ V UK-K01XUSB 2.8 384/32 - 192/24K-03Xs 11.2 384/32 2.8 192/24K-03X + VUK-K03Xs 11.2 384/32 2.8 192/24K-03X 5.6 384/32 2.8 192/24K-03 + VUK-K01XUSB 2.8384/32-192/24K-05X 11.2 384/32 2.8 192/24K-07X 11.2 384/32 2.8 192/24OP-DAC111.2 384/32 - 192/24Maximum sampling rate / bit rateConnection Models / FormatDSD (MHz) PCM (kHz/bit) DSD (MHz) PCM (kHz/bit ) System Plan 1 N-03T/P-02X/D-02X/G-02XSystem Plan 2 N-03T/D-02X/G-02XSystem Plan 3 N-03T/K-03Xs System Plan 4 N-03T/D-05X* The arrangements in these photos are for illustrative purposes only.In actual use, avoid stacking components. Mount them individually in an equipment rack.PRINTED IN JAPAN 0218O05•TECD-0266ESOTERIC COMPANY1-47 Ochiai, Tama-shi, Tokyo 206-8530, Japan Fax: (042)356-9240www.esoteric.jpPlease note that Esoteric products are only available at select distributors in respective countries.“Esoteric” is a trademark of TEAC Corporation, registered in the U.S. and other countries.©2018 TEAC Corporation. All Rights Reserved. All text, images, graphics and other materials in this catalogue are subject to the copyright and other intellectual property rights of TEAC Corporation. These materials shall not directly or indirectly be published, reproduced, modified or distributed in any medium.“Super Audio CD” and “DSD” are registered trademarks. IOS is a trademark or registered trademark of Cisco in the U.S. and other countries and is used under license.Apple, iPhone and iPad are trademarks of Apple Inc., registered in the U.S. and other countries. Bulk Pet is a registered trademark of Interface Co.,Ltd.Other company names and product names in this document are the trademarks or registered trademarks of their respective owners.Design and specifications are subject to change without notice.P R O U D L Y M A D E I N T O K Y O•For USB connection, the N-03T automatically down-convert signal to the maximum Fs whichconnected device can playback.•For XLR/RCA connection, PCM 384/352.8kHz data will be down-converted to 192/176.4kHz. DSD 5.6MHz signal output can be down-converted to 2.8MHz (Dop) or PCM88.2kHz signal.*The N-03T cannot down-convert DSD11.2MHz and PCM768/705.6kHz music files.SpecificationsNetwork sectionSupported file formats PCM lossless FLAC , Apple Lossles s (ALAC), WAV, AIFFDSD lossless DSF , DSDIFF (DFF ), DoP Compressed audio MP3, AAC (m4a container ) ETHERNET port1(1000BASE-T)USB DRIVE ports 2 (USB 2.0 or higher recommended) Supported file formats FAT32, NTFS Single partition Maximum current supply 0.5ASupported sampling frequencies PCM 44.1–384kHz, 16/24/32 bitDSD 2.8MHz, 5.6MHz, 11.2MHzDigital outputsUSB port (USB 2.0 standard) 1 X LR connector 1Output level 3Vp-p (into 110Ω) RCA connector 1Output level0.5Vp-p (into 75Ω)*The following are the maximum limits for output from the XLR and RCA connectors. PCM 44.1–192kHz, 16/24 bitDSD2.8MHz (Do P )Clock inputBNC connector 1 Input impedance50ΩFrequencies that can be input 10MHz(±10ppm)Input level Rectangle wave: equivalent to TTL levels Sine wave: 0.5 to 1.0 VrmsGeneralPower supply AC 220-240V, 50/60HzAC 120V, 60Hz / AC 220V, 60Hz Power consumption31WExternal dimensions(W×H×D, including protrusions) 445m m ×131m m ×360mm(17 5/8"×5 1/4"×14 1/4") Weight17kg (37 1/2 lb)Included accessoriesPower cor d ×1, Felt pad s ×3, Owner’s manual ×1, Warranty car d ×1High-Sampling Digital OutputThe N-03T has a USB port enabling digital output up to DSD 11.2MHz and PCM 384kHz/32-bit. This allows the N-03T to be connected to a USB DAC or a disc player with a USB port.Two other digital output systems (XLRx1 and RCAx1) are also included, supporting PCM up to 192kHz/24-bit and DSD2.8MHz (DoP).Music Server FunctionThe N-03T can also be used as a simplified music server in which a player and a librar y can be integrated by connecting large-capacity storage devices to two USB ports on the front and rear of the unit.Compatible with a Wide Range of Streaming Services and Audio CodecsEsoteric has partnerships with a wide range of streaming service and audio codec providers, and preparations are underway for compatibility with new services.**Information on newly supported services will be released on the ESOTERIC website. However, regional restrictions may be implemented on some services.Compatible with a Wide Range of Audio SourcesCare has been taken with every detail to achieve audio quality suitable for high-end network playback. The N-03T is compatible with a vast range of formats (DSF, DSDIFF, FLAC, Apple Lossless, WAV, AIFF, MP3 and AAC) and supports playback up to DSD 11.2MHz and PCM 384kHz/32-bit by USB output. Gapless playback is also suppor ted for all lossless formats for uninterrupted playback of live or opera recordings.Esoteric Sound StreamEsoteric Sound Stream is an Apple iOS network playback app for tablets and smartphones designed with an emphasis on intuitive operability. Simply select music tracks by using your tablet or smartphone to create a customized playlist and then play the playlist. All screens are intuitively designed for easy operation and access to playlists and libraries, making it easy for anyone to use. It also has a wide range of advanced features that meet the demands of even the most experienced users.A key feature is the excellent search and retrieval function that fully utilizes tag information. Images are also stored in the app, enabling you to instantly scroll through album artwork and libraries according to categories such as artist, year of recording, composer or category.Equipped with Two Powerful Independent Power SuppliesThe N-03T is equipped with two large independent toroidal transformers, one for the internal network module and one for the other digital circuits, enabling the ideal supply of power to each circuit block. Unlike a standard switching power supply, these large linear power supplies are made with high qualit y components such as large filter capacitors and Schottky barrier diodes. The dedicated power supply for the network module also has an EDLC (Electric Double-layer Capacitor), a super-capacitor that has 1F (1,000,000μF) capacitance. These provide a dramatic improvement in audio quality.High-Rigidity Chassis ConstructionThe bottom chassis used to secure the circuit components has a dual layer structure with two steel plates (5mm and 2mm). Th e power supply transformer and oth er components are arranged th ree-dimensionally on th e two layers to prevent interference between components, and laser-cut slits are applied to each layer for effective controlling of vibration. And a th ick, h eavyweigh t aluminum panel enclosure and Esoteric’s unique pinpoint feet (patents no. JP4075477 and JP3778108) provide t oroug mechanical grounding against vibration.P R O U D L Y M A D E I N T O K Y ONetwork AudioThe N-03T fulfills every music lover’s dream: to access music freely from your living room chair and enjoy the very best audio quality. The DSD master audio source provides a crystal-clear audio experience, your CD collection is arranged in a library for easy access, and streaming services put new music at your fingertips. The N-03T is a network audio transport system specially designed to connect with an external DAC or a Super Audio CD player’s built-in DAC via USB connection. Other than your audio system, all you need is a home LAN (Wi-Fi router, etc.), a tablet or smartphone and a NAS (music server) to store your music library. That’s all you need for an easy, comfortable musicexperience where you don’t have to compromise on quality.N-03TNetwork Audio TransportMassive, super high quality modular systems are the key philosophy that Esoteric has followed since we were first established.We are now bringing this same philosophy to network playback systems with the N-03T network digital audio transport system.Your favorite D/A converter or Super Audio CD player can be digitally connected by USB, enabling you to build just the right system to enjoy playing files or streaming content your way.Esoteric takes digital transport to a new level with endless options and even more possibilities for audio playback.N-03TTablet / SmartphoneD/A converterSuper Audio CD player,etc.USB / XLR / RCA Digital connection Internet。
思博伦CyberFlood添加全新的虚拟和可扩展测试能力
界
要
闻
七七七七七七七七七七七七七
七七七七七七七七七七七七七
《信息通信技术与政策》2018 年 7 月第 7 期
业界要闻
思博伦荣获东京 Interop 2018 展多项大奖,
400G 以及安全测试方案均上榜
的合作伙伴,
思博伦满足客户快速发展需求的能力。
思博伦 CyberFlood 添加全新的虚拟和
在 6 月 13—15 日举办的东京 Interop 展上,思博伦通信荣
更强的测试选择,这不仅符合当前的需要,同时也为将来做
实的 TCP/UDP 流量,可扩展至数以百万计的用户和连接,对
好了准备。”
要求高性能、高密度的客户来说,
是理想的选择。
在此次 Interop Tokyo 展会上,思博伦 400G 方案被多家合
用户可以使用 CF20 在数分钟内完成测试的部署和启
动,单台 1U 设备即可提供 1G/10G/40G 和 100G 连接速率。
解决方案。本次展会上,思博伦有数个解决方案入围 Best of
云和 SDN/NFV 领域的多样化的测试选项。CF20 是一种多
Interop Show 决赛,其中包括最终获奖的 PX3-400G 测试模
合一、尺寸小巧且高度便携的多速率测试设备,具备 Cyber-
块,以及小巧且高度便携的多速率安全测试设备 CF20。
水平。
一种理想的测试解决方案。
CF20 是 2018 年推出的一种多合一、尺寸小巧且高度便
思博伦在日本的经销商伙伴 Toyo 公司总经理 Masahiko
携的多速率测试设备,可用来验证用户的网络性能和安全,
Kawauchi 指出:
“ 在先进的安全和性能测试中,CF20 是一个
RBK40 全家型 AC2200 三带 WiFi 系统说明书
Data SheetRBK40Whole Home AC2200 Tri-band WiFi SystemOverviewThis Orbi WiFi System comes with an Orbi WiFi Router and Satellite that deliver unparalleled WiFi coverage. It covers homes up to 4,000 square feet with strong WiFi signals. Innovative Tri-band WiFi helps maximize the Internet speeds available in your home.Enjoy better WiFi. Everywhere.FeaturesSingle Network Name.One WiFi name and seamless roaming for your whole home to enjoy.Max Internet Speeds.Innovative Tri-band WiFi helps deliver fast Internet speeds even as more devices connect.Your Home. Covered.This kit of two covers up to a 4,000 sq ft † home with high-performance AC2200 WiFi.Simple & Secure.Use the Orbi app or a web browser to create secure whole home WiFi in minutes. With no accounts to set up.Data SheetRBK40Whole Home AC2200 Tri-band WiFi SystemHouse DiagramD E D I CA T E DT R I-B AN DC O N N EC T I ONINTERNETOrbi SatelliteOrbi Router4,000 Square Feet of Orbi WiFi CoverageDedicated Tri-band Connection ensures devices connect directly to maximum Internet speeds1Internet plan and devices that support these speeds are required.Simple setup from your smartphone or tablet.Use the Orbi app to set up and manage your network. To find the app, scan one of the following QR codes or search for NETGEAR Orbi in the Apple App Store or Google Play Store.Data SheetRBK40 Whole Home AC2200 Tri-band WiFi SystemOrbi Router (RBR40)Sync buttonPower buttonPlugs intoexisting modemPlugs into Ethernet-enabled devicesSync buttonPower buttonPlugs into Ethernet-enabled devicesOrbi Satellite (RBS40)Data SheetRBK40Whole Home AC2200 Tri-band WiFi SystemTechnical Specifications• O rbi AC2200 Router & AC2200 Satellite (866+866+400Mbps)†• Simultaneous Tri-band WiFi- R adio 1: IEEE ® 802.11b/g/n 2.4GHz–256QAM support - R adio 2: IEEE ® 802.11a/n/ac 5GHz–256QAM support - R adio 3: IEEE ® 802.11a/n/ac 5GHz–256QAM support • Dedicated Backhaul Technology• F our (4) high-performance antennas with high-power amplifiers • I mplicit/Explicit Beamforming for 2.4 & 5GHz bands (866+866+400Mbps)†• M U-MIMO capable for simultaneous data streaming on multiple devices • F our (4) 10/100/1000Mbps Gigabit Ethernet ports - O rbi Router (RBR40): 1 WAN & 3 LAN - O rbi Satellite (RBS40): 4 LAN • S ecurity- W PA/WPA2-PSK support- G uest WiFi Network is easy to setup separate& secure Internet access for guestsThis product comes with a limited warranty that is valid only if purchased from a NETGEAR authorized reseller.* 90-day complimentary technical support following purchase from a NETGEAR authorized reseller.† M aximum wireless signal range derived from IEEE standard 802.11 specifications. Actual data throughput and data over distance will vary. Network conditions and environmental factors, including volume of network traffic, building material and construction, and network overhead, result in lower actual data throughput rate and wireless coverage.1Internet plan and devices that support these speeds are required.For indoor use only.For regulatory compliance information, visit /about/regulatoryNETGEAR, the NETGEAR Logo, and Orbi are trademarks and/or registered trademarks of NETGEAR, Inc. Any other trademarks mentioned herein are for reference purposes only. ©2017 NETGEAR, Inc.NETGEAR, Inc. 350 E. Plumeria Drive, San Jose, CA 95134-1911 USA, /supportD-RBK40-2Physical Specifications• Orbi Router (RBR40)- D imensions: 6.4 x 3.1 x 8.0 in - W eight: 1.65 lb • Orbi Satellite (RBS40)- D imensions: 6.4 x 3.1 x 8.0 in - W eight: 1.65 lbWhat’s In the Box?• One (1) Orbi Router (RBR40)• One (1) Orbi Satellite (RBS40)• One (1) 2m Ethernet cable • Two (2) 12V/2.5A power adapters • Quick start guideWhat Do I Need for Orbi to Work?• High-speed Internet connection • Connect to existing modem or gateway。
ArenaMatch Utility 小前景 补声扬声器 AMU105 AMU108 AMU206
规范信息
本产品符合所有适用的欧盟指令要求。您可以从网站 /compliance 找到完整的符合性声明。
此符号表示不得将此产品作为生活垃圾丢弃,应将其送到合适的 回收站点进行回收。正确处理和回收有助于保护自然资源、人类 健康和环境。想要获得更多关于此产品的处理和回收的信息,请 联系当地市政当局、垃圾处理服务部门或您购买此产品的商店。
中国危险物质限用表
有毒或有害物质或元素名称及成分
有毒或有害物质和元素
零件名称
铅
汞
(Pb) (Hg)
镉 ()
六价铬 (CR(VI))
多溴化 联苯 (PBB)
印刷电路板 X
O
O
O
O
金属零件
X
O
O
O
O
塑料零件
O
O
O
O
O
扬声器
X
O
O
O
O
线缆
X
O
O
O
O
此表格依据 SJ/T 11364 的要求制定。
O:表示此零件中所有均质材料所包含的此类有毒或有害物质均低于 GB/T 26572 中的限定要求。
6. 只能使用制造商指定的附件/配件。
7.
