第十一章三角形教案
第11章三角形-三角形中的角度计算模型(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形角度计算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
第11章三角形-三角形中的角度计算模型(教案)
一、教学内容
第11章三角形-三角形中的角度计算模型:本节课我们将围绕以下内容进行深入探讨:
1.三角形的内角和定理及其应用;
2.三角形中角度计算的方法与技巧;
3.三角形中特殊角度的计算,如直角三角形中的30°-60°-90°和45°-45°-90°三角形的性质;
-能够将三角形中的角度计算应用于实际测量和几何图形的求解。
举例:在解决实际问题时,如计算不规则多边形的内角和,学生需要将多边形分割成若干个三角形,应用内角和定理进行计算。
2.教学难点
-理解并灵活运用三角形的内角和定理,特别是在不规则三角形或多边形中的应用;
-对于角度计算方法的熟练运用,特别是在多个角度未知的情况下,如何选择合适的方法进行求解;
3.重点难点解析:在讲授过程中,我会特别强调内角和定理以及特殊角度计算这两个重点。对于难点部分,比如多边形内角和的计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形角度计算相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用三角板和量角器来测量和计算三角形的内角度数。
不过,我也注意到,在小组讨论环节,部分学生在提出问题和解决问题时显得有些犹豫不决。这可能是因为他们对知识点的掌握还不够扎实,或者是对团队合作还不够习惯。在未来的教学中,我需要更多地鼓励学生发表自己的观点,同时也要教会他们如何倾听他人的意见。
人教版八年级数学上册第十一章三角形数学活动教学设计
1.教师引导学生回顾本节课所学的三角形知识,总结三角形的基本性质、分类、相似三角形的判定和应用。
2.学生分享自己的学习心得,教师给予鼓励和指导。
3.教师强调本章节的重点和难点,提醒学生课后加强练习,巩固所学知识。
4.教师布置课后作业,要求学生在课后进一步巩固三角形相关知识。
五、作业布置
4.通过数学学习,使学生认识到数学与现实生活的密切联系,体会数学在生活中的重要作用,培养学生的数学素养。
在教学过程中,教师要关注学生的个体差异,充分调动学生的积极性,使学生在轻松愉快的氛围中学习,提高学生的数学素养。同时,教师要善于运用教育机智,灵活处理教学中的各种问题,使学生在掌握知识的同时,培养良好的情感态度与价值观。
(2)运用问题驱动的教学方法,设计具有挑战性的问题,激发学生的求知欲,培养学生的创新思维能力。
(3)采用小组合作、讨论交流等形式,促进学生之间的互动,培养学生的团队协作能力和沟通能力。
2.教学策略:
(1)注重直观演示,结合实际生活中的三角形实例,帮助学生建立对三角形的直观认识,为后续的抽象思维打下基础。
二、学情分析
八年级的学生已经具备了一定的数学基础,对几何图形有了初步的认识,特别是在之前的课程中,学生对三角形的基本概念和性质有了初步的了解。在此基础上,本章的教学将更加深入地探讨三角形的性质、分类及应用。然而,学生在探究三角形相似、计算面积等方面可能还存在一定的困难,需要教师在教学过程中给予适当的引导和帮助。
4.小组合作完成一份关于三角形的数学手抄报,内容可以包括三角形的定义、性质、分类、相似三角形的判定和应用等。要求:版面设计美观,知识点清晰,能够体现出小组合作的精神。
5.预习下一节课内容,提前思考以下问题:如何运用三角形的性质来解决一些特殊的几何问题?相似三角形在实际问题中的应用有哪些?
人教版八年级上册第十一章三角形课程设计
人教版八年级上册第十一章三角形课程设计一、课程目标本节课程旨在帮助学生:1.了解和掌握三角形的基本概念和性质;2.能够根据给定的条件判断三角形的形状和大小;3.能够应用三角形的基本概念和性质解决实际问题。
二、教学重点1.掌握三角形的三边、三角、外角、内角、高、中线、垂心、内心、外心、重心等基本概念;2.掌握三角形的基本性质,如角度和定理、边长关系、直角三角形的性质等;3.能够根据已知条件判断三角形的形状和大小。
三、教学难点1.掌握三角形的内心、外心、垂心和重心的概念及其性质;2.能够应用所学知识解决实际问题。
四、教学方法1.情境演示法:在生活中寻找三角形的实例,并通过情境演示的方式,让学生更好地理解和掌握三角形的性质与概念。
2.讨论法:引导学生围绕三角形的性质与应用展开的讨论,借此让学生深入了解和掌握三角形的相关知识。
3.探究发现法:通过引导学生讲述自己解决数学问题的思路,并帮助学生对照所学知识,从而让学生通过探究来加深对数学知识的理解。
五、教学内容1.三角形的定义和基本性质–三边、三角、外角、内角、内角和、外角和;–锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形等。
2.三角形的佩斯特拉定理–佩斯特拉定理的概念及化法;–佩斯特拉定理的证明。
3.三角形的心–垂心、内心、重心、外心的概念、性质及应用;–三角形心的判定方法。
4.三角形内部线段的连接和作图–中线、高、角平分线、垂直平分线的概念;–垂线的作法;–中线和角平分线的作法。
六、教学流程时间内容10 min 1. 课堂热身2. 引入三角形基本概念时间内容20 min 3. 讲解三角形佩斯特拉定理及其证明25 min 4. 讲解三角形内部线段的连接和作图10 min 5. 引导学生探究三角形心的性质及应用10 min 6. 总结课堂内容7. 布置课后作业七、教学评价1.课堂练习在课堂上,针对本节课程的核心内容,设计相关的练习题,考察学生对三角形基本概念、性质及应用的掌握情况。
第十一章 三角形【教案】八年级上册数学