只能使用制造商指定或随本设备一起销售的推车、支架、
三角架、托架或工作台。如果使用推车,则在移动推车/设
备时应格外小心,以免因倾倒而造成伤害。
警告/小心:
包含可能导致窒息危险的小部件。不适合 3 岁以下的儿童使用。
本产品含有磁性材料。有关这是否会影响到您的植入式医疗器 械,请咨询您的医生。
包装清单................................................................................................................................................................................................... 5 可选配件................................................................................................................................................................................................... 5 检查和维护....................................................................................................................................................................................................... 6 保持防风雨性........................................................................................................................................................................................... 6 推荐使用的工具.............................................................................................................................................................................................. 6 产品尺寸........................................................................................................................................................................................................... 7 ArenaMatch Utility AMU105........................................................................................................................................................... 7 ArenaMatch Utility AMU108........................................................................................................................................................... 8 ArenaMatch Utility AMU206.......................................................................................................................................................... 9 ArenaMatch Utility AMU208........................................................................................................................................................ 10
一种高吞吐低延迟片上互连网络路由器
第50 卷第 8 期2023年8 月Vol.50,No.8Aug. 2023湖南大学学报(自然科学版)Journal of Hunan University(Natural Sciences)一种高吞吐低延迟片上互连网络路由器李晋文†,申慧毅,齐树波(国防科技大学计算机学院,湖南长沙 410073)摘要:本文提出了一种用于片上互连网络的低延迟高吞吐量动态虚拟输出队列路由器,该路由器可以利用前瞻路由计算和虚拟输出队列方案将路由器延迟减低到两个周期.仿真结果表明,与虫孔路由器和虚通道路由器相比,4×4网格上的网络吞吐量分别提高了46.9%和28.6%,并且在相同输入加速比下,性能比双缓冲虚通道路由器要高1.9%.在随机合成流量下,片上网络的零负载延迟也分别降低了25.6%和41%.设计实现结果表明,路由器的工作频率可以达到2.5 GHz.关键词:片上网络;路由器;吞吐量;延迟中图分类号:TN913.3 文献标志码:AA High-throughpur Low-latency Router for On-chip InterconnectNetworksLI Jinwen†,SHEN Huiyi,QI Shubo(School of Computer Science, National University of Defense Technology, Changsha 410073, China)Abstract:A low-latency high-throughput Dynamic Virtual Output Queues Router for On-chip interconnect networks is proposed in this paper,which can reduce the router latency to two cycles by leveraging look-ahead routing computation and virtual output queues scheme. The simulation results show that,compared with the wormhole router and virtual-channel router, the network throughput on a 4×4 mesh increases by up to 46.9% and 28.6%, respectively, and outperforms doubled buffer virtual channel by 1.9% under the same input speedup. Under random synthetic traffic,the zero-load-latency of the network on chip is also reduced by 25.6% and 41%,respectively. Synthesis results indicate the frequency of router can reach 2.5 GHz.Key words:on-chip network;router;throughput;latency随着半导体技术的飞速发展,越来越多的处理器核(多核和众核)集成在单个芯片上,而随着MOS 管尺寸的不断缩小,门级电路延迟在不断缩小,全局互连线的延迟相对于MOS管延迟还在不断增加.微∗收稿日期:2022-11-03基金项目:HPCL国家重点实验室基金项目(202101-02);国家自然科学基金资助项目(60873212),National Natural Science Foundation of China(60873212)作者简介:李晋文(1975—),男,山西武乡人,国防科技大学研究员,博士† 通信联系人,E-mail:*****************文章编号:1674-2974(2023)08-0141-06DOI:10.16339/ki.hdxbzkb.2023289湖南大学学报(自然科学版)2023 年处理器体系结构设计的重点正在从以提高计算为中心的单核能力设计转向以互连通信为中心的多核设计.由于互连延迟可预测、设计复杂度比较低、易扩展性和结构规整,片上网络已成为CMP和MPSoC中片上众核互连最有前途的选择[1].其中2D mesh互连网络已广泛应用于许多原型芯片,如Intel 80核Tera⁃flop、Tilera 64核和TRIPS[2-4].片上网络的概念来源于多处理器间互连网络,但实际与多芯片间互连网络有着许多不同的特点.最重要的一点,芯片内互连线和引脚比芯片间网络中的互连线和引脚资源更丰富[1].然而,片上网络中缓冲buffer容量不足.网络的延迟对实际多核的计算性能有很大影响.当路由器的每跳延迟从一个周期增加到五个周期时,全系统的性能将下降10%[5].基准的虚通道路由器的流水线级数为4.近年来,业界提出了几种新型架构的低延迟路由器,包括推测虚通道路由器[6]、采用虫孔交换的两虚通道结构路由器[7]、混合电路交换路由器[5]、带bundle的两周期路由器[8]、组合型两周期路由器[9]、无缓存片上路由器[10]、基于时间序列开关分配路由器[11]以及关键路径延迟只有35个FO4[12]的单周期路由器(FO4是指一个反相器驱动四个相同尺寸反相器产生的延迟,高性能微处理器的周期一般约为20个FO4).缓冲buffer的实现对互连网络的性能至关重要.缓冲buffer可以用寄存器或SRAM来实现.在芯片中,通常缓冲buffer的容量相对较小,因此使用低延迟的寄存器实现更为有利,而使用SRAM会存在较大的地址译码延迟以及存储阵列访问延迟,这些延迟与全局位线相关;此外还能节省位线预充电功耗[13].在标准的虚通道路由器中,每个虚通道都需要自带缓冲buffer,一个虚通道无法使用其他虚通道的缓冲buffer[14].DAMQ路由器设立了5个缓冲buffer队列,每个队列对应一个虚通道,多出的一个队列作为共享缓冲buffer,一个报文flit从到达到离开路由器需要3个时钟周期[15].VichaR路由器能够根据数据流量(traffic)来调节和分配每个物理通道的虚通道和缓冲buffer数量,并使用复杂的VC控制表来管理报文flit,能够有效提高缓冲buffer的使用效率,其缺点是路由器延迟会达到四个时钟周期.当路由器中发生拥塞时,无论是采用基于信用还是基于开关的流控策略,通道流水线中的缓冲buffer都不能用于缓冲flit.iDEAL路由器提出用中继器(repeater)电路来缓冲flit报文[16],然而中继器存在较大漏流问题,会导致不可靠.本文提出了一种新型的两周期路由器——动态虚通道输出队列路由器(DVOQR),采用多端口缓冲buffer和虚拟输出队列来消除虚通道路由器中的分配站(allocation stage).采用Ready/Valid握手机制来控制路由器之间的flit流,在这种策略下,流水线通道中的存储器可以用于缓冲flit报文.本文其余部分组织如下,第1节介绍了路由器的微架构.第2节给出了路由器的具体设计实现.第3节分析了模拟结果.最后,第4节对本文工作进行了简要总结.1 路由器微架构1.1 DVOQR路由器微架构本文提出了一种新型动态虚通道输出队列路由器(DVOQR),其微架构如图1所示.路由器包括P个输入端口和P个输出端口.对于二维mesh网络,P= 5;一个端口连接到本地处理器(核),其他端口连接到相邻路由器.输入单元由三个主要模块组成:集中动态缓冲器(Unified Dynamic Buffer,UDB)、集中动态缓冲分配器(Unified Dynamic Buffer Allocation,UDBA)、P个虚拟输出地址队列(Virtual Ouput Address Queue,以下简称VOAQ).输出端口包括一个P选1的仲裁器和一个P输入的多路复用器.由多个flit组成1个数据报文,存储在同一FIFO队列中,路由到同一输出端口.每个输入端口有P个FIFO队列,它们共享一个UDB并各自带一个私有的VOAQ.每个FIFO中flit的地址存储在虚拟输出地址队列(VOAQ)中.这样一来,就可以有效消除队列头阻塞(HOL)延迟问题[17].芯片间网络路由器中的缓冲buffer一般使用SRAM来实现.大容量的多端口SRAM存储器由于需要较大的面积开销、较高的功耗和访问延迟而难以实现,而使用小容量的寄存器来实现多端口缓冲器buffer要容易得多.受片上资源的限制,UDB用低延迟的多端口寄存器实现,具有1个写端口和P个读端口.每个读端口对应1个FIFO队列.尽管使用多个端口会导致面积开销增加,但可以消除虚通道路由器流水线的分配站.连接到输出端口的CDB,由CDB控制器和两项142第 8 期李晋文等:一种高吞吐低延迟片上互连网络路由器寄存器组成,如图2(a )所示.其中一个寄存器负责接收来自路由器的flit ,而另一个寄存器负责将flit 发送到下一个路由器,一收一发.在下一个周期中,两个寄存器交换收发功能.因此CDB 可以同时接收和发送flit ,可以避免流水线产生气泡.图2(b )给出了CDB 控制器的实现电路.state [1:0]表征两个寄存器的状态.读指针rd_ptr 对应发送寄存器,写指针wr_ptr 对应接收寄存器.当路由器之间的线延迟超过一个时钟周期时,可以插入多个CDB.UDBA 用于为队列分配时隙或释放空时隙.使用状态向量来跟踪所有时隙的状态,1表示时隙可用.当时隙分配给flit 时,相应的位将被清掉.采用固定优先级仲裁器以简化分配逻辑,最低可用时隙将被分配最高的优先级.设计了四个物理VOAQ 来缓存同一队列中的flit.当某一个flit 注入UDB 时,UDBA 负责将分配给它的时隙号写入对应的VOAQ ,该VOAQ 还会保存该报文的路由信息以及flit 类型.在UDB 读操作之前,需要首先从VOAQ 中读出UDB 中flit 的地址,这将增加UDB 的访问延迟.本文设计了一种新颖的移位FIFO ,可以有效减少UDB 的读延迟.图3给出了VOAQ 的微架构,使用one-hot 向量来指向FIFO 的尾部,而第一项指向FIFO 的头部.尾向量的宽度比UDB 的深度D 要大1.当tail_vector [0]为1时,FIFO 为空;而tail_vector [D ]等于1时,FIFO 为满.当头数图1 DVOQR 路由器微架构Fig.1 Microarchitecture of DVOQR(a )Architecture of channel double buffer(b ) Channel double buffer controller图2 通道的双缓存控制器Fig.2 Channel double buffer controller143湖南大学学报(自然科学版)2023 年据离开队列时,VOAQ 中的其他数据将向前移一位,而tail_vector 将进行右移.当新数据到达时,数据将被添加到VOAQ 的尾部,并且tail_vector 左移1位.当新数据在同一时钟周期内到达和离开时,tail_vector 将不发生移位.DVOQR 中的交换分配单元使用P 个round-robin 仲裁器实现.交换分配单元只需要一级仲裁,即可实现最大匹配,从而提高路由器吞吐量并降低分配延迟.1.2 DVOQR 流水线设计DVOQR 路由器的流水线由两站组成:flit 交换站(Flit Switch ,FS )和链路传输站(Link Traversal ,LT ).FS 站:完成交叉开关分配、前瞻路由计算、UDB读操作和Crossbar 传输.其中交叉开关分配、前瞻路由计算和UDB 读操作能够并行.当VOAQ 的第一项是head flit 报文片时,会为目的仲裁器产生一个请求信号.同时,发送VOAQ 中的flit 地址到UDB ,启动读操作,根据报文的路由信息,采用维序路由算法进行路由的前瞻计算.如果请求未被批准,将在下一个周期中重试,而不需要再次读取flit 报文.LT 站:在这一站中,flit 通过物理链路发送并写入UDB ,并根据FS 站的前瞻路由计算结果,将分配给flit 的地址写入VOAQ 中.1.3 流控机制DVOQR 使用了一种新的流控机制,称为ready-valid 握手机制(handshake ).ready 输出表示UDB/CDB 有可用的存储来接收flit 报文.valid 信号标识当前的flit 报文是有效的.当ready 和valid 信号在同一个周期内有效时,说明flit 报文已经提交.当下一级路由器发生拥塞时,链路上流水线中的CDB 可以缓冲flit 报文,这等效于增加了缓冲buffer 容量.基于维序路由算法,这种流控机制可以有效避免死锁.2 设计实现基于RTL 设计实现了用于片上2D mesh 网络的DVOQR 路由器,数据位宽128位,带有16项UDB ,评估了路由器的性能和功耗,综合生成门级网表,并对时序进行了详细的分析.FS 站和LT 站的关键路径延迟分别为400 ps (11.4 FO4)和252 ps (7.2 FO4),该工艺下的FO4为35 ps.表1给出了路由器中各功能部件的面积和功耗.3 模拟结果3.1 模拟方法本文采用随机人工合成流量模型评估互连网络的性能.表2给出了模拟实验的参数设置.采用周期精确模拟器Booksim [14]来评估虫孔路由器(Worm⁃hole Router ,WH )和虚通道路由器(Virtual-channel Router ,VC ).本文使用Verilog HDL 设计实现了DVOQR 的RTL 模型.测试程序采用随机通讯的合成程序,进行了仿真模拟,预热时间为1万个时钟周期,测量时间为10万个时钟周期.3.2 模拟结果分析3.2.1 不同缓冲容量的影响图4为带16项UDB 的DVOQR 路由器在随机流量负载下的平均延迟曲线.虫孔路由器和虚信道路由器中的输入缓冲buffer 数量为16~64 flit.与其他两种路由器相比,DVOQR 的吞吐量分别增加了33.2%和12%,而其他路由器缓冲buffer 的容量是DVOQR 的3倍.因此,DVOQR 可以更有效地使用输入缓冲器.其中,三种路由器的零负载延迟分别为10.4、14.0和17.7.表1 路由器中各功能部件的面积和功耗Tab.1 Area and power consumption of each functionalcomponent模块UDBVOAQinput portoutput port CDBrouter 组合逻辑面积/(μm )218 9452 49629 7311 5102 236167,385时序逻辑面积/(μm )231 47531 6844 0931133 065221,595总面积/(μm )250 4205 66473 8241 6235 301403,740功耗/mW58.87.589.30.60312.1507.5数量/个5205551图3 VOAQ 的微架构Fig.3 Microarchitecture of virtual ouput address queue144第 8 期李晋文等:一种高吞吐低延迟片上互连网络路由器3.2.2 相同输入加速比UDB 有四个读端口,因此DVOQR 的输入加速比是4.图5给出了在随机流量负载相同输入加速比时的平均延迟曲线.与VC_4×4和VC_4×8相比,VOQ_16的吞吐率分别增加17.6% 和1.9%,而VC_8×8 和VC_8×16的吞吐率分别比VOQ_16要高2.9%和7.5%.DVOQR 吞吐率比双缓冲虚通道路由器要高1.9%.在相同的输入加速比下,采用动态缓冲buffer分配只需要一半的buffer 容量就能达到相同的吞吐率.3.2.3 UDB 深度的影响图6给出了随机流量下DVOQR 网络性能与UDB 深度的相关性.2项UDB 的网络饱和点约为50%,16项UDB 的饱和点可达到82.4%.当UDB 的深度大于8时,吞吐率的增加随着UDB 深度的增加速度放缓.当注入流量小于0.4时,采用不同深度UDB 的平均延迟几乎是相同的.可以根据网络流量打开或关闭一部分UDB ,这样可以有效减少缓冲buffer 的漏流功耗.事实上,缓冲buffer 产生的漏流功耗是整个NoC 路由器漏流功耗的最主要来源.3.2.4 报文长度的影响图7给出了随机流量下带16项UDB 的DVOQR平均延迟与数据报文长度的关系,报文长度为2~32个flit.吞吐率随着报文长度的增加而降低.报文长度为32 flit 和2 flit 网络的饱和点分别为57.5%和87.5%.报文长度进一步增加将导致阻塞,因此需要占用更多的物理通道,而且竞争增加将导致更大的延迟.图7 对应不同报文长度下DVOQR 平均延迟Fig.7 Average latency of DVOQR under differentmessage lengths表2 模拟参数设置Tab.2 Simulation parameter settingsnetwork路由算法报文长度流量注入DVOQR 路由器虫孔路由器(WH )虚通道路由器(VC )4×4 meshdimension-order routing four flitsBernoulli processtwo-stage pipeline ,the depth of UDB is 16 for VOQ_16three-stage pipeline ,the depth of buffer is 16 for WH_16.four-stage pipeline ,the channel number is 4 and the depth of buffer in channel is 8for VC_4×8.图4 不同buffer 容量的DVOQR 路由器平均延迟Fig.4 Average latency of DVOQR with different buffer capacities图5 相同输入加速比下DVOQR 平均延迟Fig.5 Average latency of DVOQR under the sameinput acceleration ratio图6 不同深度UDB 的DVOQR 的平均延迟Fig.6 Average latency of DVOQR with different UDB145湖南大学学报(自然科学版)2023 年4 结论本文提出了一种基于ready-valid握手流控策略的两级流水线片上互连网络路由器,该路由器采用维序路由可以避免死锁.与虫孔路由器和虚通道路由器相比,4×4 mesh网络中的网络吞吐量分别提高了46.9%和28.6%,并且在相同的输入加速比下,DVOQR路由器比双缓冲虚通道路由器性能提高了1.9%.综合结果表明,路由器的时钟频率可达2.5 GHz.参考文献[1]DALLY W J,TOWLES B.Route packets,not wires:on-chip interconnection networks[C]//Proceedings of the 38th DesignAutomation Conference .Las Vegas,NV,USA:IEEE,2005:684-689.[2]VANGAL S,HOWARD J,RUHL G,et al.An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS[C]//2007 IEEE InternationalSolid-State Circuits Conference. San Francisco,CA,USA:IEEE,2007:98-589.[3]GRATZ P,KIM C,SANKARALINGAM K,et al.On-chip interconnection networks of the TRIPS chip[J].IEEE Micro,2007,27(5):41-50.[4]WENTZLAFF D,GRIFFIN P,HOFFMANN H,et al.On-chip interconnection architecture of the tile processor[J].IEEE Micro,2007,27(5):15-31.[5]JERGER N E,LIPASTI M,PEH L S.Circuit-switched coherence [J].IEEE Computer Architecture Letters,2007,6(1):5-8.[6]PEH L S,DALLY W J.A delay model and speculative architecture for pipelined routers[C]//Proceedings HPCA SeventhInternational Symposium on High-Performance ComputerArchitecture. Monterrey,Mexico:IEEE,2002:255-266.[7]胡哲琨,陈杰.消息传递型片上多核系统的设计[J].湖南大学学报(自然科学版),2013,40(8):102-109.HU Z K,CHEN J.Design of a message-passing multi-core system[J].Journal of Hunan University (Natural Sciences),2013,40(8):102-109.(in Chinese)[8]KUMARY A,KUNDUZ P,SINGHX A P,et al.A 4.6Tbits/s3.6GHz single-cycle NoC router with a novel switch allocator in65nm CMOS[C]//2007 25th International Conference onComputer Design. Lake Tahoe,CA,USA:IEEE,2008:63-70.[9]TIWARI V , KHARE K , SHANDILYA S . An efficient 4×4 mesh structure with a combination of two NoC router architecture[J].International Journal of Sensors,Wireless Communication andControl, 2021,11(2):169-180.[10]CHIOU S Y . Bufferless routing algorithms:a survey[J].Advances in Computational Sciences and Technology,2018,11(5):381-386.[11]李存禄,董德尊,吴际,等.低延迟路由器中高效开关分配机制的实现与评测[J].湖南大学学报(自然科学版),2015,42(4):78-84.LI C L,DONG D Z,WU J,et al.Design and implementation ofefficient switching in low-latency router[J].Journal of HunanUniversity (Natural Sciences),2015,42(4):78-84.(in Chinese)[12]MULLINS R,WEST A,MOORE S.The design and implementation of a low-latency on-chip network[C]//Proceedings of the 2006Asia and South Pacific Design Automation Conference.New York:ACM,2006:164-169.[13]HU J C,MARCULESCU R.Energy- and performance-aware mapping for regular NoC architectures[J].IEEE Transactions onComputer-Aided Design of Integrated Circuits and Systems,2005,24(4):551-562.[14]MULLINS R,WEST A,MOORE S.The design and implementation of a low-latency on-chip network[C]//Proceedings of the 2006Asia and South Pacific Design Automation Conference.New York:ACM,2006:164-169.[15]TAMIR Y,FRAZIER G L.High-performance multiqueue buffers for VLSI communication switches[C]//[1988]The 15th AnnualInternational Symposium on Computer Architecture.Honolulu,HI,USA: IEEE,2002:343-354.[16]KODI A,SARATHY A,LOURI A.Design of adaptive communication channel buffers for low-power area-efficientnetwork-on-chip architecture[C]//Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking andCommunications Systems.New York:ACM,2007:47-56.[17]KAROL M,HLUCHYJ M,MORGAN S.Input versus output queueing on a space-division packet switch[J].IEEE Transactionson Communications,1987,35(12):1347-1356.146。
通信信号处理中的概率计算及其应用
概率计算原理小结
概率计算最基本的运算为概率乘法和加法。基于 这种概率加法和乘法,可以衍生出一些基本概率 逻辑,即概率“与”、概率“非”、概率“或” 和概率“异或”; 基于接收符号或序列计算发送符号和序列的概率 运算可以转换成基本的概率运算,即概率乘法、 概率加法和包括概率与、概率非、概率或和概率 异或等概率逻辑; 采用模拟集成电路构建基本的概率运算单元,算 法任务用这些基本计算单元完成; 概率计算适合于低功耗、快速的密集概率运算任 务。
内容提要
概率计算的基本原理
概通 率信 计信 算号 及处 其理 应中 用的
国内外发展情况
基于概率计算的帧同步
基于概率计算的置信传播译码
小结
20
概率计算的研究状况(1)
1970年James N. Cronholm给出了概率门的定义 [James 1970] Probability gates statistics 概率门表示一个固定但可控的转移概率P,P具有数字电路的随时 钟变化特性 由于数字技术的迅猛发展,直到近几年基于概率门的信号处理方 法才又被人们重视起来 1998年~1999年瑞士研究人员在瑞士国家科学基金的支持下完成 了turbo/LDPC码中的BP算法在模拟VLSI上的实现工作 [Hans-Andrea Loeliger] Probability Propagation and Decoding in Analog VLSI (IEEE TRANS. ON I.T., 47(2), FEB. 2001; 会议版本ISIT 1998) [Hans-Andrea Loeliger] Decoding in Analog VLSI (IEEE Communications Magazine , April 1999)
turbo编译码资料
© Copyright 2012–2015 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.IntroductionThe LogiCORE™ IP 3GPP Mixed Mode Turbo Decoder provides a flexible turbo convolutional decode function for both LTE and WCDMA air interfaces. The implementation is compliant with the requirements set out in both [Ref 1] and [Ref 2]. The core provides an optimized turbo decode function for base stations at all form factors, from femto to macrocells. The decoder, when used with a TCC encoder,provides an effective way of transmitting data reliably over noisy data channels.Additional DocumentationA full product guide is available for this core. Access to this material can be requested by clicking on this registration link:/member/mm_tcc_dec_eval/index.htmFeatures•Three versions of this core can be generated, each supporting different standard options:°LTE only °UMTS only °LTE and UMTS•When UMTS and LTE are both supported the core can switch between different standards on a block by block basis.•Each core is completely self contained, requiring nothing else to decode data.•All 3GPP LTE block sizes supported: 188 different block sizes in the range 40–6144•All 3GPP UMTS block sizes supported, that is block sizes in the range 40-5114.See Feature Summary for additional features.LogiCORE IP 3GPP Mixed ModeTurbo Decoder v2.0PB009 (v2.0) November 18, 2015Product BriefLogiCORE IP Facts TableCore SpecificsSupportedDevice Family (1)UltraScale+™ Families UltraScale ™ ArchitectureZynq®-7000 All Programmable SoC7 SeriesSupported User InterfacesAXI4-StreamProvided with CoreDesign Files Encypted RTLExample Design VHDL Test Bench VHDLConstraints File Not ProvidedSimulation Model Encrypted VHDLC Model and MATLAB® ModelSupported S/W DriverN/ATested Design Flows (2)Design Entry Vivado® Design SuiteSimulation For supported simulators, see theXilinx Design Tools: Release Notes Guide .SynthesisVivado SynthesisSupportProvided by Xilinx at the Xilinx Support web pageNotes:1.For a complete listing of supported devices, see the Vivado IPcatalog.2.For the supported versions of the tools, see theXilinx Design Tools: Release Notes Guide .Feature Summary•Configurable with either 1, 2, 4 or 8 decode units, allowing resource utilization to be optimized while meeting system performance requirements at all base station form factors.•Dynamically selectable number of iterations 1-15.•Support for MAX, MAX_SCALE and MAX_STAR algorithms.•AXI4-Stream interfaces used for control and data input/output.• C model and MATLAB MEX function available for bit accurate modelling of error correcting performance.•Number representation: Twos complement fractional.•Data Input: 7 or 8 bits (4 or 5 integer bits with 3 fractional bits)•Hardware DSP units can be used instead of logic resources to tailor the core resource usage to specific user applications.•Demonstration test bench to show an example of core usage.•Integrated scheduler ensures that decode latency remains virtually constant with variable block sizes.OverviewThe TCC decoder is used in conjunction with a TCC encoder to provide an effective way of transmitting data reliably over noisy data channels. The turbo decoder operates very well under low signal-to-noise conditions and provides a performance close to the theoretical optimal performance defined by the Shannon limit [Ref3].References1.3GPP TS 25.212 "Multiplexing and channel coding (FDD)", v10.1.02.3GPP TS 36.212 "Multiplexing and channel coding", v10.3.03. C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon Limit Error-correcting Coding andDecoding Turbo Codes, IEEE Proc 1993 Int Conf. Comm., pp1064-1070Technical SupportXilinx provides technical support at the Xilinx Support web page for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support if you do any of the following:•Implement the solution in devices that are not defined in the documentation.•Customize the solution beyond that allowed in the product documentation.•Change any section of the design labeled DO NOT MODIFY.To contact Xilinx Technical Support, navigate to the Xilinx Support web page. Licensing and Ordering InformationThis Xilinx LogiCORE™ IP module is provided under the terms of the Xilinx Turbo Code LogiCORE IP License Terms.The module is shipped as part of the Vivado Design Suite. For full access to all core functionalities in simulation and in hardware, you must purchase a license for the core. Contact your local Xilinx sales representative for information about pricing and availability.For more information, visit the 3GPP Mixed Mode Turbo Decoder product page.Information about other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information on pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.Disclaimer: France Telecom, for itself and certain other parties, claims certain intellectual property rights covering Turbo Codes technology, and has decided to license these rights under a licensing program called the Turbo Codes Licensing Program. Supply of this IP core does not convey a license nor imply any right to use any Turbo Codes patents owned by France Telecom, TDF or GET. Contact France Telecom for information about its Turbo Codes Licensing Program at the following address:France Telecom R&D,VAT/TURBOCODES,38, rue du Général Leclerc,92794 Issy Moulineaux,Cedex 9,France.Evaluation LicenseAn evaluation license is available for this core. The evaluation version of the core operates in the same way as the full version for several hours, depending on clock frequency. Operation is then disabled and the data output does not change. If you notice this behavior in hardware, it means that you are using an evaluation version of the core. The Xilinx tools warn that an evaluation license is being used during netlist implementation. If a full license is installed in order for the core to run on hardware, delete the old configuration file and re-create the core from new.Revision HistoryThe following table shows the revision history for this document:Please Read: Important Legal NoticesThe information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at /legal.htm#tos ; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at /legal.htm#tos .DateVersionDescription of Revisions11/18/2015 2.0UltraScale+ device support added.04/02/2014 2.0Characterization data added to PG030.12/18/2013 2.0Added UltraScale architecture support.03/20/2013 2.0Updated for Vivado design tools.01/18/20121.0Xilinx initial release.。
NORMA 4000 5000 Power Analyzer 用户说明手册说明书
Since some countries or states do not allow limitation of the term of an implied warranty, or exclusion or limitation of incidental or consequential damages, the limitations and exclusions of this warranty may not apply to every buyer. If any provision of this Warranty is held invalid or unenforceable by a court or other decision-maker of competent jurisdiction, such holding will not affect the validity or enforceability of any other provision.
BEGRENZTE GEWÄHRLEISTUNG UND HAFTUNGSBESCHRÄNKUNG
Fluke gewährleistet, daß jedes Fluke-Produkt unter normalem Gebrauch und Service frei von Material- und Fertigungsdefekten ist. Die Garantiedauer beträgt 2 Jahre ab Versanddatum. Die Garantiedauer für Teile, Produktreparaturen und Service beträgt 90 Tage. Diese Garantie wird ausschließlich dem Erster
Analog Devices视频解码器连接MIPI CSI-2接收器的设计考虑说明书
AN-1337APPLICATION NOTE One Technology Way•P.O.Box9106•Norwood,MA02062-9106,U.S.A.•Tel:781.329.4700•Fax:781.461.3113•Design Considerations for Connecting Analog Devices Video Decoders to MIPI CSI-2Receiversby Robert HinchyINTRODUCTIONUse this application note as a guide to help design mobileindustry processor interface (MIPI®) Camera Serial Interface 2(CSI-2) receiver systems that receive video data from AnalogDevices, Inc., video decoders. This application note is based onthe ADV7280-M, ADV7281-M, ADV7281-MA, and ADV7282-Mmodels. However, it also applies to the ADV7480, ADV7481,and ADV7482 models.The MIPI CSI-2 is a high speed video data link. Video data istransmitted over one to four data lanes. The data is clockedusing a clock lane. Each clock or data lane consists of a positiveand negative clock or data line.The MIPI CSI-2 transmitter and receiver both contain D-PHYphysical layers. All termination is performed in the D-PHY layers. Note that the ADV7280-M, ADV7281-M, ADV7281-MA, ADV7282-M, ADV7480, ADV7481, and ADV7482 do not contain C-PHY physical layers.D-PHY TERMINATIONThe D-PHY layers of the ADV7280-M, ADV7281-M,ADV7281-MA, and ADV7282-M can enter various modes of operation. These modes of operation include high speed (HS) mode, low power (LP) mode, and ultralow power state (ULPS). The output termination of the transmitter device (ADV7280-M, ADV7281-M, ADV7281-MA, and ADV7282-M) D-PHY changes depending on the mode in which it is operating. The transmitter device enters and exits different modes quickly. For example, the data lane on the transmitter device can switch from LP mode to HS mode up to eight times per line of video (one line of analog video is approximately 64 μs). Figure 1 shows an LP to HS to LP mode transition sequence. A 50 mV offset was added to the negative data line to differentiate between positive and negative data lines.The MIPI CSI-2 receiver must be able to detect which operation mode the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device is in and modify its input impedance accordingly. If the MIPI CSI-2 receiver does not modify its input impedance correctly, the MIPI CSI-2 transmission becomes corrupted (Figure 3).12775-1(125mV/DIV)Figure 1. Capture of D0P/D0N Data Lines of the ADV7280-M, ADV7281-M, ADV7281-MA, and ADV7282-M Transmitter Devices Exiting and Entering LP Mode (Yellow is Positive Data Line; Blue is Negative Data Line) Voltage Level TestThe voltage level test determines whether the MIPI CSI-2 receiver D-PHY has correctly terminated the MIPI CSI-2 output from the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device. Program the transmitter device into free run mode to output a test pattern over the MIPI CSI-2 link. Details on programming the transmitter device into free run mode are available in the ADV7280/ADV7281/ADV7282/ ADV7283 hardware reference manual, ADV7280/ADV7281/ ADV7282/ADV7283Functionality and Features. Program the MIPI CSI-2 receiver to receive the MIPI data from the transmitter device.Use a high speed oscilloscope to probe the MIPI CSI-2 lines from the ADV7280-M, ADV7281-M, ADV7281-MA, orADV7282-M.When properly terminated, the data lines switch between HS and LP modes, as shown in Figure 2. In LP mode, the data lines have a logic high voltage of approximately 1.2 V and a logic low voltage of approximately 0 V. In HS mode, the data lines have a logic high voltage of approximately 0.3 V and a logic low voltage of approximately 0.1 V.If any logic level other than 1.2 V, 0.3 V, 0.1 V, or 0 V appears, the D-PHY layer of the MIPI CSI-2 receiver is not correctly terminating the output from the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device. Figure 3AN-1337Application Noteshows an example of the MIPI CSI-2 positive data line output from the transmitter device for a poorly terminated receiver. When the transmitter device (ADV7280-M , ADV7281-M ,ADV7281-MA , or ADV7282-M ) is programmed, the MIPI CSI-2 clock lane exits LP mode and enters HS mode. Unless the transmitter device is manually programmed to enter LP mode or is reset, the clock lane remains in HS mode. If any logic level other than 0.3 V or 0.1 V appears on the MIPI CSI-2 clock lines, the D-PHY layer of the MIPI CSI-2 receiver does not correctly terminate the output from the transmitter device.Capture of Positive Data Line in High Speed and Low Power ModesFigure 2 and Figure 3 show the difference between a correct and an incorrect termination of the MIPI CSI-2 signal by the D-PHY layer in the MIPI CSI-2 receiver.12775-002(200m V /D I V )Figure 2. Positive Data Line (D0P) Output from the ADV7280-M , ADV7281-M , ADV7281-MA , and ADV7282-M Transmitter Devices; Correct MIPI CSI-2Receiver Termination12775-003(200m V /D I V )Figure 3. Positive Data Line (D0P) Output from the ADV7280-M , ADV7281-M , ADV7281-MA , and ADV7282-M Transmitter Devices; Incorrect MIPI CSI-2Receiver TerminationD-PHY Mode Detection TestTo test that the MIPI CSI-2 receiver can detect each operation mode, manually program the ADV7280-M , ADV7281-M , ADV7281-MA , or ADV7282-M transmitter device to enter HS mode, LP mode, and ULPS. Then, test the MIPI CSI-2 receiverto verify that it can correctly detect the operation mode of the transmitter device.Refer to the ADV7280/ADV7281/ADV7282/ADV7283hardware reference manual, ADV7280/ADV7281/ADV7282/ ADV7283 Functionality and Features , for details on manually programming the ADV7280-M , ADV7281-M , ADV7281-MA , or ADV7282-M to enter HS mode, LP mode, and ULPS.Clock Lane Low Power to High Speed Transition Some MIPI CSI-2 receivers wait for an LP to HS modetransition on the MIPI CSI-2 clock lane before starting video capture. However, the LP to HS mode transition on the MIPI CSI-2 clock lane occurs only once on the ADV7280-M , ADV7281-M , ADV7281-MA , and ADV7282-M immediately after they are initially programmed.If the MIPI CSI-2 receiver is initialized after the transmitter device is initialized, the MIPI CSI-2 may never detect the LP to HS mode transition on the clock lane from the transmitter device. If the MIPI CSI-2 receiver does not detect the LP to HS mode transition, it may never start video capture.To overcome this issue, manually program the clock lane of the ADV7280-M , ADV7281-M , ADV7281-MA , or ADV7282-M to enter and then exit LP mode. The easiest way to do this is by toggling the CSITX_PWRDN bit (Address 0x00, Bit 7).The MIPI CSI-2 receiver then recognizes an LP to HS mode transition and begins video capture.DESIGN OF MIPI CSI-2 RECEIVER SYSTEMThe following sections provide tips on debugging issues with the MIPI CSI-2 receiver system that is receiving video data from the ADV7280-M , ADV7281-M , ADV7281-MA , or ADV7282-M .Lock StatusWhen an analog video source is connected to the ADV7280-M , ADV7281-M , ADV7281-MA , or ADV7282-M video decoder, it can take the video decoder a period of time before it locks to the incoming analog video. This period of time can take up to 250 ms in fast switch mode and more than 500 ms in autodetect mode. The ADV7280-M , ADV7281-M , ADV7281-MA , or ADV7282-M outputs spurious data over the MIPI CSI-2 link until the device locks to the incoming analog video. It is recommended that the MIPI CSI-2 receiver system be set to ignore the output from the ADV7280-M , ADV7281-M , ADV7281-MA , or ADV7282-M until the ADV7280-M ,ADV7281-M , ADV7281-MA , or ADV7282-M has locked to the analog video.The FSC_LOCK, LOST_LOCK, and IN_LOCK bits (Register 0x10, Bits[2:0]) indicate whether the ADV7280-M , ADV7281-M , ADV7281-MA , or ADV7282-M transmitter device has locked to the analog video source.Use the INTRQ hardware interrupt pin in conjunction with the FSC_LOCK, LOST_LOCK, and IN_LOCK bits to verify when a lock event has occurred. Using the INTRQ hardware interruptApplication Note AN-1337pin saves the MIPI CSI-2 receiver from constantly polling the FSC_LOCK, LOST_LOCK, and IN_LOCK bits.Use the CSITX_PWRDN bit to stop the MIPI CSI-2 output from the ADV7280-M, ADV7281-M, ADV7281-MA, orADV7282-M. Stop the MIPI CSI-2 output until the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M has locked to the analog video source, as indicated by the INTRQ hardware interrupt pin.For more information on the CSITX_PWRDN, FSC_LOCK, LOST_LOCK, and IN_LOCK bits and on the INTRQ hardware interrupt pin, see the ADV7280/ADV7281/ADV7282/ADV7283 hardware reference manual, ADV7280/ADV7281/ ADV7282/ADV7283Functionality and Features. DeinterlacerBy default, the ADV7280-M, ADV7281-M, ADV7281-MA, and ADV7282-M transmitter devices output video data in an interlaced format in the YCbCr 4:2:2 color space. In most applications, the MIPI CSI-2 receiver system requires a deinterlacing function. The most common way of performing this function is by using a frame buffer. For example, an odd field and an even field of video are transmitted into a memory buffer in the MIPI CSI-2 receiver system. The data stored in the memory buffer is then analyzed as a complete progressive frame of video by the MIPI CSI-2 receiver system.Alternatively, the ADV7280-M and ADV7282-M transmitter devices have an integrated deinterlacer. This is referred to as the interlaced to progressive (I2P) core in the ADV7280-M and ADV7282-M data sheets and in the hardware reference manual, ADV7280/ADV7281/ADV7282/ADV7283Functionality andFeatures. Using the I2P cores on the ADV7280-M and the ADV7282-M transmitter devices and programming them to output in progressive mode eliminates the need for deinterlacing in the MIPI CSI-2 receiver system.The I2P core of the ADV7280-M and ADV7282-M interpolates between two lines of video. An algorithm is used to smooth the resulting image to minimize low angle artifacts.Odd and Even Fields of Different LengthsThe ADV7280-M, ADV7281-M, ADV7281-MA, andADV7282-M video decoders output video over the MIPI CSI-2 stream. However, the video timing is based on the ITU-R BT.656-3 or ITU-R BT.656-4 standard.In interlaced mode, an NTSC video source results in theADV7280-M, ADV7281-M, ADV7281-MA, and ADV7282-M transmitter devices outputting video where the odd fields are one line longer than the even fields. This difference occurs with NTSC sources only. PAL sources result in even and odd fields of the same length.When designing video frame buffers in the MIPI CSI-2 receiver system, the even and odd fields can be of different length. However, the ADV7280-M and ADV7282-M models with I2P cores can be programmed to output progressive video. In progressive mode, all fields output by the transmitter devices are the same length.For more information on the video output timing or the I2P core, see the ADV7280/ADV7281/ADV7282/ADV7283 hardware reference manual, ADV7280/ADV7281/ADV7282/ ADV7283Functionality and Features.Video Frame Buffer OverflowsMost MIPI CSI-2 receivers contain a video frame buffer. Each video frame from the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device is stored in a memory buffer before being analyzed by the MIPI CSI-2 receiver.Under certain circumstances (if the analog video source is disconnected, for example), the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device can output video frames with a nonstandard number of lines because the transmitter device is designed to be effective at processing poor video sources.When the CVBS source is not present, the ADV7280-M,ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device continues to output MIPI CSI-2 video data and enters a search mode. When the device is in search mode, any noise on the CVBS input is tested to determine whether it is an analog video signal. When in search mode, the transmitter device outputs frames that are much longer than standard.The ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device remains in search mode for approximately 1 sec in autodetect mode. In fast switch mode, the transmitter device remains in search mode for approximately six fields of video.If a valid analog video source is not detected after the period where the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M is in search mode, the device determines that no video source is present. The device then exits search mode and enters free run mode. In free run mode, the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device outputs test pattern video frames with standard timing. These nonstandard video frames output during search mode can cause a buffer overflow event in the MIPI CSI-2 receiver. One of the best solutions to prevent a buffer overflow is to use a line counter.The line counter is a control loop in the MIPI CSI-2 receiver that counts the number of lines being output per frame by the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device. If the number of lines output per frame exceeds a limit, the MIPI CSI-2 receiver ignores the output from the transmitter device until the next frame start packet. Choose the line number limit so that the video buffer memory of the MIPI CSI-2 receiver does not overflow and so that standard video sources are not attenuated.AN-1337 Application NoteBy default, the MIPI CSI-2 frame start/end packets and the MIPI line start/end packets are output by the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device.Free Run ModeWhen the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device is programmed into free run mode, the device ignores the analog video input and outputs a fixed test pattern. Free run mode can help customers debug issues with their MIPI CSI-2 receiver systems. A number of test patterns are available. For more information, see the ADV7280/ ADV7281/ADV7282/ADV7283 hardware reference manual, ADV7280/ADV7281/ADV7282/ADV7283Functionality and Features.LAYOUT OF MIPI CSI-2 TRACESMIPI CSI-2 is designed as a chip to chip interface; therefore, it does not transmit over long distances. The D-PHY specification defines the maximum lane flight time to 2 ns. Using standard printed circuit board (PCB) materials and design rules (for example, transmitting MIPI CSI-2 through a microstripline on a standard FR4 PCB), results in a maximum trace length of 25 cm to 30 cm. Therefore, keep the MIPI CSI-2 traces from the ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device to the MIPI CSI-2 receiver under 30 cm in length.MIPI CSI-2 line traces must have a characteristic impedance of 50 Ω single-ended and 100 Ω differential.Loosely couple the positive and negative lines of each lane (for example, Data Line 0 positive; Data Line 0 negative) because the positive and negative lines are differential in HS mode but are single-ended in LP mode. As a general rule, space apart the line traces by a distance equal to twice the thickness of the PCB dielectric.Connect MIPI CSI-2 traces from one ADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter device to one MIPI CSI-2 receiver. It is not possible to daisy-chain multipleADV7280-M, ADV7281-M, ADV7281-MA, or ADV7282-M transmitter devices to one MIPI CSI-2 receiver.All filtering and termination is performed in the D-PHY layer of the ADV7280-M, ADV7281-M, ADV7281-MA, andADV7282-M transmitter devices and in the D-PHY layer of the MIPI CSI-2 receiver. Do not place additional components, such as resistors, electrostatic discharge (ESD) diodes, capacitors, or common-mode chokes on the MIPI CSI-2 traces. REFERENCESMIPI® Alliance Specification for D-PHY, Version 1.00.00, Mobile Industry Processor Industry Alliance, 2009.MIPI® Alliance Specification for Camera Serial Interface 2 (CSI-2), Version 1.01.00, Mobile Industry Processor Industry Alliance, 2010.©2014 Analog Devices, Inc. All rights reserved. Trademarks andregistered trademarks are the property of their respective owners.AN12775-0-12/14(0)。