一、单元学习主题本单元是“图形与几何”领域“图形的性质”主题中的“三角形”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段图形与几何领域包括“图形的性质”“图形的变化”和“图形与坐标”三个主题,学生将进一步学习点、线、面、角、三角形、多边形和圆等几何图形,从演绎证明、运动变化、量化分析三个方面研究这些图形的基本性质和相互关系.“图形的性质”强调通过实验探究、直观发现、推理论证来研究图形,在用几何直观理解几何基本事实的基础上,从基本事实出发推导图形的几何性质和定理,理解和掌握尺规作图的基本原理和方法.三角形是图形与几何领域的主要内容,它在义务教育阶段的数学课程中占有重要地位.三角形是最简单的封闭图形,既顺承前面学过的线段、角、平行线及相交线,又为后续四边形等图形的学习提供思路、方法的支持.显而易见,三角形处于前衔后联的核心地位.三角形是仅次于线段和直线的基本几何图形,而空间的大部分基本性质都已经在三角形的几何性质中充分体现.三角形的知识是研究其他几何图形不可或缺的基础,三角形的应用几乎遍及初中几何的所有章节.2.本单元教学内容分析人教版教材八年级上册第十一章“三角形”,本章包括三个小节:11.1与三角形有关的线段;11.2与三角形有关的角;11.3多边形及其内角和.“图形的性质”主题中的“三角形”包括:与三角形有关的线段(边、高、中线、角平分线)——三角形的稳定性——三角形的内角和定理、外角的性质——多边形的内角和与外角和.本章从内容来看,包括很多重要的概念和性质定理:三角形的概念及三边关系、推理证明三角形内角和等于180°、认识多边形的对角线、推理证明多边形内角和公式、外角和等于360°等.本章是前面所学知识的延伸,又是学习全等三角形、四边形、相似三角形、三角函数等章节的基础,起到承上启下的作用.通过学习,培养学生几何图形意识和初步的动手操作技能,拓展学生归纳、总结、切割、分析复杂图形的能力.通过三角形知识的研究进一步了解几何中研究问题的基本思路和方法,也为将来进一步研究全等三角形、等腰三角形、相似三角形和平行四边形等内容奠定了知识基础,提供了研究思路.这不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且是深入贯彻实施《标准2022》的素养理念的渠道,有利于促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量.三、单元学情分析本单元内容是人教版教材数学八年级上册第十一章的三角形,学生在小学已经学过三角形的一些知识,对三角形的许多重要性质有所了解,在七年级又学过线段、角以及相交线、平行线等知识,初步了解了一些简单几何体和平面图形及其基本特征,会进行简单的推理,已具备一定的逻辑思维能力,掌握了一定的探究方法.三角形和多边形也是学生生活中最常见的图形,有了相应的表象知识,学生更乐于深入学习,积极探索.本章从学生熟悉的生活与社会情境入手,以三角形结构化数学知识主题为载体,在符合学生认知发展规律的数学与科学情境中,让学生经历“用数学的眼光发现和提出问题,用数学的思维与数学的语言分析和解决问题”的过程,并从中获得数学学习的活动经验和积累,初步养成独立思考、探究质疑、合作交流等学习习惯,初步形成自我反思的意识,同时在形成与发展“四基”的过程中形成抽象能力、推理能力、运算能力、几何直观和空间观念等.四、单元学习目标1.理解三角形及其内角、外角、中线、高、角平分线等概念,了解三角形重心的概念,了解三角形的稳定性.2.探索并证明三角形两边的和大于第三边,并会运用这一性质解决问题.3.探索并证明三角形的内角和定理,掌握它的推论:三角形的外角等于与它不相邻的两个内角的和.4.探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形.5.理解并掌握三角形外角的概念,掌握三角形外角的性质和三角形外角和,解决与三角形外角有关的简单计算和证明问题,发展学生的抽象思维,培养模型观念和应用意识.6.了解多边形的概念及多边形的边、内角、外角、凸多边形、正多边形等有关特征,探索并证明多边形的内角和与外角和公式并能应用解决简单问题,体会化归思想和从具体到抽象的研究问题的方法,培养学生的模型观念、应用意识和创新意识.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计
人教版八年级数学上册《第十一章三角形》大单元整体教学设计一、内容分析与整合(一)教学内容分析人教版初中数学八年级上册的《第十一章三角形》是几何学习中的一个重要章节,它不仅承载着对三角形基础概念和性质的全面介绍,还扮演着连接学生先前所学与后续几何知识深入探索的桥梁角色。
本章内容丰富多彩,深入浅出地引导学生走进三角形的奇妙世界,为他们构建一个系统而坚实的几何知识体系。
在这一章节中,学生们将首先接触到三角形的各种线段,包括边、高、中线以及角平分线等。
这些看似简单的概念,实则是解锁三角形众多性质的关键。
通过学习,学生们将理解每条线段在三角形中的独特位置和作用,以及它们如何相互关联,共同塑造三角形的形态与特性。
例如,中线不仅将对应的底边平分,还将三角形分为面积相等的两部分,这一性质的学习对于学生后续理解更复杂的几何问题大有裨益。
除了线段,章节还深入探讨了三角形的角,包括内角和外角。
学生将学习如何计算三角形的内角和,这一基础知识是证明许多三角形性质的基础。
外角的概念及其与相邻内角的关系,也将被详尽阐述,帮助学生从多角度审视三角形的角特征,培养他们的空间想象力和逻辑推理能力。
本章还拓展到了多边形及其内角和的内容,进一步丰富了学生的几何视野。
多边形作为三角形的延伸,其内角和的计算方法不仅加深了学生对几何图形内在规律的认识,也为后续学习更复杂几何图形打下了坚实的基础。
更为重要的是,本单元的教学不仅仅局限于理论知识的传授,更注重培养学生的实践操作能力和逻辑推理能力。
通过实际测量、作图、证明等一系列活动,学生被鼓励亲自动手,体验知识的生成过程,从而在实践中深化对三角形性质的理解。
这种“做中学”的方式,极大地提升了学生的学习兴趣和参与度,使他们在探索中发现几何之美,培养解决问题的能力和创新思维。
《第十一章三角形》不仅是初中数学课程中的一个核心章节,更是学生几何思维形成的关键时期。
通过本章的学习,学生不仅能够掌握三角形的基础概念和性质,更能在实践中锻炼几何直觉,学会用数学的眼光观察世界,为后续更深层次的几何学习乃至整个数学学习旅程奠定坚实的基础。
第十一章 三角形 教案