WBOX-516X产品手册说明书
产品手册WBOX-516X,无风扇工业计算机版本:V1.01 / 41认可声明AMI 为Award Software International, Inc. 的商标。
Intel 和Atom 为Intel Corporation 的商标。
IBM、PC/AT、PS/2 和VGA 为International Business Machines Corporation的标。
Intel 和Atom 为Intel Corporation 的商标。
Microsoft Windows 为Microsoft Corp. 的注册商标。
RTL 为Realtek Semiconductor Co., Ltd. 的商标。
所有其它产品名称和商标均为其所有者的财产。
本手册适用于WBOX-516x系列.符合性声明这些限制旨在为商业环境下的系统操作提供合理保护,使其免受有害干扰。
本设备会产生、使用和发射无线电频率能量。
如果没有按照手册说明正确安装和使用,可能对无线电通讯造成有害干扰。
但即使按照手册说明进行安装和使用,也并不能保证不会产生干扰。
若本设备会对无线电或电视信号接收产生有害干扰,用户可通过开、关设备进行确认。
当本设备产生有害干扰时,用户可采取下面的措施来解决干扰问题:●1、调整接收天线的方向或位置●2、增大本设备与接收器之间的距离●3、将本设备的电源接头插在与接收器使用不同电路的电源插座●4、若需技术支持,请咨询经销商或经验丰富的无线电/电视技术人员警告!权利可能会被取消。
包装清单在您打开包装时,请确认包装中附有以下各项:●–WBOX-516x 1pcs附件盒,装有以下各项:●- 电源端子1pcs●- 国标电源线1.8米(可选)1pcs●- 电源适配器(可选)1pcs如果其中任何一项缺失或者破损,请立即联系您的销售商或销售代表。
2 / 41选购信息技术支持与服务用户若需技术支持,请与当地分销商、销售代表客服中心联系。
进行技术咨询前,用户须将下面各项产品信息收集完整:–产品名称及序列号–外围附加设备的描述–用户软件的描述(操作系统、版本、应用软件等)–产品所出现问题的完整描述–每条错误信息的完整内容警告! 1. 输入电压为DC 12-24V电源(电源功率90W或以上)2. 包装:需谨慎,请以双手托住设备。
电子通信领域经典书籍推荐
电子通信领域经典书籍推荐【书名】:光同步数字传输网/viewthread.php?tid=71513&extra=page%3D2【语言】:中文【作者】:韦乐平【推荐理由】:SDH传输的必备资料,凡有志于传输领域的同志应该人手一本【相关信息】:无【书名】:数字通信【语言】:英文、中文【作者】:John G. Proakis【推荐理由】:一本万中选一的书,按信道做分析,虽然公式多,不是通俗易懂,但整体论述严谨,做数字通信必看的【相关信息】:无【书名】:数字通信——基础与应用【语言】:英文、中文【作者】:BERNARD SKLAR【推荐理由】:本书作者工程出身,做过通信的实际项目,讲解理论贴合通信工程师需求,特别是信道编解码部分,引经据典,比较详细【相关信息】:无【书名】:WCDMA技术与系统设计:第三代移动通信系统的无线接入(原书第三版)【语言】:有英文和中文【作者】:(芬)Harri Holma,Antti Toskala【推荐理由】:正在看,看了一半,觉得很好,内容较全,讲解较好,第三版加入了新的内容。
【相关信息】:无Elements of Information Theory(1991,2006)【书名】:Elements of Information Theory(1991,2006)【语言】:English【作者】:THOMAS M. COVER and JOY A. THOMAS【推荐理由】:信息论的经典著作,看了以后你会深入理解信息理论的精髓,看一些外文论文时不会再一头雾水。
第一版1991年,第二版2006年。
multiuser detection(1998)【书名】:multiuser detection(1998)【语言】:English【作者】:Sergio Verdu【推荐理由】:多用户检测的经典著作,大牛Verdu是普利斯顿大学的教授,是多用户检测最重要的开创人。
这本书介绍了CDMA系统里的多用户检测。
PMM L2-16B 人工模拟网络说明书
L2-16BTwo Lines Single Phase V-Network9 kHz - 30 MHz, 16 A for AC and DC powered EUTThe AMN - Artificial Mains Network, also known as LISN - Line Impedance Stabilization Network - is the ancilliary device intended for repeatable and accurate measurement ofthe disturbance voltage that an EUT (Equipment Under T est) may inject into the power line or mains.This is obtained by providing well known impedance value and phase response across the frequency range of the test.PMM L2-16B is suitable for measurement on AC single phase and DC power circuits from DC to 60 Hz. The equivalent V-Network circuit of 50 Ω // (5 Ω + 50 μH) with 250μH choke is fully compliant with the reference standards .PMM Artificial Mains Networks provide robust and stable mechanical construction, high quality electric components, easy and perfect grounding, solid input-output power con-nections. They can be used in conjunction with any EMI receiver or spectrum analyzer and offer features required for safe, repeatable and accurate measurements.Provided Features•Powering the EUT•EUT termination to a standardizedimpedance respect to the reference ground •Coupling of the measuring receiver to the disturbance generated by the EUT•Decoupling of the measuring receiver from unwanted RF signals from the power lineMain Features•9 kHz to 30 MHz frequency range•Up to 16A continuous rated output current •Suitable for DC to 60 Hz power lines•Built-in, selectable 150 kHz high pass filter •Artificial Hand circuit•Local and remote control from PMM EMI receivers•Meets the requirements of several standards including CISPR 16-1-2, VDE 0876, FCC part 15, MIL-STD 461FAdvanced Test Equipment Corp. 800-404-ATEC (2832)L2-16B equivalent circuitL2-16BTwo Lines Single Phase V-Network 9 kHz - 30 MHz, 16 A for AC and DC powered EUTNarda Safety Test Solutions Srl Via Leonardo da Vinci, 21/2320090 Segrate (Milano) - ITALY Phone: +39 02 2699871Fax: +39 02 26998700E-Mail:********************Internet: www.narda-sts.itL 216B -F E N -30400 - S p e c i fi c a t i o n s s u b j e c t t o c h a n g e s w i t h o u t p r i o r n o t i c e•Electrical safety and presence of ground protection relays do require the installation of properly rated insulating transformer(s) between mains power line and AMN line inputs.•High mains noise may require the installation of properly rated mains filters to reduce the level of unwanted signals.9 kHz - 30 MHz 16 A 250 VAC 350 VDC DC - 60 Hz50 Ω // [5 Ω + 50 µH]with 250µH choke BNC female SCHUKO connector -10 °C to +45 °C -25 °C to +75 °C 230 x 105 x 285 mm 5,5 kgSPECIFICATIONSFrequency rangeContinuous rated output current Maximum permissible operating voltage (L/N) L/PE) AC supply frequency range Equivalent circuit RF output Test itemRated temperature Storage temperatureOverall Dimensions mm (W x H x D) WeightReceiversLISNRFI Filters• 7010: EMI receiver 150 kHz -1 GHz • 9010: EMI receiver 10 Hz - 30 MHz • 9010F: EMI receiver 10 Hz - 30 MHz• 9010/03P: EMI receiver 10 Hz - 300 MHz • 9010/30P: EMI receiver 10 Hz - 3 GHz •9010/60P: EMI receiver 10 Hz - 6 GHz• L3-32: 4 lines, 3-phase AMN, 32 A • L3-64: 4 lines, 3-phase AMN, 64 A• L3-64/690 4 lines, 3-phase AMN, 64A/690V • L3-100: 4 lines, 3-phase AMN, 100 A • L3-500: 4 lines, 3-phase AMN, 350 A• L1-150M: single-path, 50 Ohm etc AMN 150 A • L1-500 Single phase AMN, 500A•L2-D: Delta LISN for telecom, 2 A, 150 Ω• FIL-L2-16F: single phase RFI filter, 16 A • FIL-L2-24M: single phase RFI filter, 24 A • FIL-L3-32M: 3-phase+neutral RFI filter, 32 A •FIL-L3-70M: 3-phase+neutral RFI filter, 70 AOrdering Information:L2-16B single phase Artificial Mains Network Includes: power supply cable, RF cable, LISN remote control cable, user’s manual, calibration certificate.Optional accessories:LISN service kit(AC-BNC adapter for LISN verification and calibration)Related Products。
ADI电路笔记 CN-0359说明书
电路笔记CN-0359Circuits from the Lab® reference designs are engineered and tested for quick and easy system integration to help solve today’s analog, mixed-signal, and RF design challenges. For more information and/or support, visit /CN0359.连接/参考器件AD825310 MHz、20 V/μs、G = 1、10、100、1000、i CMOS可编程增益仪表放大器ADuCM360集成双通道Σ-Δ型ADC和ARM Cortex-M3的低功耗精密模拟微控制器ADA4627-1 30 V、高速、低噪声、低偏置电流JFET运算放大器AD8542CMOS轨到轨通用放大器ADA4000-1 低成本、精密JFET输入运算放大器ADP2300 1.2 A、20 V、700 kHz/1.4 MHz异步降压型稳压器ADA4638-1 30 V、零漂移、轨到轨输出精密放大器ADP1613 650 kHz/1.3 MHz升压PWM DC-DC开关转换器ADA4528-2 精密、超低噪声、RRIO、双通道、零漂移运算放大器ADG1211低电容、低电荷注入、±15 V/+12 V iCMOS四通道单刀单掷开关ADA4077-2 4 MHz、7 nV/√Hz、低失调和漂移、高精度放大器ADG1419 2.1 Ω导通电阻、±15 V/+12 V/±5 V、iCMOS单刀双掷开关AD8592 CMOS、单电源、轨到轨输入/输出运算放大器,具有关断功能ADM3483 3.3 V限摆率、半双工、RS-485/RS-422收发器全自动高性能电导率测量系统Rev. 0Circuits from the Lab® reference designs from Analog Devices have been designed and built by AnalogDevices engineers. Standard engineering practices have been employed in the design andconstruction of each circuit, and their function and performance have been tested and veri ed in a labenvironment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page)One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2015 Analog Devices, Inc. All rights reserved.评估和设计支持电路评估板CN-0359电路评估板(EVAL-CN0359-EB1Z)设计和集成文件原理图、源代码、布局文件、物料清单电路功能与优势图1中的电路是一个完全独立自足、微处理器控制的高精度电导率测量系统,适用于测量液体的离子含量、水质分析、工业质量控制以及化学分析。
微微创新AG-加利欧功能概述 M000204-08说明书
Description M000204-08 Galileo Function OverviewMicro Innovation AGSpinnereistrasse 8-14CH-9008 St.GallenTel. +41 71 243 24 24Fax +41 71 243 24 90Table of contents1General (5)1.1System Requirements (5)1.2MICRO PANEL GF-x / XV (5)2Possibilities and Limits (6)2.1Project (6)2.2Mask (7)2.3Printing Functions (7)2.4Windows CE (7)3Project Handling (8)3.1Project Handling (8)3.2Project Documentation (8)3.3Project Settings (8)3.4Project Conversion (8)4Mask Handling (9)4.1Mask Handling (9)4.2Sub Mask (9)4.3Mask Documentation (9)4.4Mask Settings (9)4.5Object Handling (10)5Static Objects (11)5.1Drawing Objects (11)5.2Background and Images (11)5.3Dynamic Properties (11)5.4General Functions of Static Objects (11)6Dynamic Objects (12)6.1Basic Objects (12)6.2Graphical Presentation of Objects (12)6.3Keyboards (13)6.4Function Objects (13)6.5Special Function Objects (13)6.6Dynamic Properties (14)6.7General Functions of Dynamic Objects (14)7Script (15)7.1Loop-Script (15)7.2Event-Script (15)8PLC, panel type selection and data definition (16)8.1PLC Selection (16)8.2Definition of Tags (16)8.3Assign Tags (16)8.4Handling (16)8.5MICRO Panel Configuration (17)8.6Text Editing (17)8.7Further Settings and Handling (17)9Testing and Operating (18)9.1Simulation of Objects (18)9.2Optimizing (18)9.3Compiling (18)9.4Download and Upload (18)9.5Online Testing and Operating from PC (18)10PLC Protocols (19)10.1M PB-TP (19)10.2M PB1-TP / MPB2-TP (20)10.3P DP-TP (20)10.4E IB-TP (20)10.5I BS-TP (20)10.6B CB-TP (21)10.7P anel System Port (without a communication card) (21)10.8E thernet (depending on the panel type) (21)Proper useHardware, software, operating systems and drivers must only be used for the applica-tions specified in this description and only in conjunction with the components recom-mended by Micro Innovation AG.Warning!No warranty claims will be recognized for faults arising from the improper handling of any device.Devices and communication should not be used for the implementation of any safety functions relating to the protection of personnel and machinery.No liability is accepted for claims for damages arising from a failure or functional defect. All data specified in this document do not represent guaranteed specifications in the legal sense.Legend* The file size of recipe management depends on the number of data records, the number of variables and used variable types. Within Galileo the exact file size is displayed.Note: The specification of the 'Maximum Data' relate to the limiting values which are managed by the software. The number of available amounts used in the different panels depends on the free memory (depending upon type of device of the internal flash memory or of the PCMCIA card).M000204-08.doc / PD 21 / 21 19.04.2010。
跳频滤波器上电控制时序的研究与设计
现代电子技术Modern Electronics TechniqueAug.2023Vol.46No.162023年8月15日第46卷第16期0引言无线电通信技术发展快速,在航空航天等多个领域发挥着不可替代的作用。
在军用无线电通信中,因为通话和数据传输需要具备保密和抗干扰能力,故跳频技术成为军用通信系统设计最常采用的有效手段之一。
其中跳频滤波器是跳频技术的典型元器件应用,正确的地址码对应相匹配的输出频率是跳频滤波器正常工作的关键指标之一。
本文从跳频滤波器供电和地址码两者控制时序对输出频率影响方面进行了分析和研究,发现正确的上电时序是跳频滤波器频率正常输出极易被忽略的设计要素,并基于此提出了同类别跳频滤波器上电控制时序的设计思路,解决了跳频滤波器因上电控制时序设计差错而导致无法正常工作的潜在隐患。
1跳频滤波器工作原理跳频滤波器要实现滤波器中心频率的快速变换,核心是通过连续快速改变或用开关改变带通滤波器的全部或部分地址码参数。
因通信中使用的频率随地址码状态变换而产生不同的输出频率,故本文采用数字调谐式方案进行跳频滤波器的设计,其主要由数字控制部分和模拟部分组成,作用包括以下两点:1)数字控制部分作用:输入控制信号的逻辑转换,将外部输入的调谐频率控制码转换为可以驱动射频电DOI :10.16652/j.issn.1004⁃373x.2023.16.010引用格式:陈新.跳频滤波器上电控制时序的研究与设计[J].现代电子技术,2023,46(16):61⁃64.跳频滤波器上电控制时序的研究与设计陈新(中国电子科技集团公司第十研究所,四川成都610036)摘要:电磁信号日益密集、复杂,对通信对抗设备的反干扰能力要求越来越高,而跳频技术作为新一代通信对抗技术被广泛应用,在现代电子战中显现出巨大的优越性。
文中分析一种跳频滤波器上电控制时序对其频率输出的影响,通过对上电和频率地址码达到稳态状态的时间差异进行ADS 仿真分析,并结合实物信号测试,指出跳频滤波器存储器处于不稳定状态时,发送指定频点地址码指令,数据口输出状态会出错,从而导致输出频率异常。
创新声卡KX驱动插件中英文对照表
创新声卡KX驱动插件中英文对照表硬件设备菜单1 FXBus 路由器2 FXBus2 路由器3 FXBus32 路由器4 epiloglt_k1终解程序5 epiloglt_k2终解程序6 p16v 2496解码器7 prolog 初构程序8 prologlt9 xrouting基本处理器菜单1 FXMix 多路路由器2 FXMix2 多路路由器3 Mono Mix 单声混合器4 Pan 声道控制5 Pan x2 声道控制6 Peak 相位7 Phase8 St Vol 音量控制9 Stereo Mix 立体声混音器10 Stereo Mix +Gain 立体声加强混音器11 Summ 萨姆12 Vol 音量13 Vol+DC 麦克增益14 crossfade 淡出器15 div416 gain 放大器17 gainHQ 音量控制18 x4x4 放大4倍19 xSumm_x萨姆20 xor 异或E-MU APS菜单(电子亩接入点)1 APS AutoWah 自动哇音2 APS Compressor 压限器3 APS Compressor+ 压限增益4 APS Everb5 APS Expander 扩展器(扩张器、膨胀器)6 APS Expander+ 扩展增益7 APS Flanger 凸缘器(镶边)8 APS Fuzz 微噪音9 APS Pitch 音调器(变声插件)Creative LiveWare菜单(创新器件)1 CL Reverb 混音器2 CLEAX3Reverb3 CLEAX4Reverb环绕声处理器菜单1 3D Sound Gen 3D环绕2 HPhSp 重低音3 Pos3DFX 3D环绕路由4 Prologica 音效连接器5 Surrounder+ 环绕混音加强6 cnv51to207 downmix 低音混合8 encode4 解码器9 surrounderlt 环绕混音均衡器和滤波器菜单1 EQ Bandpass 滤波转换器(均衡带通)2 EQ G10 图示均衡器(十段均衡器)3 EQ Highpass 低切(高通)4 EQ Highshelf 高架5 EQ Lowpass 高切(低通)6 EQ Lowshelf 低架7 EQ Notch 断口器8 EQ P1 波段器(小一均衡器)9 EQ P1 (Mono) 单声道波段器(单声道小一均衡器)10 EQ P5 五段均衡器11 EQ P5 (Mono) 单声道五段12 EQ peaking 波段调峰13 Freq Splitter 频率分离器14 phat EQ Mono 单声均衡15 Phat EQ Stereo 混合均衡(单声道立体声)16 Timbre 音色调节直通菜单1 ac3passthrough 交流穿透器2 b2b 优质ProFX菜单1 proFx:ADC 麦克风输入插件2 proFx:ASIO 低延时器(音频流输入输出接口)3 proFx:MX6 六路调音台4 proFx:Src 系统音源输入插件5 proFx:kXLt 总音频输出插件旧版本插件菜单1 16to322 Delay Old3 Dynamics Processor 动态压缩器4 FXBusX 路由器5 Overdrive6 Overdrive27 RingMod8 Wave Generator9 Wave Generator 2.010 ac3passthru_old11 ac3passthru_x12 b2b_old13 xrouting_old 调音台EF-X菜单(英法X的)1 EFX Oscilloscope 示波器2 EFX ReverbStation 混响器3 EFX TubeDrive 吉他效果器2nd order crossover 第二路交叉4nd order crossover 第四路交叉Booble Gum 气泡Chorus 和声(合唱)Crossover-2 二路交叉Crossover-4 四路交叉Delay A 延迟Delay B 延迟Dynamics Processor 动态效果器(闪避效果器) FxRouter 外汇路由器GainX 放大器HarmonicsGen 谐频Info 域名(信息)Loudness Comensator 响度补偿Mixy 4x2 四路混合台Mixy 8x2 八路混合台Mono Vocoder 单声码器Noise Gate 2T 噪声门Noise Gate 2Ts 噪声门PeakX 限制器Phaser 相位器ProFx:MX8 八路调音台ProFx:NoiseGate 噪音门ProFx:NoiseGateST 噪音门ProFxeak4 四路限制器ProFx:Peak6 六路限制器ProFx:Peak8 八路限制器Reverb Lite 精简效果器Reverb R 效果器Stereo Chorus 混合和声器Stereo Decimator 混响抽取器(立体声降频)Streo Vocoder 单声道混合器Surrounder 镶边TheDelay 替换延迟TheSmallDelay 小延迟TimeBalanceV2 时间平衡TubeSound 声音传导Wave Generator 3.0 波形震荡器epilogepilog_oldprolog_oldroutingvibrato 颤音roPhaser 相位器putnik 普特呢克真人发音器ibrato 震动器remolo 颤音调和器。
通信领域经典书籍推荐
电子通信领域经典书籍推荐评论:上面的东西是往其它地方转载的,主要侧重在通信,做点自己的补充数字通信总体的书籍首推Prokais的书,讲得比较全,也不算很深,入门不错,但本科生看起来还是有些难度,因为随机过程不一定理解得有多好,学过的话就好办多了。
其次可以看Gallager的新书,大牛对通信的看法很特别,看完以后通信的基本框架就掌握了,也不一定要看得很深入,如果时间不允许的话。
通信系统,网络方面的书没有专门看过,最好结合电信网和计算机网一起来看,在两者的比较之中可以对网络认识更清楚一些,毕竟电信的人和计算机的人思维方式,处理问题的方法都很不相同,两者也会互相借鉴一些方法。
计算机界的人冲到通信界来抢饭碗就是一个证明,不说引起矛盾的话了,电信网和因特网的书以及各种参考资料实在太多,对理解通信系统来说,Simon.Haykin的Communication.Systems不错,这些年网络很火,通信网包括的东西很多,传输技术,交换技术,复用技术等纷繁复杂。
各层协议一个接一个的提。
有的协议虽然不难,但很烦,看起来都头大(比如ATM ?),要理解的话,还是从分层结构结合实际网络来,这方面绝对不能停留在理论上,搞排队论之类的也是这样,实际情况很重要。
信源编码的书不多,看过David Salomon的<数据压缩>,07年的新书,写得不错,国内东南吴乐南也有一本,不过比较小,具体涉及到语音和图像视频编码可以参考专门的书籍,需要语音和图像处理的基础。
语音方面推荐语音信号数字处理那本书,谁写的忘记了,图像处理就参考Gonzalez冈萨雷斯的书吧,也是经典。
信道编码的书不少,Lin Shu(林舒)的最为推荐,第二版,大而全而新,王新梅的做代数码的可以参考,概率解码的就算了,还有一些据说也是好书,但没看过,弄好一本已足够。
如果要具体到编解码算法的时候,T odd K. Moon的书Error.Correction.Coding.Mathematical.Methods.and.Algorithms不错,比较具体。
南星S9接收机【OPENBOX,KD,PVR,3612(S9),接收机的录像功能与DIY】
南星S9接收机OPENBOX,KD,PVR,3612(S9),接收机的录像功能与DIY】如今讲到OPENBOX KD PVR 3612接收机,大家并不生疏了,该机如今已改名为OPENBOX KD PVR s9接收机,软件也在不断更新,如今接受了的F1旗舰版本的软件,比老版本改良很多,例如解决了硬盘NTFS与FT32格式化两种可选,可任意删除录像存贮的某个节目的文件夹,可写入9个CCCm等;本刊在20XX年第19期中,笔者介绍了该机的常规技术性能与使用方法,时隔3月,在实际使用中对该机的有用性与廉价的性价比还是情有独钟,该机工作稳定,功能有用,接口齐全,打开面板小门,可看到有2个卡槽,下面个为模块,上面一个为智能卡,也就是讲该机支持多种加密方式的收看,只需配上相对应的模块与智能卡,参见图。
尤其是该机的录,放像功能与节目编辑功能,设计特别到位,在卫星设置方面支持16切1,这在接收机中也不多见,切换速度也很快,接收门限较低,再认真看看其生产工艺与用料,在低价位的接收机中,该机的用料还是不错的,如最易发生故障的电源板中,选用了优质的电解电容,沟通整流滤波电解电容选用了33uf450V,通常为22uf400V,几路直流输出滤波电解电容选用了金字电解电容,开关变压器质量也很好,电源板设计功率余量较大,这给提供移动硬盘用作电源制造了条件,主板上元器性的焊接工艺糈良,在发热较高的CPU及13/18V电源稳压集成块317上均加装了散热片,加上机壳合理的散热孔使机内温升不大;与主板连接的每个插件均打有翔胶,且很牢固,从而保证了运输中的防震与紧偶合,如需拔下插头跗,应先用刀将封胶割除才能拔下;该机机壳与面板均贴有爱护膜,将面板上爱护膜撕去,可看到其面板是单独贴上去的,面板经过镀膜处理,光滑度特别高,如镜面般可照出人影,参见图二。
该机录像功能还是很强的,该机除了可预设八个不同时段的节目定时录像外,可以对己录像保存的节目进行加锁与删除,也可以对己录像保存的节目进行重命名,目前该机只支持用英文命名,使用遥控器上的数字键就可轻松完成,也可退格等;该机也支持用“U〞盘或移动硬盘来播放音乐与图片,还可设定图片用幻灯片模式播放,可设定图片间隔时间,可选择设定从1秒到9秒与关闭,还可设定图片大小,可选择“全屏〞或者“原始〞。
高精度、高驱动电流、双运算放大器AD826说明书
REV.BInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication oraAD826One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700World Wide Web Site: High-Speed, Low-Power Dual Operational AmplifierCONNECTION DIAGRAM8-Lead Plastic Mini-DIP and SO Package12348765AD826V+OUT2–IN2+IN2OUT1–IN1+IN1V–The AD826 features high output current drive capability of 50mA min per amp, and is able to drive unlimited capacitive loads. With a low power supply current of 15 mA max for both amplifiers, the AD826 is a true general purpose operational amplifier.The AD826 is ideal for power sensitive applications such as video cameras and portable instrumentation. The AD826 can operate from a single +5 V supply, while still achieving 25 MHz of band-width. Furthermore the AD826 is fully specified from a single +5 V to ±15 V power supplies.The AD826 excels as an ADC/DAC buffer or active filter in data acquisition systems and achieves a settling time of 70 ns to 0.01%, with a low input offset voltage of 2 mV max. The AD826 is available in small 8-lead plastic mini-DIP and SO packages.10901000%500ns5V5VC L = 100pFC L = 1000pFFEATURES High Speed:50 MHz Unity Gain Bandwidth 350 V/s Slew Rate70 ns Settling Time to 0.01%Low Power:7.5 mA Max Power Supply Current Per Amp Easy to Use:Drives Unlimited Capacitive Loads50 mA Min Output Current Per AmplifierSpecified for +5 V, ؎5 V and ؎15 V Operation 2.0 V p-p Output Swing into a 150 ⍀ Load (V S = +5 V)Good Video PerformanceDifferential Gain & Phase Error of 0.07% & 0.11؇Excellent DC Performance:2.0 mV Max Input Offset Voltage APPLICATIONSUnity Gain ADC/DAC Buffer Cable Drivers8- and 10-Bit Data Acquisition Systems Video Line Driver Active FiltersPRODUCT DESCRIPTIONThe AD826 is a dual, high speed voltage feedback op amp. It is ideal for use in applications which require unity gain stability and high output drive capability, such as buffering and cable driving. The 50 MHz bandwidth and 350 V/µs slew rate make the AD826 useful in many high speed applications including:video, CATV, copiers, LCDs, image scanners and fax machines.TEKTRONIX P6201 FET PROBE HP PULSE GENERATOR1/2AD8261k ⍀50⍀1k ⍀C LV OUTV INTEKTRONIX 7A24 FET PREAMP؉V S0.01F3.3F0.01F–V S3.3F132Driving a Large Capacitive Load查询AD826AR-REEL供应商捷多邦,专业PCB打样工厂,24小时加急出货AD826–SPECIFICATIONS(@ T A = +25؇C, unless otherwise noted)Parameter Conditions V S Min Typ Max Unit DYNAMIC PERFORMANCEUnity Gain Bandwidth±5 V3035MHz±15 V4550MHz0, +5 V2529MHz Bandwidth for 0.1 dB Flatness Gain = +1±5 V1020MHz±15 V2555MHz0, +5 V1020MHz Full Power Bandwidth1V OUT = 5 V p-pR LOAD = 500 Ω±5 V15.9MHzV OUT = 20 V p-pR LOAD = 1 kΩ±15 V 5.6MHz Slew Rate R LOAD = 1 kΩ±5 V200250V/µsGain = –1±15 V300350V/µs0, +5 V150200V/µs Settling Time to 0.1%–2.5 V to +2.5 V±5 V45ns0 V–10 V Step, A V = –1±15 V45nsto 0.01%–2.5 V to +2.5 V±5 V70ns0 V–10 V Step, A V = –1±15 V70ns NOISE/HARMONIC PERFORMANCETotal Harmonic Distortion F C = 1 MHz±15 V–78dB Input Voltage Noise f = 10 kHz±5 V, ±15 V15nV/√Hz Input Current Noise f = 10 kHz±5 V, ±15 V 1.5pA/√Hz Differential Gain Error NTSC±15 V0.070.1% (R1 = 150 Ω)Gain = +2±5 V0.120.15%0, +5 V0.15% Differential Phase Error NTSC±15 V0.110.15Degrees (R1 = 150 Ω)Gain = +2±5 V0.120.15Degrees0, +5 V0.15Degrees DC PERFORMANCEInput Offset Voltage±5 V to ±15 V0.52mVT MIN to T MAX3mV Offset Drift10µV/°C Input Bias Current±5 V, ±15 V 3.3 6.6µAT MIN10µAT MAX 4.4µA Input Offset Current±5 V, ±15 V25300nAT MIN to T MAX500nA Offset Current Drift0.3nA/°C Open-Loop Gain V OUT = ±2.5 V±5 VR LOAD = 500 Ω24V/mVT MIN to T MAX 1.5V/mVR LOAD = 150 Ω 1.53V/mVV OUT = ±10 V±15 VR LOAD = 1 kΩ 3.56V/mVT MIN to T MAX25V/mVV OUT = ±7.5 V±15 VR LOAD = 150 Ω (50 mA Output)24V/mV INPUT CHARACTERISTICSInput Resistance300kΩInput Capacitance 1.5pF Input Common-Mode Voltage Range±5 V+3.8+4.3V–2.7–3.4V±15 V+13+14.3V–12–13.4V0, +5 V+3.8+4.3V+1.2+0.9V Common-Mode Rejection Ratio V CM = ±2.5 V, T MIN–T MAX±5 V80100dBV CM = ±12 V±15 V86120dBT MIN to T MAX±15 V80100dBAD826 ABSOLUTE MAXIMUM RATINGS1Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 VInternal Power Dissipation2Plastic (N) . . . . . . . . . . . . . . . . . . . . . See Derating CurvesSmall Outline (R) . . . . . . . . . . . . . . . . See Derating CurvesInput Voltage (Common Mode) . . . . . . . . . . . . . . . . . . .±V SDifferential Input Voltage . . . . . . . . . . . . . . . . . . . . . . .±6 VOutput Short Circuit Duration . . . . . . . See Derating Curves Storage Temperature Range (N, R) . . . . . . . –65°C to +125°C Operating Temperature Range . . . . . . . . . . –40°C to +85°C Lead Temperature Range (Soldering 10 seconds) . . . +300°C NOTES1Stresses above those listed under Absolute Maximum Ratings may cause perma-nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability .2Specification is for device in free air: 8-lead plastic package, θJA= 100°C/watt; 8-lead SOIC package, θJA = 155°C/watt.ORDERING GUIDETemperature Package Package Model Range Description Option AD826AN–40°C to +85°C8-Lead Plastic DIP N-8AD826AR–40°C to +85°C8-Lead Plastic SOIC SO-8 AD826AR-REEL7–40°C to +85°C7” Tape & Reel SOIC SO-8Parameter Conditions V S Min Typ Max Unit OUTPUT CHARACTERISTICSOutput Voltage Swing R LOAD = 500 Ω±5 V 3.3 3.8±VR LOAD = 150 Ω±5 V 3.2 3.6±VR LOAD = 1 kΩ±15 V13.313.7±VR LOAD = 500 Ω±15 V12.813.4±VR LOAD = 500 Ω0, +5 V+1.5,+3.5V Output Current±15 V50mA±5 V50mA0, +5 V30mA Short-Circuit Current±15 V90mA Output Resistance Open Loop8ΩMATCHING CHARACTERISTICSDynamicCrosstalk f = 5 MHz±15 V–80dB Gain Flatness Match G = +1, f = 40 MHz±15 V0.2dB Slew Rate Match G = –1±15 V10V/µs DCInput Offset Voltage Match T MIN–T MAX±5 V to ±15 V0.52mV Input Bias Current Match T MIN–T MAX±5 V to ±15 V0.060.8µA Open-Loop Gain Match V O = ±10 V, R LOAD = 1 kΩ,T MIN–T MAX±15 V0.150.01mV/V Common-Mode Rejection Ratio Match V CM = ±12 V, T MIN–T MAX±15 V80100dB Power Supply Rejection Ratio Match±5 V to ±15 V, T MIN–T MAX80100dB POWER SUPPLYOperating Range Dual Supply±2.5±18VSingle Supply+5+36V Quiescent Current/Amplifier±5 V 6.67.5mAT MIN to T MAX±5 V7.5mA±15 V7.5mAT MIN to T MAX±15 V 6.87.5mA Power Supply Rejection Ratio V S = ±5 V to ±15 V, T MIN to T MAX7586dB NOTES1Full power bandwidth = slew rate/2π VPEAK. Specifications subject to change without notice.ESD SUSCEPTIBILITYESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 volts, which readily accumulate on the human body and on test equipment, can discharge without detection. Although the AD826 features proprietary ESD protection cir-cuitry, permanent damage may still occur on these devicesif they are subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid any performance degradation or loss of functionality.2.0–50901.50.5–301.050703010–1080–40406020–20AMBIENT TEMPERATURE –؇CMAXIMUMPOWERDISSIPATION–WattsMaximum Power Dissipation vs. Temperature for Different Package TypesAD8262000201555101015I N P U T C O M M O N -M O D E R A N G E – ؎V o l t sSUPPLY VOLTAGE – ؎Volts–V CM+V CMFigure mon-Mode Voltage Range vs. Supply2000201555101015SUPPLY VOLTAGE – ؎VoltsO U T P U T V O L T A G E S W I N G – ؎V o l tsFigure 2.Output Voltage Swing vs. Supply 30010k1551001010201k25LOAD RESISTANCE – ⍀O U T P U T V O L T A G E S W I N G – V o l t s p -pFigure 3.Output Voltage Swing vs. Load Resistance7.75.70207.26.256.71015SUPPLY VOLTAGE – ؎VoltsQ U I E S C E N T S U P P L Y C U R R E N T P E R A M P – m AFigure 4.Quiescent Supply Current per Amp vs. Supply Voltage for Various TemperaturesS L E W R A T E – V /s20501510SUPPLY VOLTAGE– ؎Volts200300350400250Figure 5.Slew Rate vs. Supply Voltage10010.011k10k100M10M1M100k0.110FREQUENCY – HzC L O S ED -L O O P O U T P U T I M PE D A N C E – ⍀Figure 6.Closed-Loop Output Impedance vs. Frequency– Typical CharacteristicsAD8267114042–403–6065120806040100200–20TEMPERATURE – ؇CI N P U T B I A S C U R R E N T – AFigure 7.Input Bias Current vs. Temperature130301409050–4070–60110120100806040200–20TEMPERATURE – ؇CS H O R T C I R C U I T C U R R E N T – m AFigure 8.Short Circuit Current vs. Temperature 10020–601408040–4060100120806040200–20TEMPERATURE – ؇CP H A S E M A R G I N – D e g r e e s20804060U N I T Y G A I N B A N D W I D T H – M HzFigure 9.Unity Gain Bandwidth and Phase Margin vs. Temperature100–201G4010k201k 8060100M 10M1M 100k FREQUENCY – Hz+100+40+20+80+60P H A S E M A R G I N – D e g r e e sO P E N -L O O P G A I N – d BFigure 10.Open-Loop Gain and Phase Margin vs. Frequency411001k10k2356LOAD RESISTANCE – ⍀O P E N -L OO P G A I N – V /m V7Figure 11.Open-Loop Gain vs. Load Resistance10010100M30201k 10040506070809010M 1M 100k10k FREQUENCY – HzP S R – d BFigure 12.Power Supply Rejection vs. FrequencyAD826140601k 10M1208010k 100100k 1M FREQUENCY – HzC M R – dBFigure mon-Mode Rejection vs. Frequency 30100100k1M 100M10M 20FREQUENCY – HzO U T P U T V O L T A G E – V o l t s p -pFigure rge Signal Frequency Response 10–10160–4–820–602–20468140120100806040SETTLING TIME – ns O U T P U T S W I N G F R O M 0 T O ؎V0.01%0.1%1%1%0.01%0.1%Figure 15.Output Swing and Error vs. Settling Time –40–10010M–70–901k –80100–50–601M 100k 10k FREQUENCY – HzH A R M O N I C D I S T O R T I O N – dBFigure 16. Harmonic Distortion vs. Frequency50010M301010203401M100k 10k 1k 100FREQUENCY – HzI N P U T V O L T A G E N O I S E – nV / H zFigure 17. Input Voltage Noise Spectral Density380300–60140360320–40340100120806040200–20TEMPERATURE – ؇CS L E WR A T E – V /sFigure 18. Slew Rate vs. TemperatureAD826FREQUENCY – HzG A I N – d B50–5100k1M100M10M–1–2–3–41234Figure 19. Closed-Loop Gain vs. Frequency SUPPLY VOLTAGE – Volts0.130.070.10D I F FE R E N T IA L P H A S E – D e g r e e sD I F FE R E N T I A L G A I N – P e r c e n t0.10؎150.130.110.12؎5؎10Figure 20. Differential Gain and Phase vs. Supply Voltage –30–70–110100k100M10M1M10k–90–50–60–80–100–40FREQUENCY – HzC R O S S T A L K – d BFigure 21. Crosstalk vs. Frequency FREQUENCY – HZ50–5100k1M 100M10M –1–2–3–41234G A I N – dBFigure 22. Closed-Loop Gain vs. Frequency, Gain = –1FREQUENCY – HzG A I N – d B1.00–1.0100k1M 100M10M –0.2–0.4–0.6–0.80.20.40.60.8Figure 23. Gain Flatness Matching vs. Supply, G = +1USE GROUND PLANEPINOUT SHOWN IS FOR MINIDIP PACKAGEV R L = 150⍀ FOR ؎V S = 5V, 1k ⍀ FOR ؎V S = 15VFigure 24. Crosstalk Test CircuitAD826Figure 25. Noninverting Amplifier ConfigurationFigure 26. Noninverting Large Signal Pulse Response, R L = 1 k ΩFigure 27. Noninverting Large Signal Pulse Response,R L = 150ΩFigure 28. Noninverting Small Signal Pulse Response, R L = 1 k ΩFigure 29.Noninverting Small Signal Pulse Response, R L = 150 ΩAD826Figure 30.Inverting Amplifier ConfigurationFigure 31.Inverting Large Signal Pulse Response,R L = 1 kΩFigure 32.Inverting Large Signal Pulse Response,R L = 150ΩFigure 33.Inverting Small Signal Pulse Response,R L = 1 kΩFigure 34.Inverting Small Signal Pulse Response,R L = 150 ΩAD826THEORY OF OPERATIONThe AD826 is a low cost, wide band, high performance dual operational amplifier which can drive heavy capacitive and resistive loads. It also achieves a constant slew rate, bandwidth and settling time over its entire specified temperature range. The AD826 (Figure 35) consists of a degenerated NPN differen-tial pair driving matched PNPs in a folded-cascode gain stage. The output buffer stage employs emitter followers in a class AB amplifier which delivers the necessary current to the load while maintaining low levels of distortion.