第十一章三角形§11.1.1三角形的边教学目标:1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师叙述: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形”这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形”.教师提问:上述对三角形的描述中你认为有几个部分要引起重视.学生回答:a.不在一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一部分至思考,一段课文,并回答以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定回答以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以回答这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.§11.1.2三角形的高、中线与角平分线教学目标1.经历析纸,画图等实践过程,认识三角形的高、中线与角平分线.2.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.重点、难点重点:1.了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.2.了解三角形的三条高、三条中线与三条角平分线分别交于一点.难点:1.三角形平分线与角平分线的区别,三角形的高与垂线的区别.2.钝角三角形高的画法.3.不同的三角形三条高的位置关系.教学过程一、看一看把下面图表投影出来:1.AD是△ABC的BC上的中线.2.BD=DC=BC.1.AD是△ABC的∠BAC的平分线.2.∠1=∠2=∠BAC.1.指导学生阅读课本P71-72的课文.2.仔细观察投影表中的内容,并回答下面问题.(1)什么叫三角形的高?三角形的高与垂线有何区别和联系? 三角形的高是从三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间的线段,而从三角形一个顶点向它对边所在的直线作垂线这条垂线是直线.(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?三角形的中线是连结一个顶点和它对边的中点的线段, 而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?三角形的角平分线是三角形的一个内角平分线与它的对边相交, 这个角顶点与交点之间的线段,而角平分线指的是一条射线.3.三角形的高、中线和角平分线是代表线段还是代表射线或直线?三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.二、做一做1.让学生在练习本上画出三角形,并在这个三角形中画出它的三条高.( 如果他们所画的是锐角三角形,接着提出在直角三角形的三条高在哪里?钝角三角形的三条高在那里?)观察这三条高所在的直线的位置有何关系?三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.2.让学生在练习本上画三角形,并在这个三角形中画出它的三条中线.( 如果他们所画的是锐角三角形,接着让他们画出直角三角形和钝角三角形,看看这些三角形的中线在哪里)?观察这三条中线的位置有何关系?三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.3.让学生在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点.三、议一议通过以上观察和操作你发现了哪些规律,并加以总结且与同伴交流.四、练习1.课本P5,练习1.2.2.画钝角三角形的三条高.五、作业1.P8-P9 习题11.1第 3.4.8§11.1.3三角形的稳定性教学目标:通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用重点:了解三角形稳定性在生产、生活的实际应用难点:准确使用三角形稳定性于生产生活之中课前准备:小木条8个,小钉若干教学过程:一、看一看,想一想课本P6投影出来二、做一做1、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?2、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?三、议一议从上面实验过程你能得出什么结论?与同伴交流。
人教版八年级上册第十一章《三角形性质探究》教学设计
(1)启发式教学:引导学生主动发现问题、解决问题,培养学生的思维能力。
(2)直观教学:利用教具、实际操作等方式,帮助学生建立清晰的几何图形概念。
(3)分层教学:针对学生的个体差异,设计不同难度的教学任务,使每个学生都能在原有基础上得到提高。
(4)情感教育:关注学生的情感需求,激发学习兴趣,培养良好的学习态度。
6.课后作业:布置适量的作业,巩固所学知识。
7.教学评价:通过课堂表现、作业完成情况等方面,评价学生的学习效果。
8.教学反思:教师课后总结教学过程中的优点和不足,不断改进教学方法,提高教学质量。
二、学情分析
八年级学生已经具备了一定的几何图形认知基础,掌握了基本的几何概念和性质。在此基础上,学生对三角形的性质探究具有一定的认知基础,但可能对三角形的内角和定理、等腰三角形性质及勾股定理的理解和应用仍存在困难。此外,学生在空间想象能力和逻辑思维能力方面发展不均衡,需要针对不同学生的实际情况进行因材施教。
人教版八年级上册第十一章《三角形性质探究》教学设计
一、教学目标
(一)知识与技能
1.理解三角形的定义,掌握三角形的分类、性质和判定方法。
2.学会运用三角形的内角和定理,解决实际问题。
3.掌握等腰三角形的性质,能运用等腰三角形的判定方法,解决相关问题。
4.熟练运用勾股定理,解决直角三角形相关问题。
5.培养学生的空间想象能力和逻辑思维能力。
4.通过生活中的实例导入,激发学生的学习兴趣,为新课的学习做好铺垫。
(二)讲授新知,500字
1.教师引导学生复习三角形的定义,回顾已知的三角形性质。
2.探究三角形的内角和定理:教师提出问题,引导学生猜想三角形的内角和是多少度,并让学生在小组内进行验证。
第十一章三角形单元教学设计
第十一章三角形单元教学设计第一篇嗨,亲爱的小伙伴们!今天咱们要来聊聊第十一章三角形的单元教学设计啦。
三角形这玩意儿,可有趣着呢!一开始呀,咱们得让大家知道啥是三角形,就像认识新朋友一样,先搞清楚它长啥样。
咱们可以拿好多生活中的例子,比如三角形的屋顶、三角尺,让大家一下子就明白。
然后呢,讲讲三角形的边和角。
边的长短有啥关系,角的大小又有啥讲究。
这里咱们可以来些小游戏,比如让同学们比一比谁能更快地说出三角形边和角的特点。
再接着,三角形的分类可不能少。
锐角三角形、直角三角形、钝角三角形,还有等腰三角形、等边三角形,得让同学们分得清清楚楚。
可以弄个分类大比拼,看谁分得又准又快。