–INNULL 1NULL 8S–VSFigure 35. Simplified SchematicThe capacitor, C F, in the output stage mitigates the effect of capacitive loads. With low capacitive loads, the gain from the compensation node to the output is very close to unity. In this case, C F is bootstrapped and does not contribute to the overall compensation capacitance of the device. As the capacitive load is increased, a pole is formed with the output impedance of the output stage. This reduces the gain, and therefore, C F is incompletely bootstrapped. Effectively, some fraction of C F contributes to the overall compensation capacitance, reducing the unity gain bandwidth. As the load capacitance is further increased, the bandwidth continues to fall, maintaining the stability of the amplifier.INPUT CONSIDERATIONSAn input protection resistor (R IN in Figure 25) is required in circuits where the input to the AD826 will be subjected to transient or continuous overload voltages exceeding the ±6 V maximum differential limit. This resistor provides protection for the input transistors by limiting their maximum base current. For high performance circuits, it is recommended that a “bal-ancing” resistor be used to reduce the offset errors caused by bias current flowing through the input and feedback resistors. The balancing resistor equals the parallel combination of R IN and R F and thus provides a matched impedance at each input terminal. The offset voltage error will then be reduced by more than an order of magnitude.APPLYING THE AD826The AD826 is a breakthrough dual amp that delivers precision and speed at low cost with low power consumption. The AD826 offers excellent static and dynamic matching characteristics, combined with the ability to drive heavy resistive and capacitive loads.As with all high frequency circuits, care should be taken to main-tain overall device performance as well as their matching. The following items are presented as general design considerations. Circuit Board LayoutInput and output runs should be laid out so as to physically isolate them from remaining runs. In addition, the feedback resistor of each amplifier should be placed away from the feedback resistor of the other amplifier, since this greatly reduces inter-amp coupling.Choosing Feedback and Gain ResistorsIn order to prevent the stray capacitance present at each amplifier’s summing junction from limiting its performance, the feedback resistors should be ≤ 1 kΩ. Since the summing junction capaci-tance may cause peaking, a small capacitor (1 pF–5pF) may be paralleled with R F to neutralize this effect. Finally, sockets should be avoided, because of their tendency to increase interlead capacitance.Power Supply BypassingProper power supply decoupling is critical to preserve the integrity of high frequency signals. In carefully laid out designs, decoupling capacitors should be placed in close proximity to the supply pins, while their lead lengths should be kept to a mini-mum. These measures greatly reduce undesired inductive effects on the amplifier’s response.Though two 0.1µF capacitors will typically be effective in decoupling the supplies, several capacitors of different values can be paralleled to cover a wider frequency range.AD826؎SINGLE SUPPLY OPERATIONAn exciting feature of the AD826 is its ability to perform well in a single supply configuration (see Figure 37). The AD826 is ideally suited for applications that require low power dissipation and high output current and those which need to drive large capacitive loads, such as high speed buffering and instrumentation. Referring to Figure 36, careful consideration should be given to the proper selection of component values. The choices for this particular circuit are: (R1 + R3)ʈR2 combine with C1 to form a low frequency corner of approximately 30 Hz.OUT0.1VFigure 36. Single Supply Amplifier Configuration R3 and C2 reduce the effect of the power supply changes on the output by low-pass filtering with a corner at12πR3C2.The values for R L and C L were chosen to demonstrate the AD826’s exceptional output drive capability. In this configura-tion, the output is centered around 2.5 V. In order to eliminate the static dc current associated with this level, C3 was inserted in series with R L.Figure 37.Single Supply Pulse Response, G = +1,R L = 150Ω, C L = 200 pFPARALLEL AMPS PROVIDE 100 mA TO LOADBy taking advantage of the superior matching characteristics ofthe AD826, enhanced performance can easily be achieved byemploying the circuit in Figure 38. Here, two identical cells areparalleled to obtain even higher load driving capability than thatof a single amplifier (100 mA min guaranteed). R1 and R2 areincluded to limit current flow between amplifier outputs thatwould arise in the presence of any residual mismatch.LFigure 38.Parallel Amp ConfigurationAD826SINGLE-ENDED TO DIFFERENTIAL LINE DRIVEROutstanding CMRR (> 80 dB @ 5 MHz), high bandwidth, wide supply voltage range, and the ability to drive heavy loads, make the AD826 an ideal choice for many line driving applications.In this application, the AD830 high speed video difference amp serves as the differential line receiver on the end of a back terminated, 50 ft., twisted-pair transmission line (see Figure 40).The overall system is configured in a gain of +1 and has a –3 dB bandwidth of 14 MHz. Figure 39 is the pulse response with a 2 V p-p, 1 MHz signal input.Figure 39.Pulse ResponseFigure 40.Differential Line DriverLOW DISTORTION LINE DRIVERThe AD826 can quickly be turned into a powerful, low distor-tion line driver (see Figure 41). In this arrangement the AD826can comfortably drive a 75Ω back-terminated cable, with a 5MHz, 2 V p-p input; all of this while achieving the harmonic distortion performance outlined in the following table.Configuration 2nd Harmonic 1.No Load –78.5 dBm 2.150 Ω R L Only –63.8 dBm 3.150Ω R L 7.5Ω R C–70.4 dBmIn this application one half of the AD826 operates at a gain of 2.1 and supplies the current to the load, while the other pro-vides the overall system gain of 2. This is important for two reasons: the first is to keep the bandwidth of both amplifiers the same, and the second is to preserve the AD826’s ability to oper-ate from low supply voltages. R C varies with the load and must be chosen to satisfy the following equation:R C = MR Lwhere M is defined by [(M+ 1) G S = G D ] and G D = Driver ’s Gain,Figure 41.Low Distortion AmplifierAD826HIGH PERFORMANCE ADC BUFFERFigure 42 is a schematic of a 12-bit high speed analog-to-digital converter. The AD826 dual op amp takes a single ended input and drives the AD872 A/D converter differentially, thus reduc-ing 2nd harmonic distortion. Figure 43 is a FFT of a 1MHz input, sampled at 10 MHz with a THD of –78 dB. The AD826can be used to amplify low level signals so that the entire range of the converter is used. The ability of the AD826 to perform on a ±5 volt supply or even with a single 5 volts combined with its rapid settling time and ability to deliver high current to compli-cated loads make it a very good flash A/D converter buffer as well as a very useful general purpose building block.V Figure 42.A Differential Input Buffer for High Bandwidth ADCsFigure 43.FFT, Buffered A/D ConverterAD826OUTLINE DIMENSIONSDimensions shown in inches and (mm).8-Lead Plastic Mini-DIP (N) Package8-Lead SO (R) Package45؇All brand or product names mentioned are trademarks or registered trademarks of their respective holders.C 1807a –0–6/00 (r e v . B ) 00877P R I N T ED I N U .S .A .。
PmodBT2 蓝牙接口模块说明书
1300 Henley Court Pullman, WA 99163 509.334.6306PmodBT2™ Reference ManualRevised November 18, 2019This manual applies to the PmodBT2 rev. AOverviewThe PmodBT2 is a powerful peripheral module employing the Roving Networks® RN-42 to create a fully integrated Bluetooth interface.1 Functional DescriptionThe PmodBT2 uses a standard 12-pin port and communicates via UART. There is a secondary SPI header on the board for updating the RN-42 firmware if needed.1.1 Jumper SettingsThe PmodBT2 has several modes available to the user via jumper settings. JP1 through JP4 provide various modes of operation as indicated in Table 1 below. Each jumper is active when shorted. JP1 restores the device to factor default settings after three transitions of the jumper setting (short-to-open or open-to-short). After the third transition, the device returns to factor default except for the Bluetooth name. The other three jumpers, JP2-JP4, only sample in the first 500 ms of operation to allow the pins that they tie to on the RN-42 module to serve a separate purpose later in the modules operation. JP2 enables pairing with a special device class defined by the user in software. This may be used so that the PmodBT2 operates as a substitute for an RS232 cable. JP3 enables auto connect to a stored address defined by the user. Finally, JP4 chooses whether to operate at the stored baudThe PmodBT2. • Bluetooth 2.1/2.0/1.2/1.0 compatible • Add wireless capability with this low power, Class 2 Bluetooth radio • Supports HID profile for making accessories such as pointing devices, etc. • Secure communications, 128-bit encryption • Supports Bluetooth data link to iPhone/iPad/iPod Touch • Six different modes • Small PCB size for flexible designs 1.5“ × 0.8” (3.8 cm × 2.0 cm) • 12-pin Pmod port with UART interfaceFeatures include:rate (115.2kbps default) or a baud rate of 9600 regardless of the software selected rate when shorted. For more detailed information on jumper settings and functionality, refer to the RN-42 user manual.Jumper DescriptionJP1 (PIO4) Factory DefaultJP2 (PIO3) Auto Discovery/PairingJP3 (PIO6) Auto ConnectJP4 (PIO7) Baud Rate Setting (9600)Table 1. Set jumper description.Figure 1. PmodBT2 block diagram.1.2 UART InterfaceBy default, the UART interface uses a baud rate of 115.2 kbps, 8 data bits, no parity, and a single stop bit. The startup baud rate may be customized to predefined rates or set to a specific user customized baud rate. Predefined baud rates range from 1200 to 921k.The reset pin (RST) on J1 is active low. If the RST pin is toggled, the device will undergo a hard reset. This hard reset performs similarly to a power cycling of the device. The second interface besides the standard UART signals is the STATUS pin also on J1The STATUS pin directly reflects the connection status of the device. STATUS is driven high by the device when connected and is driven low otherwise.For more information on the devices UART interface and RST and STATUS pins refer to the RN-42 user manual on the Roving Networks website.1.3 Command ModeIn order to enter the command mode, the PmodBT2 must receive "$$$" to which it will respond "CMD". When in command mode, the module will respond to a large number of commands allowing the user to customizing the module for specific applications. In order to exit command mode, send "---<cr>" (three minus signs in a row and where <cr> stands for the carriage return character) to which the device will respond "END". Remote configuration, or configuration over a Bluetooth connection, is possible through the command mode but has several restrictions. The configure time, which defaults to 60 sec, defines the time window in which the PmodBT2 may be configured remotely. Outside of this time, the PmodBT2 will not respond to any remote commands. It is important to note that any of the "set" commands available for the PmodBT2 must be followed by a power cycle to take effect in any design.Connector J1 – UART CommunicationsPin Signal Description1 RTS Ready to Send2 RX Receive3 TX Transmit4 CTS Clear to Send5 GND Power Supply Ground6 VCC Power Supply (3.3V)7 STATUS Connection Status8 ~RST Reset9 NC Not Connected10 NC Not Connected11 GND Power Supply Ground12 VCC Power Supply (3.3V)Connector J2 – SPI Connector (Firmware Update Only)1 MISO Master in/ Slave out2 MOSI Master out/ Slave in3 SCK Serial Clock4 ~CS Chip Select5 VCC Power Supply (3.3V)6 GND Power Supply GroundTable 2. Connector descriptions.The various modes of operation are accessed by using the "SM,<5,4,3,2,1,0>" command while in command mode. The PmodBT2 can be put into one of six available modes of operation. The modes in order, 0 to 5, are: slave, master, trigger master, auto-connect, auto-connect DTR, and auto-connect ANY. For more detailed information onthe different modes of operation, refer to the RN-42 user manual. For the full list of device commands, how to use remote configuration, and more detailed information on the different modes of operation, see the RN-42 data.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dqdorj Wxuer0Qhwzrunv lq YOVL=Wkh Qh{w Vwhs lq Wxuer Ghfrglqjdqg Htxdol}dwlrqMrdfklp Kdjhqdxhu/Pdwwkldv Prhu}4/dqg Honh R huLqvwlwxwh iru Frppxqlfdwlrqv Hqjlqhhulqj+OQW,/Pxqlfk Xqlyhuvlw|ri Whfkqrorj|+WXP,/Duflvvwu154/;35<3Pfldoo|dssursuldwh zkhq zh ghfrgh orz0ghqvlw|sdulw| fkhfn frghv/lq sduwlfxodu rqh0vwhs ruwkrjrqdo frghv1 Khuh/rqo|wzr exloglqj eorfnv duh uhtxluhg/wkhvh ehlqj iru wkh cer{soxv*rshudwlrq dqg wkh dulwkphwlf vxp ri orj0olnholkrrg udwlrv1Iru wuhoolv uhsuhvhqwd0 wlrqv/wkh EFMU dojrulwkp lv uhdol}hg lq wkh dqdorj qhwzrun e|xvlqj d vhtxhqfh ri wuhoolv prgxohv zklfk fduu|cer{soxv*rshudwlrqv duudqjhg lq wkh iruzdug dqg edfnzdug gluhfwlrqv1Zlwk vxfk dqdorj frpsr0 qhqw ghfrghuv zh duh deoh wr frqvwuxfw d cwxuer*gh0 frghu1Dv h{dpsohv zh suhvhqw vlpxodwlrq uhvxowv ri dqdorj cwxuer*ghfrghuv zlwk sdudooho frqfdwhqdwhg Kdpplqj dqg wdloelwlqj frqyroxwlrqdo frghv1Vh0 uldo frqfdwhqdwlrq kdv dovr ehhq vkrzq lq wkh irup ri dq rxwhu udwh425wdloelwlqj frgh dqg dq lqqhu GHFSVN udwh rqh frgh1Erwk dqdorj ghfrghuv lq wkh vhuldoo|frqfdwhqdwhg vfkhph kdyh d ulqj vwuxf0 wxuh dqg duh frqqhfwhg e|dq lqwhuohdyhu ulqj1Erwk rshudwh vlpxowdqhrxvo|lq frqwlqxrxv wlph dqg wkh ryhudoo shuirupdqfh lv ehwwhu wkdq wkdw ri d gljlwdoo| lpsohphqwdwhg cwxuer*ghfrghu uxqqlqj iru4<lwhud0 wlrqv1Wkh vdph vwuxfwxuh fdq eh xvhg iru htxdol}d0 wlrq/zkhuh wkh lqqhu frgh lv uhsodfhg e|d pxowlsdwk fkdqqho zlwk d jxdug lqwhuydo/zklfk suhvhuyhv wkh f|folf vwuxfwxuh1Ilqdoo|wkh lpsohphqwdwlrq ghwdlov dqg wkh phdvxuhphqw uhvxowv ri d3=58 p ElFPRV wdloelwlqj PDS frpsrqhqw ghfrghu duh suhvhqwhg1 51Orj0Olnholkrrg Udwlrv dqg Qrwdwlrq Frqvlghu d glvfuhwh udqgrp yduldeoh[zlwk ydo0 xhv{5i3>===>M 4j/zkhuh wkh qxpehu ri srvvleoh rxwfrphv lv M1Wkh suredelolw|wkdw wkh udqgrp ydul0 deoh[wdnhv rq ydoxh{@m lv ghqrwhg e|S[+{@m,1 Wkh orj0olnholkrrg ri wkh suredelolw|S[+{@m,lv gh qhg dv o m+[,@orj+S[+{@m,,zklfk xvhv wkh qdwxudo orjdulwkp1D orj0olnholkrrg udwlr ri wkh glv0 fuhwh udqgrp yduldeoh[fdq eh h{suhvvhg e|xvlqj wzr rxwfrphv{@l dqg{@mO l>m+[,@o l+[, o m+[,@orj S[+{@l,S[+{@m,>+4, zkhuh O l>m+[,@ O m>l+[,/O l>l+[,@3dqg O l>m+[,@ O3>m+[, O3>l+[,1Wkh orj0olnholkrrg udwlr O l>m+[, lv dovr fdoohg wkh O0ydoxh ri wkh glvfuhwh udqgrp ydul0 deoh[edvhg rq wkh wzr rxwfrphv{@l dqg{@m1 Lq rughu wr ghvfuleh doo M suredelolwlhv/wkhuh pxvw eh dw ohdvw+M 4,O0ydoxhv dv looxvwudwhg lq Ilj14 iru l@31Iru wkh jhqhudo fdvh zkhuh zh doorz vfdohg suredelolwlhv wkhuh lv dq dgglwlyh frqvwdqw n zklfk lv mxvw wkh qdwxudo orjdulwkp ri wkh vfdolqj idfwru1Lq rxu qhwzrunv wkh o l+[,.n whupv zloo eh wkh yrowdjhv wr wkh jurxqg dqg wkh O l>m+[,whupv zloo dsshdu dv gl huhqwldo yrowdjhv1Lq wkh dqdorj qhwzrun/n uhs0 uhvhqwv d yrowdjh frqvwdqw zklfk lv fkrvhq dffruglqj wr wkh uhtxluhg lqsxw yrowdjh udqjh ri wkh flufxlw1 Wkh suredelolw|ri d srvvleoh rxwfrph{@m fdqeh Iljxuh4=Looxvwudwlrq ri O0ydoxhv iru qrq0elqdu|ydul0 deohv1fdofxodwhg dffruglqj wrS[+{@m,@hÃO l>m+[,S L@3h l> @D+[,hÃO l>m+[,>+5, zkhuh wkh rxwfrph{@l lv xvhg dv frpprq uhihu0 hqfh wr eh iuhho|fkrvhq zlwklq wkh vhw ri srvvleoh rxwfrphv+l@3lq Ilj14,1Qrwh wkdw wkh frpprq whup D+[,lq+5,fdqfhov rxw zkhq zh jr edfn lqwr wkh orj0olnholkrrg grpdlq161Ixqgdphqwdov r i dq Dqdor j Lpsoh0 phqwdwlr qWkh hohphqwdu|ghylfhv ri dq dqdorj ghfrghu qhw0 zrun duh elsrodu wudqvlvwruv dqg glrghv/zklfk uhdol}h wkh h{srqhqwldo dqg orjdulwkplf ixqfwlrqv/uhvshf0 wlyho|1Wkh froohfwru fxuuhqw L F ri d elsrodu wudqvlv0 wru lv d ixqfwlrq ri wkh edvh hplwwhu yrowdjh Y EH zlwk L F@L V h Y EH@Y W/zkhuh L V ghqrwhv wkh wudqvsruw vdwxudwlrq fxuuhqw dqg Y W lv d whpshudwxuh ghshq0 ghqw txdqwlw|+ 59pY dw633 N,1Dowhuqdwlyho|/ rqh frxog xvh FPRV ghylfhv rshudwlqj ehorz wkuhvk0 rog zkhuh wkh|dovr vkrz dq h{srqhqwldo fkdudfwhu0 lvwlf dw h{wuhpho|orz srzhu frqvxpswlrq1Krzhyhu/ khuh zh zloo jlyh d ghvfulswlrq iru elsrodu ghylfhv rqo|1Lq rughu wr srlqw rxw vrph ixqgdphqwdo wudq0 vlvwru ixqfwlrqv zh frqvlghu wkh vlpsoh fdvh ri d el0 qdu|udqgrp yduldeoh[zlwk M@51Khuh zh fdq vnls wkh lqgh{ri wkh O0ydoxh dqg vlpso|zulwhO+[,@orj S[+{@3,S[+{@4,=+6, Wkh suredelolwlhv S[+{@3,dqg S[+{@4,duh jlyhq e|S[+{@3,@44.hÃO+[,+7, dqgS[+{@4,@hÃO+[,4.h=+8, Wkh cvriw elw* +[,ri d elqdu|udqgrp yduldeoh[ lv gh qhg dv wkh h{shfwdwlrq H+[,@+.4,S[+{@ .4,.