还有三角形的内角和,这可是个重要的知识点。
咱们可以通过实验,让同学们自己动手量一量、拼一拼,发现内角和的秘密。
呀,再做做练习题,巩固巩固所学的知识。
怎么样,小伙伴们,是不是感觉三角形的世界很精彩呀?第二篇嘿,朋友们!咱们要开启第十一章三角形的奇妙之旅啦!先来说说三角形的定义,简单来讲,就是三条线段围成的封闭图形。
这时候,咱们可以在黑板上画几个形状各异的三角形,让大家找找共同点。
然后到三角形的三边关系啦。
两边之和大于第三边,两边之差小于第三边。
这可得好好记住,可以通过一些实际的例子来加深印象,比如走路选路线。
再看看三角形的内角和是 180 度这个神奇的规律。
咱们可以让同学们分组讨论,想想怎么证明这个结论。
还有三角形的外角,它和内角又有啥关系呢?这也是很有趣的一部分哦。
别忘了给大家留一些有趣的作业,比如观察生活中还有哪些地方用到了三角形的知识。
怎么样,准备好和三角形成为好朋友了吗?。
2024年人教版八年级数学上册教案及教学反思全册第11章 三角形(11.3.1 多边形教案
第十一章三角形11.3 多边形及其内角和11.3.1 多边形一、教学目标【知识与技能】了解多边形的有关概念,理解正多边形和有关概念.【过程与方法】经历动手、作图的过程,进一步发展空间能力.【情感态度与价值观】经历探索、归纳等过程,学会研究问题的方法.二、课型新授课三、课时第1课时四、教学重难点【教学重点】1.了解多边形的边、顶点、内角、外角、对角线等有关概念.2.了解正多边形的基本性质.【教学难点】1.在多边形的概念中,对“在同一平面内”的理解.2.对多边形对角线的理解.3.对正多边形性质的理解.五、课前准备教师:课件、三角尺、多边形图片等。
学生:三角尺、直尺、多边形纸片。
六、教学过程(一)导入新课在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?(出示课件2-4)(二)探索新知1.师生互动,探究多边形的定义及其有关概念教师问1:观察下面的图片,你能找到哪些我们熟悉的图形?学生回答:三角形、长方形、正方形、平行四边形、五边形、六边形、八边形等.教师讲解引入多边形:上面这些图形我们要给出一个统一的名称,称它们为多边形.那么到底什么是多边形呢?我们先回忆一下三角形的定义.教师问2:同学们想一想,什么是三角形呢?学生回答:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.做一做教师讲解:请同学们拿出准备好的材料,随意画几个多边形.教师问3:观察画多边形的过程,类比三角形的概念,你能说出什么是多边形吗?学生回答:在平面内,由一些线段首尾顺次相接组成的封闭图形叫多边形.(出示课件6)教师问4:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?学生交流,教师讲解并强调“在平面内”,并总结:这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.根据边数的多少来命名为,有四条边就是四边形,有五条边就是五边形,依次命名为六边形、七边形、八边形…学生问:观察这个多边形,为什么有一条边是虚线?教师回答:虚线代表的是“不止一条边”,所以这个图形不仅可以代表七边形,也可以代表八边形、九边形等任意一个多边形.教师问5:根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角和对角线.学生讨论回答,教师引导如下:内角:多边形相邻两边组成的角.外角:多边形的边与它的邻边的延长线组成的角.对角线:连接多边形两个顶点的线段教师问6:多边形按边数分类,可以分为哪一些呢?学生回答:多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.(出示课件8)教师总结如下:(1)多边形的分类:多边形按组成它的线段的条数分成三角形、四边形、五边形……如果一个多边形由n条线段组成,那么这个多边形就叫做n边形. 其中,三角形是最简单的多边形.如图所示的多边形记作五边形ABCDE.(2)多边形的边:所连接的线段叫做多边形的边. 如图中的AB、BC、CD、DE、EA都是五边形ABCDE的边.(3)多边形的角:①内角:多边形相邻的两边所组成的角叫做多边形的内角,如图中的∠EAB、∠ABC、∠BCD、∠CDE、∠DEA都是五边形ABCDE的内角;n 边形共有n个内角.②外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角,如图中的∠DCF是五边形ABCDE的一个外角.n边形共有2n个外角,其中每个顶点处有两个相等的外角,这两个外角是对顶角.(4)多边形的对角线:多边形不相邻的两个顶点的连线组成的线段叫做多边形的对角线. 如图中,AC、AD是五边形ABCDE的两条对角线.教师问7:回想三角形的表示方法,多边形应如何表示?学生讨论回答并得出结论.多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.(出示课件7)教师问8:请分别画出下列两个图形各边所在的直线,你能得到什么结论?学生讨论回答,并得出结论:如图(2)这样,此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.(出示课件9)例:凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.师生共同解答如下:(出示课件10)解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种情况,如图所示.总结点拨:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.①从所截角的两边截,边数增加1.②从所截角的相邻两角的顶点截,边数减少1.③从所截角的一边及相邻角的顶点截,边数不变.2.动手画图,寻找多边形对角线的特征教师问9:三角形有对角线吗?为什么?学生回答:三角形没有对角线,因为三角形只有三个顶点,而这三个顶点是两两相邻的,它没有不相邻的顶点,所以没有对角线.教师问10:四边形有对角线,过四边形的一个顶点有几条对角线?学生画图并回答:过四边形的一个顶点有1条对角线.(如下图所示)教师问11:过五边形的一个顶点有几条对角线?学生回答:过五边形的一个顶点有2条对角线.(如下图所示)(出示课件13)教师问12:请画出下列图形从某一顶点出发的对角线的条数,并看一下边数与对角线的条数之间有何规律?多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数0 1 2 3 5 n-3分割出的三角形的个数1 2 3 4 6 n-2学生动手操作并回答(如上表数字)教师问13:每个多边形被过同一顶点的对角线分为几个三角形?学生观察并回答(如上表数字)(出示课件14)教师指导学生完成下列问题:(1)学生画一画画出下列多边形的全部对角线.(出示课件17)(2)观察下列图形,并阅读图形下面的相关文字,解答下列问题:教师问14:十边形有多少条对角线?n边形呢?(出示课件18)学生解答如下:(出示课件19)解:∵四边形的对角线条数为4×(4-3)×1=2.2=5.五边形的对角线条数为5×(5-3)× 12=9.六边形的对角线条数为6×(6-3)× 12∴十边形的对角线条数为10×(10-3)× 1=35.2n(n-3) .n边形的对角线条数为12教师问15:多边形一共有多少条对角线呢?学生讨论并回答,教师引导总结如下:(出示课件15)从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.n(n≥3)边形共有对角线n(n−3)条.2例2:过多边形的一个顶点的所有对角线的条数与这些对角线分割多边形所得三角形的个数的和为21,求这个多边形的边数.师生共同解答如下:(出示课件16)解:设这个多边形为n边形,则有(n-3)条对角线,所分得的三角形个数为n-2,∴n-3+n-2=21,解得n=13.答:该多边形的边数有13条.3.自主探索正多边形的概念及基本性质教师问16:观察下列图形,它们的边、角有什么特点?学生回答:它们的边都相等,它们的角也都相等.教师问17:像这样的多边形我们称为正多边形.请用自己的语言说明什么是正多边形?学生回答:各个角都相等,各条边都相等的多边形叫做正多边形.问题3:由定义可知,正多边形有什么性质?学生回答:正多边形的各个角都相等,各条边都相等.教师问18:下列多边形是正多边形吗?如不是,请说明为什么?(出示课件21)(四条边都相等)(四个角都相等)学生回答:都不是,第一个图形不符合四个角都相等;第二个图形不符合各边都相等.总结点拨:判断一个多边形是不是正多边形,各边都相等,各角都相等,两个条件必须同时具备.(三)课堂练习(出示课件24-27)1.下列多边形中,不是凸多边形的是()2. 九边形的对角线有()A. 25条B. 31条C. 27条D. 30条3. 把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形 B .五边形C.四边形D.三角形4. 若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是__________边形.5. 过八边形的一个顶点画对角线,把这个八边形分割成________个三角形.6. 过m边形的一个顶点有7条对角线,n边形没有对角线,k边形共有k条对角线,则(m-k)n为多少?参考答案:1.B2.C3.A4. 十三5.六6. 解:∵m=10,n=3,k=5.∴(m-k)n=(10-5)3=53=125.(四)课堂小结今天我们学了哪些内容:1.本节主要学习多边形及有关概念,多边形的分类和正多边形的概念及基本性质.2.本节涉及的思想方法是类比思想.(五)课前预习预习下节课(11.3.2)的相关内容。
第十一章三角形16个必考点全梳理(教案)
1.教学重点
-三角形的定义及分类:理解三角形的基本概念,掌握三角形的分类方法。
-重点举例:区分等腰三角形与等边三角形,识别锐角三角形、直角三角形和钝角三角形。
-三角形全等定理:掌握SSS、SAS、ASA、AAS全等定理。
-重点举例:通过实际操作,让学生理解全等三角形的性质,并能够运用全等定理解决具体问题。
-重心:三角形三边中线的交点
-外心:三角形三边垂直平分线的交点
-内心:三角形内角平分线的交点
-垂心:三角形三边高的交点
6.三角形面积计算公式
-底×高÷2
-海伦公式(已知三边长)
7.三角函数的定义及性质
-正弦(sin)
-余弦(cos)
-正切(tan)
-三角函数的周期性、奇偶性、单调性
8.解直角三角形
-利用正弦、余弦、正切函数求解
3.重点难点解析:在讲授过程中,我会特别强调三角形全等与相似定理、三角函数的定义和应用这两个重点。对于难点部分,我会通过图例和实际计算来帮助大家理解。
(三)实践活动
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的问题,如三角形全等的判定条件或三角函数在实际问题中的应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用三角板和量角器测量角度,演示三角函数的计算过程。
-难点举例:在实际应用问题中,学生可能难以将问题抽象为直角三角形模型,需要教师引导学生进行问题分析和模型构建。
四、教学流程
(一)导入新课
同学们,今天我们将要学习的是《三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过测量三角形面积或解直角三角形的情况?”(如测量旗杆高度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形的奥秘。
第十一章三角形教案
11.1 全等三角形一、学习目标1、知道什么是全等形、全等三角形及全等三角形的对应元素。
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。
3、能熟练找出两个全等三角形的对应角、对应边。
二、重点难点教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角。
三、合作探究1.观察p 2图案,指出这些图案中中形状与大小相同的图形 2.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板 、 完全一样. 3.获取概念形状与大小都完全相同的两个图形就是 .(要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.)即:全等形的准确定义:能够完全重合的两个图形叫做全等形. 推得出全等三角形的概念:对应顶点: 、对应角: 、 对应边: 。