+ 4,S[+{@ 4,zkhuh zh xvh wkh lvrpru0 sklvp3'.4dqg4' 41Zh kdyh+[,@H i[j@S[+{@3, S[+{@4,@wdqk+O+[,@5,=+9,D gl huhqwldo sdlu xvlqj elsrodu wudqvlvwruv lv vkrzq lq Ilj15+ohiw kdqg vlgh,1Wklv zlgho|xvhg flufxlwIljxuh 5=Frqyhuvlrq iurp d orj0olnholkrrg udwlr lqwr suredelolwlhv dqg ylfh yhuvd1frq jxudwlrq fdq wudqvirup d orj0olnholkrrg udwlr +lq0whusuhwhg dv d gl huhqwldo yrowdjh,lqwr suredelolwlhv +lqwhusuhwhg dv fxuuhqwv,1Wkh rxwsxw fxuuhqwv L 3dqg L 4duh jlyhq e|L 3@L44.h ÄY YW+:,dqgL 4@Lh ÃÄY YW 4.hÃÄYYW>+;,zlwk Y dv gl huhqwldo lqsxw yrowdjh dqg L @L 3.L 41E|frpsdulqj wkhvh htxdwlrqv zlwk +7,dqg +8,rqh fdq lqvwdqwo| qg wkdw L 3@L dqg L 4@L fruuhvsrqg wr S [+{@3,dqg S [+{@4,/uhvshfwlyho|1Ixuwkhu0pruh/ Y@Y W htxdov O +[,1Wkh gl huhqwldo rxwsxw fxuuhqw L @L 3 L 4fdq eh h{suhvvhg iurp +:,dqg +;,dvL @L wdqk+ Y@5Y W ,>+<,zkhuh L@L fruuhvsrqgv wr wkh cvriw*elw +[,lq +9,1Wkh lqyhuvh wudqvirupdwlrq iurp suredelolwlhv +fxu0uhqwv,lqwr d orj0olnholkrrg udwlr +gl huhqwldo yrowdjh,fdq eh shuiruphg e|xvlqj wkh wzr glrgh frqqhfwhg wudqvlvwruv dv vkrzq lq Ilj15+uljkw kdqg vlgh,1D pruh jhqhudo flufxlw ghvfulswlrq iru qrq0elqdu|ydul0deohv lv jlyhq lq ^<`1Wkh dgglwlrq ri wzr vwdwlvwlfdoo|lqghshqghqw el0qdu|udqgrp yduldeohv [4dqg [5fdq eh zulwwhq dv [4 [5@[6e|xvlqj wkh JI+5,ru [RU0rshudwlrq 1Qrwh wkdw d elqdu|wuhoolv exwwhu |dv vkrzq lq Ilj16shuirupv wkh vdph ixqfwlrq1Lq wkh 0grpdlq[RU fdq eh zulwwhq dv d uhdo qxpehu pxowlsolfdwlrq+[6,@H i [4[5j @H i [4j H i [5j @ +[4, +[5,=+43,Lq whupv ri orj0olnholkrrg udwlrv rqh rewdlqvO +[6,@5wdqk Ã4 wdqk O +[4,5 wdqkO +[5,5>+44,zklfk lv deeuhyldwhg e|xvlqj wkh cer{soxv* v|pero O +[6,@O +[4, O +[5,=+45,Dq h{whqvlrq wr wkh zhoo0nqrzq Jloehuw pxowlsolhu uhvxowv lq dq h{dfw flufxlw lpsohphqwdwlrq ri +45,1Wklv flufxlw xvhv d vwdfnhg frq jxudwlrq ri gl huhq0wldo sdluv dv jlyhq lq Ilj15/zkhuh wkh rxwsxwv duh furvv0frxsohg dv vkrzq lq Ilj161Lw wxuqv rxw wkdwIljxuh 6=D elqdu|wuhoolv vhfwlrq zlwk orj0olnholkrrguhsuhvhqwdwlrq dqg lwv flufxlw lpsohphqwdwlrq1xsrq dssolfdwlrq ri wzr glrgh0frqqhfwhg wudqvlvwruv wr wkh rxwsxw ri wkh Jloehuw pxowlsolhu/zh rewdlq d gl huhqwldo rxwsxw yrowdjh ri Y 6zlwkY 6@5Y W wdqk Ã4 wdqk Y 45Y W wdqk Y 55Y W=+46,Zkhq zh frpsduh +46,zlwk +44,rqh fdq hdvlo| qg wkdw O +[4,dqg O +[5,fruuhvsrqg wr Y 4@Y W dqg Y 5@Y W /uhvshfwlyho|1Wkh uhvxow ri wkh cer{soxv*rshudwlrq/O +[6,/lv ghwhuplqhg e| Y 6@Y W 1Qrwh wkdw wklv lv dq doo0qsq flufxlw lpsohphqwdwlrq zlwk rqo|qlqh wudqvlvwruv1Wkh irxu0txdgudqw pxowlsolhu fkdudfwhulvwlf ri wkh Jloehuw pxowlsolhu lv ghvfulehg e|+43,1Wkh hohphqwv ri wkh dqdorj ghfrghu duh vxppdul}hg lq Wdeoh 41D uhodwhg lpsohphqwdwlrq zkhuh suredelolwlhv +fxuuhqwv,irup wkh lqsxwv dqg rxwsxwv kdv ehhq sxeolvkhg lq ^6`171Frpsrqhqw Frghv dqg wkhlu Gh0frglqj lq Dqdorj QhwzrunvIru wkh ghvljq ri rxu dqdorj frpsrqhqw ghfrghu qhwzrunv zh iroorz wkh sulqflsohv ri nqrzq phvvdjh sdvvlqj dojrulwkpv vxfk dv Jdoodjhu*v lwhudwlyh gh0frglqj +JLG,dojrulwkp iru klv orz0ghqvlw|sdulw|0fkhfn +OGSF,frghv ^43`dqg wkh EFMU dojrulwkp1D v|qwkhvlv ri wkhvh ghfrglqj whfkqltxhv/ehvlghv rwkhu jhqhudo phvvdjh sdvvlqj dojrulwkpv edvhg rq Ed|hvldq qhwzrunv fdq eh irxqg lq ^44`dqg d vlplodu v|qwkhvlv edvhg rq idfwru judskv lv sxeolvkhg lq ^45`1Lq wklv sdshu zh zloo xvh wkh qrwdwlrq edvhg rq idfwru judskv dqg zh zloo irfxv rq wkh ghfrglqj ri olqhdu/elqdu|frghv17141Dqdor j ghfr ghuv edvhg r q idfwr u judskv zlwk elqdu|qr ghvVlplodu wr wkh JLG dojrulwkp wkh uvw frqfhsw ri rxu dqdorj ghfrghu lv edvhg rq wkh idfwru judsk zlwk elqdu|yduldeoh qrghv1Li wkh idfwru judsk lv ghulyhg iurp wkh K pdwul{ri wkh frgh/wklv judsklfdo uhsuhvhqwdwlrq lv htxlydohqw wr wkh Wdqqhu judsk ^46`1Khuh wkh yduldeoh +ru v|pero,qrghv fruuhvsrqg wr wkh frgh v|perov/zklfk duh frqqhfwhg wr ixqfwlrq +ru fkhfn,qrghv fruuhvsrqglqj wr wkh sdulw|fkhfn htxdwlrqv ri wkh frgh1Hdfk ixqfwlrq qrgh lv wkhq d uhsuhvhqwdwlrq ri d sdulw|fkhfn htxdwlrq iru wkh sduwlfxodu frgh/dqg wkh vhw ri yduldeohv ixo oolqj doo sdulw|fkhfn htxdwlrqv irup wkh vhw ri frghzrugv1Zh xvh wklv frqfhsw hvshfldoo|iru wkh dqdorj ghfrglqj ri vlpsoh elqdu|eorfn frghv/h1j1wkh +:/7,Kdpplqj frgh zlwk wkh sdulw|fkhfn pdwul{KK @3C 4434433434434334443344D >+47,ru iru wkh dqdorj ghfrglqj ri OGSF frghv1Ri juhdw lqwhuhvw duh wkh ruljlqdo OGSF frghv irxqg e|Jdo0odjhu ^43`dv zhoo dv prgl hg frghv vxfk dv wkh jhq0hudol}hg OGSF frghv ^46`/^47`ru OGSF frghv edvhg rq qlwh jhrphwulhv ^48`1D vhohfwlrq ri wkrvh frghv zlwk vkruw eorfn ohqjwk fdq eh irxqg lq Wdeoh 51Lq wkh ghfrghu qhwzrun/zklfk rshudwhv zlwk O 0ydoxhv/wkh sdulw|fkhfn rshudwlrq lq wkh ixqfwlrq qrghv zloo eh frqyhuwhg lqwr wkh cer{soxv* rs0hudwlrq dqg dw yduldeoh qrghv zh shuirup wkh dojh0eudlf vxp ri O 0ydoxhv1Wkh dojrulwkpv iru phvvdjh sdvvlqj ru eholhi sursdjdwlrq/zkhuh rqo|ch{wulqvlf*lqirupdwlrq lv sdvvhg wr wkh qhljkerulqj qrghv fdq eh lpsohphqwhg lq wkh dqdorj qhwzrun1Wkh iudph0zrun lv wkh iroorzlqj=Wkh frgh wr eh ghfrghg +khuh wkh +:/7,Kdpplqj frgh,lv glylghg lqwr frpsrqhqw ru vxe0frghv +khuh vlpsoh +7/6,Vlqjoh Sdulw|Fkhfn +VSF,frghv,dqg wkh frpsrqhqw ghfrghuv duh w|s0lfdoo|v|pero0e|0v|pero PDS ghfrghuv zklfk h{0fkdqjh wkhlu lqirupdwlrq iroorzlqj wkh uxohv ri eholhisursdjdwlrq1Dv douhdg|srlqwhg rxw e|vhyhudo rwkhu dxwkruv ^44`/^49`/sdudooho dqg vhuldo cwxuer*ghfrg0lqj vfkhphv w yhu|qlfho|lqwr wklv jhqhudo frqfhsw ri eholhi sursdjdwlrq1Ghwdlov fdq eh irxqg lq ^4:`1Wkh dqdorj ghfrghu qhwzrun iru wkh +:/7,Kdp0plqj frgh lv vkrzq lq Ilj171Khuh O f @7H V @Q 3lv wkh fkdqqho vwdwh lqirupdwlrq iru Jdxvvldq fkdqqhov/x l duh wkh lqirupdwlrq elwv dqg |l duh wkh pdwfkhg owhu rxwsxwv1Iru elgluhfwlrqdo phvvdjh wudqvihu zh gudz d olqh zlwkrxw dq duurz1O 0ydoxhv duh ihg lqwr d qrgh dqg ch{wulqvlf*O 0ydoxhv duh gholyhuhg iurp wkh qrgh1Xqlgluhfwlrqdo phvvdjh wudqvihu lv lqglfdwhg xvlqj olqhv zlwk duurzv1Gxh wr wkh idfw wkdwwkhIljxuh 7=Dqdorj ghfrghu qhwzrun iru wkh +:/7,Kdp0plqj frgh1vwuxfwxuh ri wklv elqdu|judsk uhsuhvhqwdwlrq frq0wdlqv vpdoo f|fohv/wkh JLG dojrulwkp vx huv iurp shuirupdqfh ghjudgdwlrq lq frpsdulvrq zlwk v|pero0e|0v|pero PDS ghfrglqj1Krzhyhu/lq dqdorj/vroy0lqj wkh qrq0olqhdu gl huhqwldo htxdwlrqv ri wkh qhw0zrun/qhdu rswlpdo shuirupdqfh fdq eh dfklhyhg e|lqlwldol}lqj wkh vwduwlqj ydoxh ri wkh yduldeoh qrgh iru wkh lqirupdwlrq elw x 7zlwk dq dgglwlrqdo orj0olnholkrrg udwlr lqirupdwlrq O lqlw edvhg rq wkh txlfn0orrn0lq surshuw|ri wkh frgh ^4:`1Iru wklv sduwlfxodu frgh zh fdq vlpsoli|wkh phvvdjh sdvvlqj surfhgxuh zlwkrxw orvv lq EHU shuirupdqfh e|xvlqj d vlp0soh +vxe0rswlpdo,phvvdjh sdvvlqj surfhgxuh zkhuh zh gr qrw glvwlqjxlvk ehwzhhq clqwulqvlf*dqg ch{wulq0vlf*lqirupdwlrq/exw vlpso|vxp xs doo lqfrplqj O 0ydoxhv dqg glvwulexwh wklv vxp lq doo frqqhfwhg gluhf0wlrqv1Lq wkh iroorzlqj zh irfxv rq wkh dqdorj YOVL lpsohphqwdwlrq1Dqdorj ghfrghuv edvhg rq idfwru judskv zlwk elqdu|qrghv +h1j1OGSF frghv,lqyroyh cer{soxv*rshudwlrqv dv zhoo dv wkh dulwkphwlf vxpv ri O 0ydoxhv zklfk duh shuiruphg lq wkh elqdu|yduldeoh qrghv1Ilj18looxvwudwhv d fkhfn shuiruphg rq q ydul0deoh qrghv1Vxfk d jhqhudo fkhfn fdq dozd|v eh vsolw xs lqwr +q 5,hohphqwdu|fkhfnv shuiruphg rq rqo|wkuhh yduldeoh qrghv dv vkrzq lq Ilj181Qrwh wkdw wkhIljxuh8=Rqh fkhfn shuiruphg rq q yduldeoh qrghv lv vsolw xs lqwr+q 5,hohphqwdu|fkhfnv shuiruphg rq wkuhh+qhz,yduldeoh qrghv1qxpehu ri yduldeoh qrghv lv khuhe|lqfuhdvhg1Hdfk olqh lq wkh judsk uhsuhvhqwv el0gluhfwlrqdo phvvdjh h{fkdqjh1Iru dq dqdorj ghfrghu qhwzrun zh kdyh wr lpsohphqw rqh gluhfwhg cer{soxv*hohphqw iru hdfk rxwjrlqj phvvdjh/l1h1/wkuhh iru dq hohphqwdu|fkhfn dv vkrzq lq Ilj181Wkh vhfrqg qhwzrun hohphqw shuirupv wkh dojh0 eudlf vxp ri O0ydoxhv dv uhtxluhg dw wkh yduldeoh qrghv ri d Wdqqhu judsk1Wklv hohphqw lpsohphqwv wkh ruljlqdo phvvdjh sdvvlqj dojrulwkp zkhuh dq rxw0 sxw phvvdjh dorqj d sdwk lv wkh vxp ri O0ydoxhv frplqj iurp doo rwkhu sdwkv1Wkh rqo|h{fhswlrq lv wkh fdofxodwlrq ri wkh yduldeoh qrgh rxwsxw zkhuh zh vxp ryhu doo lqfrplqj O0ydoxhv+clqwulqvlf*dqg ch{0 wulqvlf*,1Wkh vkruw qrwdwlrq/wkh ghwdlohg qrwdwlrq dqg wkh uhdol}dwlrq ri wkh yduldeoh hohphqw duh vkrzq lq Ilj191Lq rughu wr uhsuhvhqw sdudvlwlf hohphqwv lqdetailed notationIljxuh9=Vxppdwlrq hohphqw fruuhvsrqglqj wr d yduldeoh qrgh lq wkh Wdqqhu judsk1uhdo YOVL flufxlwv zh dgg uhvlvwru ydoxhv wr wkh olqhv dqg fdsdflwru ydoxhv ehwzhhq olqhv dqg jurxqg1 Erwk wkh cer{soxv*rshudwlrq ri wzr O0ydoxhv dqg wkh vxppdwlrq ri wzr O0ydoxhv fdq eh lpsohphqwhg lq dqdorj YOVL e|xvlqj rqo|rqh jhqhudo ghfrghu exloglqj eorfn dv vkrzq lq Ilj1:1Ghshqglqj rq wkh frqqhfwlylw|/exloglqj eorfnv zlwk gl huhqw ixqf0 wlrqdo uhvsrqvhv duh rewdlqhg1Frqqhfwlylw|L uhvxowv lq wkh vdph fruh exloglqj eorfn dv vkrzq lq Ilj16/Iljxuh:=Ghshqglqj rq wkh frqqhfwlylw|wkh jhqhudo ghfrghu exloglqj eorfn lpsohphqwv d cer{soxv*rshu0 dwlrq ri wzr O0ydoxhv ru wkh dulwkphwlf vxp ri wzr O0ydoxhv1wkh rqo|gl huhqfh ehlqj wkdw dgglwlrqdo glrghv duh xvhg wr lqfuhdvh wkh yrowdjh gurs dw wkh rxwsxw1Gxh wr gl huhqw yrowdjh ohyhov dqg lpshgdqfhv zh dgg edodqfhg qPRV yrowdjh ohyho vkliwhuv wr lqwhuidfh wr wkh fruh exloglqj eorfn dv vkrzq lq Ilj1:1D vxp0 plqj ixqfwlrq lv lpsohphqwhg e|xvlqj frqqhfwlylw| LL2LLL lq wkh jhqhudo ghfrghu exloglqj eorfn1Wkh rqo|gl huhqfh ehwzhhq w|sh LL dqg w|sh LLL exlog0 lqj eorfnv olhv lq pdujlqdoo|gl huhqw lqsxw yrowdjh ohyhov17151Dqdorj ghfrghuv edvhg rqwuhoolvhvIru wkh dqdorj ghfrghu qhwzrunv edvhg rq wuho0 olvhv/zh zloo irfxv rxu dwwhqwlrq rq wdloelwlqj frqyr0 oxwlrqdo frghv iru wkh iroorzlqj uhdvrqv=Dv vkrzq lq ^53`/wdloelwlqj frqyroxwlrqdo frghv dfklhyh wkh plql0 pxp glvwdqfh ri prvw ri wkh ehvw nqrzq eorfn frghv iru vkruw dqg phglxp eorfn vl}hv1Ixuwkhupruh/qr whuplqdwlrq elwv duh uhtxluhg+phdqlqj wkdw wkh frgh lv pruh udwh h!flhqw,dqg zh vwloo suhvhuyh htxdo huuru surwhfwlrq iru doo wudqvplwwhg elwv dqg qdoo|/frq0 wudu|wr lwv gljlwdo frxqwhusduwv/rxu dqdorj ghfrghu lv qr pruh frpsolfdwhg iru wdloelwlqj frghv wkdq lw lv iru whuplqdwhg frghv1Wr rewdlq wkh ixoo huuru fruuhfwlrq fdsdelolwlhv ri wkh frgh/wkh flufoh vl}h/l1h1/wkh eorfn ohqjwk ri wkh frgh/kdv wr ixo oo fhuwdlq frqvwudlqwv^54`1Wkh fruuh0 vsrqglqj gljlwdo ghfrghu xvhv wkh wdloelwlqj EFMU do0 jrulwkp+zlwkrxw hljhqyhfwruv,ru zuds0durxqg PDS dojrulwkp lqwurgxfhg e|Dqghuvrq dqg Kodgln^55`1 Lq wkh gljlwdo ghfrghu wkh wuhoolv lv lqlwldol}hg dw rqo|rqh wuhoolv vhfwlrq zlwk d sduwlfxodu suredelolw| glvwulexwlrq+riwhq vlpso|wkh xqlirup glvwulexwlrq,1 Lq frqwudvw/lq wkh dqdorj ghfrghu wkh pdwfkhg o0 whu rxwsxwv+O0ydoxhv,duh ordghg rqwr wkh dqdorjghfrghu lq sdudooho dqg wkh ghfrglqj surfhvv vwduwv vlpxowdqhrxvo|ryhu wkh zkroh wuhoolv1Lw lv srvvleoh wr jlyh dq lqwxlwlyh surri uhjduglqj wkh htxlydohqfh ri gljlwdo dqg dqdorj ghfrghuv+l1h1/wkdw wkh|jlyh lghqwlfdo uhvxowv,1Iru wdloelwlqj gh0 frghuv/wklv lv edvhg rq zrun sxeolvkhg lq^55`zklfk lqwurgxfhv wkh lghd ri d wdloelwlqj vwdwh glvwulexwlrq iru vwduw dqg hqg vwdwhv lq wkh EFMU dojrulwkp/l1h1/ vwduwlqj iurp d wdloelwlqj vwdwh glvwulexwlrq dqg jrlqj rqfh durxqg wkh wuhoolv/zh jhw h{dfwo|wkh vdph glv0 wulexwlrq djdlq1Ixuwkhu lwhudwlrqv durxqg wkh wuhoolv surgxfh uhshwlwlrqv ri wkh vdph uhvxowv1Lq^55`lw zdv vkrzq wkdw uhjdugohvv ri wkh vwduwlqj glvwulexwlrq lq wkh vwdwhv/wkh gljlwdo ghfrghu zloo dozd|v frqyhujh wr wkh wdloelwlqj vroxwlrq diwhu rqo|d vpdoo qxpehu ri f|fohv1Ixuwkhupruh/wkh wdloelwlqj vwdwh glvwul0 exwlrq fdq eh fdofxodwhg e|frpsxwlqj wkh odujhvw0 hljhqydoxh hljhqyhfwru ri wkh phwulf jlyhq e|wkh wuho0 olv frqvwudlqwv dqg wkh wudqvlwlrq suredelolwlhv iru wkh uhfhlyhg vhtxhqfhv1Orrnlqj dw wkh dqdorj ghfrghu/zh fdq vhh wkdw rqfh lw kdv uhdfkhg lwv vwhdg|vwdwh/lw kdv dovr gh0 yhorshg wkh wdloelwlqj glvwulexwlrq+wklv lv ehfdxvh/ doo pxowlsolfdwlrq uxohv duh vdwlv hg durxqg wkh ulqj dqg wkh glvwulexwlrq uhpdlqv ri frxuvh xqfkdqjhg lq wkh vwhdg|vwdwh,1Wkxv/zlwk erwk gljlwdo dqg dqd0 orj ghfrghuv surgxfhg lghqwlfdo glvwulexwlrqv rq doo vwdwhv wkhq wkh|zloo dovr jlyh lghqwlfdo vriw rxwsxwv1 Dqdorj ghfrghuv iru wdloelwlqj frqyroxwlrqdo frghv duh d gluhfw dqdorj YOVL lpsohphqwdwlrq ri wkh gh0 frglqj dojrulwkp ghvfulehg lq^55`+zlwkrxw hljhqyhf0 wruv,1Wr exlog d ghfrghu iru d phpru|rqh frqyr0 oxwlrqdo frgh zh fdq xvh wkh vdph exloglqj eorfnv dv iru dq OGSF ghfrghu/vhh Ilj1:1Lq wkh iroorzlqj zh ghvfuleh dqdorj ghfrghu lpsohphqwdwlrqv iru wdloelw0 lqj frqyroxwlrqdo frghv zlwk udwh4@Q dqg phpru| p A41Kljkhu frgh udwhv duh rewdlqhg e|sxqfwxu0 lqj1Wkh iroorzlqj qrwdwlrq lv xvhg=Zh uhihu wr wkh hqfrghu vwdwh ri d ihhg0iruzdug ru v|vwhpdwlf ihhg0 edfn hqfrghu dw wlph w dqg w.4e|v w dqg v w.4/ uhvshfwlyho|1Iru frqyhqlhqfh zh uhihu wr wkh hqfrghu vwdwh v w e|d vwdwh yduldeoh V zlwk ydoxh v dqg wr wkh hqfrghu vwdwh v w.4e|d vwdwh yduldeoh V Q zlwk ydoxh v Q zkhuh v>v Q5i3>===>5p 4j1Wkh wudqvlwlrq iurp v wr v Q lv odehohg zlwk wkh fruuhvsrqglqj sdu0 wldo frgh zrug dqg zh uhihu wr wklv wudqvlwlrq e|d wudqvlwlrq yduldeoh U zlwk ydoxh u5i3>===>5Q 4j1 Rqh wuhoolv vhfwlrq ri vxfk frghv frqvlvwv ri5pÃ4el0 qdu|wuhoolv vhfwlrq iudjphqwv1Dq h{dpsoh lv jlyhq lq Ilj1;iru wkh fdvh ri d phpru|p@6frgh zlwk jhqhudwru sro|qrpldov j+4,+G,@4.G5.G6dqg j+5,+G,@4.G.G61Wkh wuhoolv vhfwlrq kdv ehhq gudzq yhuwlfdoo|lqvwhdg