“全等”符号: 读作“全等于” 导入新课将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB丙DCABE议一议:各图中的两个三角形全等吗?得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ . (注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻求全等的一种策略. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? 全等三角形的性质: , 。
四、精讲精练 精讲:例1、如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,• 说出这两个三角形中相等的边和角.DC A B OC ABEODCABE 例2、如图,已知△ABE ≌△ACD ,∠ADC=∠AEB , ∠B=∠C ,•指出其他的对应边和对应角.(1)全等三角形对应角所对的边是对应边;两个对应角所夹的 边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的 角是对应角.例3、已知如图△ABC ≌△ADE ,试找出对应边、对应角.精练(1) 下面是两个全等的三角形,按下列图形的位置摆放, (2) 指出它们的对应顶点、对应边、对应角(2)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边, 已知:30,43=∠=∠B A ,求ADC ∠的大小。
第十一章三角形教案
本章节核心素养目标紧密贴合新教材要求,注重培养学生的学科素养,提高其几何图形认识和运用、逻辑思维、实际问题解决及团队协作能力。
三、教学难点与重点
1.教学重点
-三角形的定义及其内角和定理:理解三角形的定义,掌握三角形内角和为180°的定理,并能运用到实际解题中。
举例:
a.在讲解三角形内角和定理的难点时,教师可通过以下方法帮助学生突破:
-引导学生通过折叠、拼接等动手操作,观察和验证三角形内角和定理。
-通过具体例题,如等腰三角形、直角三角形等,展示内角和定理的应用。
b.在讲解海伦公式的难点时,教师可以:
-通过图形或实际例子,解释海伦公式的推导过程。
-设计不同类型的练习题,让学生反复练习,掌握海伦公式的运用。
3.重点难点解析:在讲授过程中,我会特别强调三角形的内角和定理以及相似与全等三角形的判定这两个重点。对于难点部分,我会通过具体例题和图形比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形相关的实际问题,如计算不规则三角形的面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用三角板和直尺测量三角形边长,并计算面积。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
人教版数学八年级上册第11章三角形数学活动教学设计
4.情境教学:设计一些实际问题,让学生运用三角形知识解决问题,提高学生的应用意识。
5.课堂小结:对本节课的学习内容进行总结,巩固所学知识。
6.课后作业:布置不同难度的练习题,让学生在课后巩固所学知识,提高解题能力。
7.教学评价:通过课堂提问、课后作业、小组讨论等方式,全面评价学生的学习效果,关注学生的成长和进步。
(3)举例说明三角形在实际生活中的应用。
4.小组讨论题:请学生分组讨论以下问题,并在下一节课上汇报讨论成果:
(1)如何判断一个三角形是锐角三角形、直角三角形还是钝角三角形?
(2)三角形的中位线、角平分线、高、中线有哪些性质?
(3)结合实际例子,探讨三角形稳定性的影响因素。
5.实践活动:请学生利用课后时间,观察生活中常见的三角形物体,并记录下来。在下节课上,与同学们分享观察到的三角形物体及其特点。
四、教学内容与过程
(一)导入新课,500字
在这一环节,教师将通过生活中的实例,引导学生关注三角形,激发他们的学习兴趣。
1.教师展示一些生活中常见的三角形物体,如三角板、自行车三角架等,让学生观察并思考这些物体的共同特点。
2.学生分享观察到的三角形物体,教师适时引导,引出三角形的定义。
3.教师通过提问方式,让学生回顾之前学过的几何图形,为新课的学习做好铺垫。
学生对三角形的了解主要集中在基本概念和性质方面,但对于三角形的高级性质和综合应用还较为陌生。因此,在教学过程中,教师应关注以下几个方面:
1.学生在三角形分类、性质等方面的知识掌握程度,针对学生的薄弱环节进行有针对性的教学。
2.学生在解决实际问题时,对三角形知识的运用能力,培养他们从实际问题中抽象出数学模型的能力。
人教版八年级上数学教案《第11章三角形》
人教版八年级上数学教案《第11章三角形》一. 教材分析人教版八年级上数学第11章《三角形》是初中数学的重要内容,主要介绍了三角形的性质、分类以及三角形的证明。
本章内容为学生提供了丰富的探究材料,有助于培养学生的空间想象能力和逻辑思维能力。
在本章的学习中,学生需要掌握三角形的性质、分类方法以及三角形的证明技巧,为进一步学习几何知识打下坚实的基础。
二. 学情分析学生在学习本章内容之前,已经掌握了平面几何的基本知识,具备了一定的逻辑思维能力和空间想象能力。
但部分学生在解决几何问题时,仍存在对概念理解不深、证明过程不明确等问题。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。
三. 教学目标1.知识与技能:使学生掌握三角形的性质、分类方法及三角形的证明技巧。
2.过程与方法:培养学生运用几何知识解决实际问题的能力,提高空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学学科的兴趣,培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.教学重点:三角形的性质、分类方法及三角形的证明。
2.教学难点:三角形证明方法的灵活运用,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入三角形的概念,激发学生的学习兴趣。
2.引导发现法:引导学生发现三角形的性质和分类方法,培养学生的探究能力。
3.实践操作法:让学生通过动手操作,加深对三角形性质的理解。
4.小组讨论法:鼓励学生分组讨论,提高团队合作精神和沟通能力。
六. 教学准备1.教具准备:三角板、直尺、圆规等。