ri krul}rqwdoo|lq rughu wr vkrz d fohduhu fruuhvsrqghqfh zlwk wkh vwuxfwxuh ri wkh dqdorj YOVL lpsohphqwdwlrq1Ilj1;ghslfwv rqo| wkh rxwsxw irupdwlrq ri wzr ri wkh;vwdwhv h{lvwlqj lq wkh ryhudoo wuhoolv1Wkh orzhu urz ri5p@;wudqvlv0Iljxuh;=Flufxlw lpsohphqwdwlrq iru rqh wuhoolv vhf0 wlrq ri d phpru|wkuhh dqg udwh425frqyroxwlrqdo frgh vkrzlqj lq sduwlfxodu wkh frqqhfwlrqv iru rqh ri wkh elqdu|wuhoolv vhfwlrqv1wruv uhsuhvhqwv wkh wuhoolv vwdwhv V zkhuh wkh fxuuhqwv wkurxjk wkhvh ghylfhv fruuhvsrqg wr wkh suredelolwlhv iru wkh vwdwhv V1Lq wkh vhfrqg urz zh qg d wrwdo qxpehu ri5p5Q@65wudqvlvwruv dvvrfldwhg zlwk wkh wudqvlwlrqv U1Fxuuhqwv wkurxjk wkhvh wudqvlv0 wruv fruuhvsrqg wr surgxfwv ri suredelolwlhv/zklfk duh vxpphg dffruglqj wr wkh wuhoolv vwuxfwxuh e|frq0 qhfwlqj rxwsxw zluhv wrjhwkhu1Qrwh wkdw qrw doo ri wkh wudqvlvwru rxwsxwv lq wkh vhfrqg urz duh xvhg1Il0 qdoo|/5p@;glrghv duh dssolhg lq rughu wr wudqvirup wkh rxwsxw fxuuhqwv edfn lqwr yrowdjhv+l1h1/frqyhuw0 lqj suredelolwlhv lqwr orj0olnholkrrg udwlrv,1E|xvlqj wkh qrwdwlrq lq^4<`dqg^;`zh fdq h{suhvv wkh rxwsxw yrowdjh Y+V3,4>8ri wkh flufxlw dv d ixqfwlrq ri wkh lqsxw yrowdjhv Y+V,5>6@Y+V,3>6 Y+V,3>5dqg Y+U,5>4@Y+U,3>4 Y+U,3>5Y+V3,4>8Y W@5wdqkÃ4%wdqk#Y+V,5>65YW$wdqk#Y+U,5>45YW$&=+48, Lq whupv ri O0ydoxhv wklv uhvxowv lqO4>8+V Q,@O5>6+V, O5>4+U,=+49, Iru hdfk ri wkh5pÃ4elqdu|wuhoolv exwwhu lhv zh fdq qg d fruuhvsrqglqj cer{soxv*rshudwlrq1Wkh wrwdo qxpehu ri rxwsxw yrowdjhv lv5p/hdfk uhsuh0 vhqwlqj d orj0olnholkrrg o l+V Q,dqg d fhuwdlq dgglwlyh frqvwdqw n+V Q,zklfk lv xqlpsruwdqw vlqfh zh xvh orj0 olnholkrrg udwlrv1Gxh wr wkh vwdfnhg frq jxudwlrq ri wudqvlvwruv hdfk ri wkh yrowdjhv Y l iru V/U dqg V Q fduulhv gl huhqw frqvwdqwv n1Lq rughu wr lqwhufrqqhfw wkh rxwsxw ri rqh wuhoolv vhfwlrq wr wkh lqsxw ri wkh iroorzlqj wuhoolv vhfwlrq n+V Q,qhhgv wr eh dgrswhgwr n+V,1Wklv lv shuiruphg e|qPRV yrowdjh ohyho vkliwhuv dv vkrzq lq Ilj1:1Vlqfh/iru wdloelwlqj gh0 frghuv/wkh rxwsxw ri wkh odvw wuhoolv vhfwlrq lv xvhg dv wkh lqsxw iru wkh uvw wuhoolv vhfwlrq/wklv uhvxowv lq d kljko|sdudooho dqdorj ghfrglqj qhwzrun1Yhu|vlp0 lodu flufxlw lpsohphqwdwlrqv fdq eh ghvljqhg iru wkh lqsxw dqg rxwsxw fdofxodwlrqv dqg iru wuhoolv vhfwlrqv edvhg rq frghv zlwk udwhv rwkhu wkdq4@Q1Wkh pdlq gl huhqfh lv wkdw wkh rxwsxw fxuuhqwv ri wkh wudqvlv0 wruv duh vxpphg gl huhqwo|ehiruh wkh|duh dssolhg wr wkh glrghv1Wklv grhv qrw qhfhvvdulo|uhvxow lq cer{soxv*rshudwlrqv181Wxuer GhfrglqjZh glvfxvvhg douhdg|lq Vhfwlrq7141dqdorj qhw0 zrunv zkhuh wkh ghfrglqj surfhvv ri wkh zkroh frgh lv vsolw xs lqwr vlpsoh VSF ghfrghuv zklfk h{fkdqjh wkhlu ch{wulqvlf*lqirupdwlrq gxulqj wkh wudqvlhqw uh0 vsrqvh ri wkh dqdorj flufxlw1Krzhyhu/wkh sulqfl0 soh fdq eh h{whqghg wr pruh frpsoh{frpsrqhqw frghv/zklfk ohdgv xv wr wkh zhoo0nqrzq cwxuer*gh0 frglqj vfkhphv1Khuh wkh zkroh cwxuer*ghfrglqj vfkhph lv lpsohphqwhg dv dq dqdorj ghfrghu qhwzrun frqvlvwlqj ri wkh dqdorj ghfrghuv iru wkh frpsrqhqw frghv zklfk duh frqqhfwhg yld dq lqwhuohdyhu vwuxf0 wxuh1Zlwk wkh dqdorj whfkqltxh zh duh dw suhvhqw uhvwulfwhg wr vkruw eorfn ohqjwkv ehfdxvh ri frpsoh{ lqwhuohdyhuv1Krzhyhu/hyhq iru vkruw eorfn ohqjwkv zh fdq qg yhu|lqwhuhvwlqj frglqj vfkhphv1Dq ryhuylhz ri frghv vxlwdeoh iru dqdorj ghfrglqj dqg wkhlu shuirupdqfh rq DZJQ fkdqqhov fdq eh irxqg lq Wdeoh51Wkh qxpehu ri wudqvlvwruv uhtxluhg iru wkhvh dqdorj lpsohphqwdwlrqv vwloo vwd|lq d uhdvrq0 deoh udqjh1Wkh dv|pswrwlf jdlq ri wkh suhvhqwhg frghv zlwk frgh udwh u lv jlyhq lq gE e|43orj43+u g plq,dqg wkh EHU shuirupdqfhv duh wdnhq iurp wkh flwhg sxeolfdwlrqv1Lq doo fdvhv v|pero0e|0v|pero PDS ghfrghuv zhuh xvhg iru wkh frpsrqhqw frghv1 Iru rxu dqdorj qhwzrun zh kdyh whvwhg vhyhudo vlpsoh cwxuer*ghfrglqj vfkhphv/zkhuh zh wudqvplw0 whg wkh v|perov ryhu dq DZJQ fkdqqho dqg vlpx0 odwhg wkh dqdorj ghfrghu e|vroylqj wkh fruuhvsrqg0 lqj qrq0olqhdu gl huhqwldo htxdwlrq v|vwhpv zlwk wkh Uxqjh0Nxwwd phwkrg1Vlqfh wkhvh vlpxodwlrqv duh txlwh wlph frqvxplqj zh duh olplwhg wr vlpsoh frghv1 Wkh gl huhqfh wr wkh gljlwdo uhdol}dwlrq lv wkdw zlwk rxu dqdorj qhwzrun zh qr orqjhu kdyh lwhudwlrqv/exw wkh qhwzrun rdwv iuhho|lq frqwlqxrxv wlph diwhu lw kdv ehhq ordghg zlwk wkh fkdqqho ydoxhv1Xqwlo qrz zh kdyh lqglfdwlrqv exw qr pdwkhpdwlfdo surri wkdw wkh ghfrghu rxwsxw iru dq dqdorj ghfrghu lv wkh vdph dv iru d gljlwdo ghfrghu uxqqlqj dq lq qlwh qxpehu ri lwhudwlrqv1Vlpxodwlrq uhvxowv iru wkh sdudooho frqfdwhqdwlrq ri+:/7,Kdpplqj frpsrqhqw frghv zlwk dq lqwhu0 ohdyhu ri7 7lqirupdwlrq elwv+Ilj1<,duhvkrzq Iljxuh<=Dqdorj ghfrghu qhwzrun iru d7{7cwxuer* frglqj vfkhph zlwk wkh+:/7,Kdpplqj frgh dv frp0 srqhqw frghv1lq Ilj1431Wkh vxe0rswlpdo shuirupdqfh ri wkh dqd0 orj cwxuer*qhwzrun khuh lv gxh wr wkh xvh ri vxe0 rswlpdo vriw0lq2vriw0rxw ghfrghuv dv ghvfulehg lq Vhf0 wlrq7141Ixuwkhu vlpxodwlrq uhvxowv iru dqdorj cwxuer* qhwzrunv zkhuh wdloelwlqj frqyroxwlrqdo frghv irup wkh frpsrqhqw frghv duh vkrzq lq Ilj144dqg Ilj1451 Khuh/Ilj144uhihuv wr dq dqdorj cwxuer*qhwzrun iru wkh fdvh ri+49/;,wdloelwlqj frqyroxwlrqdo frghv zlwk phpru|rqh dqg udwh425zlwk dq lqwhuohdyhu ri; ; lqirupdwlrq elwv1Wklv qhwzrun shuirupv htxdoo|zhoo dv dq lwhudwlyh ghfrghu zlwk wzr lwhudwlrqv zkhuh ixu0 wkhu lwhudwlrqv gr qrw lpsuryh wkh shuirupdqfh1Lq Ilj145lw lv vkrzq wkdw wkh dqdorj cwxuer*qhwzrunEb/Nin dB10-310-210-1BERIljxuh43=Vlpxodwlrq iru wkh sdudooho frqfdwhqdwlrq ri wkh+:/7,Kdpplqj frgh+vxe0rswlpdo lpsohphq0 wdwlrq,1iru wkh fdvh ri+65/49,wdloelwlqj frqyroxwlrqdo frghvzlwk phpru|wzr dqg udwh425zlwk dq lqwhuohdyhu ri49 49lqirupdwlrq elwv shuirupv ehwwhu wkdq dq lwhu0dwlyh ghfrghu zlwk9lwhudwlrqv1Erwk dqdorj frpsr0qhqw ghfrghuv pdwfk wkh vlpxodwlrq uhvxowv ri gljlwdoPDS ghfrghuv1Iljxuh44=Vlpxodwlrq uhvxowv iru wkh sdudooho frq0fdwhqdwlrq ri wkh+49/;,wdloelwlqj frqyroxwlrqdo frghzlwk phpru|rqh1Iljxuh45=Vlpxodwlrq uhvxowv iru wkh sdudooho frq0fdwhqdwlrq ri wkh+65/49,wdloelwlqj frqyroxwlrqdofrgh zlwk phpru|wzr191Dqdor j Wxuer Qhwzr unv ir u fr ghgGHFSVN Ghwhfwlr q dqg ir u Htxdo0l}dwlrqLw kdv ehhq vkrzq e|vhyhudo dxwkruv+^63`/^64`,wkdw wkh vhuldo frqfdwhqdwlrq ri d gl huhqwldo hqfrghu/dq lqwhuohdyhu dqg dq rxwhu frgh fdq eh ghfrghg dg0ydqwdjhrxvo|xvlqj wkh cwxuer*sulqflsoh1Khuh zh xvhdv wkh rxwhu frgh d phpru|wzr+70vwdwh,wdloelwlqjfrqyroxwlrqdo frgh1Wkh ulqj ri wkh GHFSVN gh0whfwru frpsohphqwv wkh ulqj ghfrghu qhwzrun zkhuh erwk duh frqqhfwhg e|dq lqwhuohdyhu ulqj1Ohw e l eh wkh frqyroxwlrqdoo|frghg elw1Wkhq wkh wudqvplwwhg elw lv{l @{l Ã4 e l =Wkh vwdwhv {l Ã4irup d 50vwdwh wuhoolv1Iru wkh dqd0orj ghwhfwru zh qhhg rqh cer{soxv*rshudwlrq hdfk iru wkh iruzdug dqg edfnzdug wuhoolvhv dqg rqh cer{0soxv*rshudwlrq iru rewdlqlqj wkh vriw rxwsxw ri wkh {dqg e O 0ydoxhv fruuhvsrqglqj wr e l @{l Ã4 {l 1Wkh h{wulqvlf O 0ydoxh ri e lv frqqhfwhg wr wkh gh0frghu qhwzrun zklfk lq wxuq vxssolhv d sulrul ydoxhv iru e 1Qrwh wkdw frqwudu|wr gljlwdo cwxuer*ghfrglqj/wkh GHFSVN ghwhfwru dqg wkh frqyroxwlrqdo ghfrghu rshudwh vlpxowdqhrxvo|dqg lqirupdwlrq lv rrglqj wkurxjkrxw wkh zkroh qhwzrun1Wkh vlpxodwlrq uh0vxowv ri wkh dqdorj ghfrghu2ghwhfwru duh vkrzq lq Ilj146^65`1Vlqfh vroylqj gl huhqwldo htxdwlrqv lvB E RE /N in dBIljxuh 46=Vlpxodwlrq uhvxowv iru d vhuldo frqfdwhqd0wlrq ri d wdloelwlqj frqyroxwlrqdo frgh zlwk phpru|wzr dqg GHFSVN1h{wuhpho|wlph frqvxplqj zh frxog rqo|xvh d ulqj ri 49lqirupdwlrq elwv1Wklv h{sodlqv wkh prghvw shu0irupdqfh dowkrxjk lw lv lpsruwdqw wr qrwh wkdw wkh dqdorj qhwzrun rxwshuirupv wkh gljlwdo cwxuer*sur0fhvvru zlwk 4<lwhudwlrqv1Wuxh GSVN shuirupdqfh zlwk xqnqrzq fkdqqho skdvh lv dovr srvvleoh e|xvlqj d vlpsoh dqdorj skdvh hvwlpdwru1Dqrwkhu udwh rqh lqqhu frgh lv d pxowlsdwk fkdq0qho/zklfk fdq eh wudqviruphg lqwr d flufxodu fkdq0qho dqg wkxv lqwr d wdloelwlqj frgh e|dsso|lqj wkh jxdug lqwhuydo whfkqltxh ^4:`1Wkh htxdol}hu iru wklv wdloelwlqj frgh fdq eh uhdol}hg hlwkhu wkurxjk wuho0olvhv dqg wkhlu dqdorj cer{soxv*vwuxfwxuh ru e|vriw ghflvlrq ihhgedfn dqdorj htxdol}dwlrq dv ghvfulehg lq ^4:`1Wkh shuirupdqfh ri wklv dqdorj htxdol}hu2ghfrghu lv txlwh vdwlvidfwru|1Dw wklv vwdjh lw lv xqfohdu krz wkh dqdorj fkdqqho vwdwh hvwlpdwlrq zloo zrun1:1Ghwdlov ri wkh dqdorj YOVL Lpsoh0phqwdwlrqZh vxffhvvixoo|lpsohphqwhg dq dqdorj wdloelwlqj PDS ghfrghu lq dqdorj YOVL e|xvlqj d 3=58 p ElFPRV surfhvv ^:`1Iru d pruh ghwdlohg ghvfulswlrq vhh ^;`1Wklv zrun zdv lq fr0rshudwlrq zlwk Oxfhqw Whfkqrorjlhv/Ehoo Odev1Lq rughu wr yhuli|wkh edvlf frqfhsw ri dqdorj ghfrglqj vfkhphv zh vhohfwhg d phpru|rqh frqyroxwlrqdo frgh zlwk ;lqirupdwlrq elwv dqg 49frgh elwv1Od|rxw zrun iru wkh dqdorj ghfrghu fkls zdv uhgxfhg wr d plqlpxp e|xvlqj rqo|rqh jhqhudo exloglqj eorfn dv vkrzq lq Ilj1:/zklfk zdv gxsolfdwhg dqg lqwhufrqqhfwhg rq wkh fkls1Qrwh wkdw wkh vdph exloglqjeorfn fdq eh xvhg iru dqdorj ghfrghuv iru orz0ghqvlw|sdulw|fkhfn frghv1Wkh xvh ri gl huhqwldo flufxlwv wkurxjkrxw wkh fkls uhgxfhv whpshudwxuh dqg qrlvh h hfwv1Rxu ghfrghu xvhv yrowdjhv dv lqsxwv dqg wkhuhiruh holplqdwhv wkh qhhg iru suh0vwdjh yrowdjh wr fxuuhqw frqyhuwhuv dv ghvfulehg lq ^9`1Wkh phdvxuhg EHU ydoxhv pdwfk wkh vlpxodwlrq uhvxowv ryhu wkh ixoo H e @Q 3udqjh ri 3wr :gE ^:`dv vkrzq lq Ilj1441Ixuwkhupruh/lw zdv vkrzq lq ^:`wkdw wkh htxlydohqw gljlwdo ghfrghu lv fohduo|rxwshuiruphg lq whupv ri vshhg/vl}h dqg srzhu frqvxpswlrq1Lq Wdeoh 6zh vxppdul}h vrph ri wkh nh|sdudphwhuv ri rxu fkls lpsohphqwdwlrq1Wdeoh ;1DfnqrzohgjhphqwZh zrxog olnh wr dfnqrzohgjh wkh vxssruw ri wkh Zluhohvv Flufxlwv dqg V|vwhpv Uhvhdufk Ghsduwphqw ri Oxfhqw Whfkqrorjlhv/Ehoo Odev lq Pxuud|Kloo/QM/lq sduwlfxodu Udq \dq dqg Wkdg Jdedud/iru wkh fkls lpsohphqwdwlrq1Ixuwkhupruh/zh zrxog olnh wr wkdqn F1Pìdvvrq iru klv frqwulexwlrqv wr wkh dqdorj cwxuer*Kdpplqj vfkhph dqg wkh fkls whvw dv zhoo dv D1Vfkdhihu dqg Fk1Zhl^5`M1Kdjhqdxhu/ Ghfrglqj ri elqdu|frghv zlwk dqd0orj qhwzrunv/ lq Surf1Lqw1Zrunvkrs rq Lqirupd0wlrq Wkhru|/Vdq Glhjr/Fdoliruqld/ss146 47/Ihe14<<;1^6`K10D1Orholjhu/P1Khoihqvwhlq/I1Oxvwhqehujhu/dqg I1Wdunrh|/ Lwhudwlyh vxp0surgxfw ghfrglqj zlwk dqdorj YOVL/ lq Surf1/LHHH Lqw1V|ps1Lqirup1Wkhru|/Fdpeulgjh/PD/XVD /s1479/Dxj14<<;1^7`M1Kdjhqdxhu/P1Zlqnokrihu/ Wkh dqdorj gh0frghu/ lq Surf1/LHHH Lqw1V|ps1Lqirup1Wkhru|/Fdpeulgjh/PD/XVD /s1478/Dxj14<<;1^8`I1Oxvwhqehujhu/P1Khoihqvwhlq/K10D1Orholjhu/I1Wdunù|/dqg J1V1Prvfk|w}/ Dq dqdorj ghfrg0lqj whfkqltxh iru gljlwdo frghv/ lq Surf1/LHHH Lqw1V|ps1Flufxlwv dqg V|vwhpv /yro1LL/ss175; 764/Ruodqgr/Iorulgd/Pd|2Mxqh 4<<<1^9`I1Oxvwhqehujhu/P1Khoihqvwhlq/K10D1Orholjhu/I1Wdunù|/dqg J1V1Prvfk|w}/ Doo0dqdorj gh0frghu iru d elqdu|+4;/</8,wdloelwlqj wuhoolv frgh/ lq Sur f1/58wk Hxur shdq Vr olg0Vwdwh Flufxlwv Fr q0ihuhqfh /Gxlvexuj/Jhupdq|/Vhsw14<<<1^:`P1Prhu}/W1Jdedud/U1\dq/dqg M1Kdjhqdxhu/ Dq dqdorj 3158>p ElFPRV wdloelwlqj PDS gh0frghu/ lq Sur f1/LHHH Lqw1Vr olg0Vwdwh Flufxlwv Fr qihuhqfh +LVVFF 5333,/ss1689 68:/Vdq Iudq0flvfr/Fdoliruqld/Ihe153331^;`M1Kdjhqdxhu/P1Prhu}/dqg H1R hu/ Uhfhqw surjuhvv lq ghfrglqj zlwk dqdorj YOVL qhwzrunv/ lq Sur f1/Fr qihuhqfh q Lqir up1Vflhqfhv dqg V|v0whpv/Sulqfhwr q Xqlqyhuvlw|/Pdufk 53331^<`P1Prhu}/M1Kdjhqdxhu/dqg H1R hu/ Rq wkh dqdorj lpsohphqwdwlrq ri wkh DSS +EFMU,dojr0ulwkp/ lq Sur f1/LHHH Lqw1V|ps1Lqir up1Wkhr u|/Vr uuhqwr /Lwdo|/s1758/Mxqh 53331^43`U1Jdoodjhu/ Orz0ghqvlw|sdulw|0fkhfn frghv/ LUH Wudqv1Lqir up1Wkhr u|/yro1LW0;/ss154 5;/Mdq14<951^44`V1Dml dqg U1PfHolhfh/ Wkh jhqhudol}hg glvwulex0wlyh odz/ LHHH Wudqv1Lqir up1Wkhr u|/yro1795/ss16580676/Pdufk 53331^45`I1Nvfklvfkdqj/E1Iuh|/dqg K10D1Orholjhu/ Idfwru judskv dqg wkh vxp0surgxfw dojrulwkp/ vxeplwwhg wr LHHH Wudqv1Lqir up1Wkhr u|/Mxo|4<<;1^46`U1Wdqqhu/ D uhfxuvlyh dssurdfk wr orz frpsoh{0lw|frghv/ LHHH Wudqv1Lqir up1Wkhr u|/yro1LW05:/ss1866 87:/Vhsw14<;41^47`P1Ohqwpdlhu dqg N1]ljdqjlury/ Rq jhqhudol}hg orz0ghqvlw|sdulw|0fkhfn frghv edvhg rq Kdpplqj frpsrqhqw frghv/ LHHH Fr ppxqlfdwlr qv Ohwwhuv /yro16;/ss157;0583/Dxj14<<<1^48`\1Nrx/V1Olq/dqg P1Irvvrulhu/ Orz ghqvlw|sdulw|fkhfn frghv edvhg rq qlwh jhrphwulhv =D uhglvfryhu|dqg pruh/ vxeplwwhg wr LHHH Wudqv1Lqir up1Wkhr u|/Rfw14<<<1^49`U1PfHolhfh/G1PdfNd|/dqg M10I1Fkhqj/ Wxuer ghfrglqj dv dq lqvwdqfh ri Shduo*v eholhi sursdjdwlrq dojrulwkp/ LHHH Mr xuqdo Vhohfwhg Duhdv lq Fr p0pxq1/yro1495/ss14730485/Ihe14<<;1^4:`M1Kdjhqdxhu/H1R hu/F1Pìdvvrq/dqg P1Pùu}/ Ghfrglqj dqg htxdol}dwlrq zlwk dqdorj qrq0olqhdu qhwzrunv/ HWW Hxur shdq Wudqv1Whohfr ppxq1/yro143/ss198< 9;3/Qry10Ghf14<<<1^4;`O1U1Edko/M1Frfnh/I1Mholqhn/dqg M1Udyly/ Rswlpdo ghfrglqj ri olqhdu frghv iru plqlpl}lqj v|pero huuru udwh/ LHHH Wudqv1Lqir up1Wkhr u|/yro1LW053/ss15;7 5;:/Pdufk 4<:71^4<`M1Kdjhqdxhu/P1Pùu}/dqg H1R hu/ D flu0fxlw edvhg lqwhusuhwdwlrq ri dqdorj PDS ghfrg0lqj zlwk elqdu|wuhoolvhv/ lq Sur f1/6ug LWJ Fr q0ihuhqfh Vr xufh dqg Fkdqqho Fr glqj/Pxqlfk/Jhu0pdq|/Mdq153331^53`S1Vwdko/M1Dqghuvrq/dqg U1Mrkdqqhvvrq/ Rswl0pdo dqg qhdu0rswlpdo iru vkruw dqg prghudwh0ohqjwk wdloelwlqj wuhoolvhv/ LHHH Wudqv1Lqir up1Wkhr u|/yro178/ss15895 58:4/Qry14<<<1^54`M1Dqghuvrq dqg N1Whsh/ Surshuwlhv dqg huuru shuirupdqfh ri wkh wdloelwlqj EFMU ghfrghu1 Whfk1Uhsruw/Oxqg Xqlyhuvlw|/Rfw14<<;1^55`M1Dqghuvrq dqg V1Kodgln/ Wdloelwlqj PDS gh0frghuv/ LHHH Mr xuqdo Vhohfwhg Duhdv lq Fr pp1/yro149/ss15<: 635/Ihe14<<;1^56`G1PdfNd|/ Jrrg huuru0fruuhfwlqj frghv edvhg rq yhu|vsduvh pdwulfhv/ LHHH Wudqv1Lqir up1Wkhr u|/yro1785/ss16<<0764/Pdufk 4<<<1^57`P1Irvvrulhu/P1Plkdomhyl f /dqg K1Lpdl/ Uhgxfhg frpsoh{lw|lwhudwlyh ghfrglqj ri orz0ghqvlw|sdu0lw|fkhfn frghv edvhg rq eholhi sursdjdwlrq/ LHHH Wudqv1Fr ppxq1/yro17:8/ss19:609;3/Pd|4<<<1^58`U1Oxfdv/P1Irvvrulhu/dqg V1Olq/ Rq lwhudwlyh ghfrglqj ri rqh0vwhs pdmrulw|orjlf ghfrgdeoh frghv edvhg rq eholhi sursdjdwlrq/ lq 6ug LWJ Fr qihu0hqfh Vr xufh dqg Fkdqqho Fr glqj/Pxqlfk /ss149: 4:6/Mdq153331^59`Fk1Zhl/Fk1Ehwwvwhwwhu/dqg V1Ulhgho/ Frghfrqvwuxfwlrq dqg ghfrglqj ri sdudooho frqfdwhqdwhg wdloelwlqj frghv/ vxeplwwhg wr LHHH Wudqv1Lqirup1Wkhru|/Rfw14<<;1^5;`M1Kdjhqdxhu/H1R hu/dqg O1Sdsnh/ Lwhudwlyh ghfrglqj ri elqdu|eorfn dqg frqyroxwlrqdo frghv/ LHHH Wudqv1Lqirup1Wkhru|/yro1LW075/ss175< 778/Pdufk 4<<91^5<`J1Vfkplgw/ Lwhudwlyh Ghfrglhuxqj sdudooho yhunhw0whwhu Eorfn0xqg Idowxqjvfrghv1 Pdvwhu Wkhvlv/Lq0vwlwxwh iru Frppxqlfdwlrqv Hqjlqhhulqj/Pxqlfk Xqlyhuvlw|ri Whfkqrorj|/Pdufk 4<<;1^63`P1Shohj dqg V1Vkdpdl/ Lwhudwlyh ghfrglqj ri frghg dqg lqwhuohdyhg qrqfrkhuhqw pxowlsoh v|pero ghwhfwhg GSVN/ Hohfwurqlf Ohwwhuv /yro166/qr145/ss1434;04353/Mxqh 4<<:1^64`S1Krhkhu dqg M1Orgjh/ Wxuer GSVN =Lwhud0wlyh gl huhqwldo SVN ghprgxodwlrq dqg fkdqqho gh0frglqj/ LHHH Wudqv1rq Frppxqlfdwlrqv /yro17:/qr19/ss1;6: ;76/Mxqh 4<<<1^65`M1Kdjhqdxhu/D1Vfkdhihu/dqg Fk1Zhl。