2.教学课件:制作相关的教学课件,以便进行多媒体教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的三角形实例,如自行车三角架、建筑物的三角形结构等,引导学生关注三角形在生活中的应用,激发学生的学习兴趣。
同时,提问学生:“你们对三角形有哪些了解?”从而引出本节课的主题。
2.呈现(10分钟)教师简要介绍三角形的定义、性质和分类方法,通过示例讲解三角形的基本概念,如三角形的边、角、三角形的中线、高线等。
《第十一章三角形章起始课》教案
学生小组讨论环节,大家围绕三角形在实际生活中的应用展开了热烈的讨论。我在这个过程中积极引导学生,提出一些开放性问题,帮助学生开拓思维。从成果分享来看,学生们对于三角形的应用有了更深入的理解。但我也发现,有些学生在讨论中较为沉默,可能是因为他们对知识点掌握不够自信。因此,我需要在课后多关注这些学生,帮助他们弥补知识漏洞。
-举例:通过实际操作,让学生尝试用三条线段组成三角形,加深对三角形基本性质的理解。
2.教学难点
a.三角形的内角和定理的应用:学生在理解内角和定理的基础上,需要学会将其应用于实际问题,如角度求解、证明等。
-举例:给出一个已知两个内角的三角形,求第三个内角的度数;或通过已知角度关系,证明三角形类型。
b.三角形分类的识别:学会区分不同类型的三角形(如等边三角形、等腰三角形、直角三角形等),并能运用其性质解决问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由三条线段首尾相连围成的平面图形。它在几何学中具有重要地位,广泛应用于日常生活和各类工程领域。
2.案例分析:接下来,我们来看一个具体的案例。例如,在桥梁设计中,三角形结构因其稳定性被广泛应用。通过这个案例,了解三角形在实际中的应用。
《第十一章三角形章起始课》教案
一、教学内容
《第十一章三角形章起始课》教案,本节课将围绕以下内容展开:
1.教材章节:人教版初中数学七年级下册第十一章第一节《三角形的认识》。
2.内容列举:
人教版八年级数学上册第十一章三角形《三角形章起始课》优秀教学案例
(一)知识与技能
1.理解三角形的概念,掌握三角形的性质和分类,了解三角形的基本判定方法。
2.能够运用三角形的性质和判定方法解决实际问题,提高学生的应用能力。
3.培养学生的空间想象能力,能够画出符合特定条件的三角形。
4.学会使用三角板和量角器等工具,提高学生的动手操作能力。
(二)过程与方法
人教版八年级数学上册第十一章三角形《三角形章起始课》优秀教学案例
一、案例背景
本案例背景以人教版八年级数学上册第十一章三角形《三角形章起始课》为例,旨在探索和实践如何开展三角形章节的教学。本节课的主要内容包括三角形的概念、性质和分类,以及三角形的判定方法。对于八年级的学生来说,质。
5.作业小结:教师布置了具有实际意义和挑战性的作业,并要求学生进行自我评价和小组评价。这种作业小结的方式使得学生能够在实践中运用所学知识,巩固学习成果,提高学生的应用能力。
1.利用多媒体展示三角形在实际生活中的应用场景,如建筑设计、物理学中的力学问题等,让学生感受到三角形知识的重要性。
2.设计有趣的数学问题,如三角形的秘密、三角形王国的冒险等,激发学生的学习兴趣,引导学生主动探究。
3.通过设置疑问,让学生思考三角形与生活、其他学科的联系,激发学生的求知欲。
(二)讲授新知
1.通过观察、操作、交流和思考,让学生经历三角形的发现、探索和归纳的过程,培养学生的自主学习能力。
2.运用多媒体教学资源,展示三角形的实际应用场景,增强学生的直观感受,提高学生的理解能力。
3.引导学生进行小组合作交流,培养学生的团队协作能力和沟通能力。
4.鼓励学生提出问题,培养学生的质疑精神和探究能力。
在教学过程中,我将以提高学生的数学素养和思维能力为目标,注重知识的系统性和方法的多样性。通过启发式教学、讨论式教学和探究式教学等方法,激发学生的学习兴趣,引导学生主动参与,培养学生的创新精神和实践能力。同时,关注学生的情感体验,充分调动学生的积极性、主动性和创造性,使学生在轻松愉快的氛围中掌握三角形的知识。
人教版八年级数学上册第11章《三角形》教学设计
人教版八年级数学上册第11章《三角形》教学设计一. 教材分析人教版八年级数学上册第11章《三角形》是学生在学习了平面几何基本概念和图形的基础上,进一步研究三角形的性质和分类。
本章内容包括三角形的概念、三角形的分类、三角形的内角和、三角形的边长关系等。
通过本章的学习,学生能够理解三角形的性质,掌握三角形的分类方法,运用三角形的性质解决实际问题。
二. 学情分析八年级的学生已经具备了一定的几何知识,对平面几何的基本概念和图形有一定的了解。
但是,对于三角形的性质和分类,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,逐步理解和掌握三角形的性质和分类方法。
三. 教学目标1.知识与技能:使学生理解三角形的概念,掌握三角形的分类方法,了解三角形的内角和定理,能够运用三角形的性质解决实际问题。
2.过程与方法:培养学生观察、操作、思考、交流的能力,提高学生的几何思维能力。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学与生活的联系,培养学生的合作意识。
四. 教学重难点1.重点:三角形的性质和分类方法,三角形的内角和定理。
2.难点:三角形的性质和分类方法的运用,三角形的内角和定理的理解。
五. 教学方法1.情境教学法:通过生活情境和几何图形,引导学生观察和思考三角形的性质和分类。
2.合作学习法:引导学生进行小组讨论和交流,共同探索三角形的性质和分类方法。
3.引导发现法:教师引导学生发现问题,学生通过操作和思考,发现三角形的性质和分类方法。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体课件。
2.学具:三角板、直尺、圆规、练习本。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的三角形图形,如自行车三角架、自行车的三角铁等,引导学生观察和思考三角形的特征。
2.呈现(10分钟)教师通过多媒体课件,呈现三角形的定义和性质,引导学生理解和掌握三角形的概念。
3.操练(10分钟)教师提出一些关于三角形性质的问题,如三角形的内角和是多少?等,学生通过操作和思考,回答问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1 全等三角形一、学习目标1、知道什么是全等形、全等三角形及全等三角形的对应元素。
2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。
3、能熟练找出两个全等三角形的对应角、对应边。
二、重点难点教学重点:全等三角形的性质。
教学难点:找全等三角形的对应边、对应角。
三、合作探究1.观察p 2图案,指出这些图案中中形状与大小相同的图形 2.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板 、 完全一样. 3.获取概念形状与大小都完全相同的两个图形就是 .(要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.)即:全等形的准确定义:能够完全重合的两个图形叫做全等形. 推得出全等三角形的概念:对应顶点: 、对应角: 、 对应边: 。
“全等”符号: 读作“全等于” 导入新课DCABO将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .甲DCABFE 乙DCAB丙DCABE议一议:各图中的两个三角形全等吗?得出: ≌△DEF ,△ABC ≌ ,△ABC ≌ . (注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻求全等的一种策略. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? 全等三角形的性质: , 。
四、精讲精练 精讲:例1、如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,• 说出这两个三角形中相等的边和角.例2、如图,已知△ABE ≌△ACD ,∠ADC=∠AEB , ∠B=∠C ,•指出其他的对应边和对应角.(1)全等三角形对应角所对的边是对应边;两个对应角所夹的BCCAB EO边也是对应边.(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.例3、已知如图△ABC ≌△ADE ,试找出对应边、对应角.精练(1) 下面是两个全等的三角形,按下列图形的位置摆放, (2) 指出它们的对应顶点、对应边、对应角(2)如图,,ACD ABE ∆≅∆AB 与AC ,AD 与AE 是对应边, 已知:30,43=∠=∠B A ,求ADC ∠的大小。
D ACDCADADBDBD五、课堂小结:全等三角形的性质全等三角形的对应边相等、对应角相等。
六、作业:教材:第四页习题:第1题,第2题11.2三角形全等的判定(1)一、教学目标1、三角形全等的“边边边”的条件.2、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.二、重点难点教学重点:三角形全等的条件.教学难点:寻求三角形全等的条件.三、合作探究1、复习:什么是全等三角形?全等三角形有些什么性质?如图,△ABC≌△A′B′C′那么相等的边是:C'B'A'A相等的角是: 2、合作探究(周围同学配合) 三组对应边相等的两个三角形全等已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? a .作图方法:b .以小组为单位,把剪下的三角形重叠在一起,发现 ,•这说明这些三角形都是 的.c .归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”.d 、用数学语言表述: 在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌ 用上面的规律可以判断两个三角形 .判断 ,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据. 四、精讲精练 1、精讲例1、如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .证明的书写步骤:①准备条件:证全等时要用的间接条件要先证好;C 'B 'A 'CBA②三角形全等书写三步骤:A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。
例2、尺规作图。
已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB2、精练1、如图,AB=AE,AC=AD,BD=CE,求证:△ABC ≌△ADE。
2、已知:如图,AD=BC,AC=BD.求证:∠OCD=∠ODC五、课堂小结: SSS六、作业:1、第15页习题11.2 1-2 2、第16页第9题CBA11.2三角形全等的判定(2)一、学习目标1、掌握三角形全等的“S AS ”条件,能运用“S AS ”证明简单的三角形全等问题 2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 3、积极投入,激情展示,做最佳自己。
二、重点难点教学重点:三角形全等的条件. 教学难点:寻求三角形全等的条件. 三、合作探究 1、复习思考(1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定(一)的内容是什么?(2)上节课我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;三条边对应相等;两角和一边对应相等;两边和一角对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边C 'B 'A 'C B ADCBA21及其一边的对角两种情况。
2、探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试 已知:△ABC求作:'''A B C ∆,使''A B AB =,''B C BC =,B B ∠='∠(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完全重合? (3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(二) 在△ABC 和'''A B C ∆中,∵''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌ 3、探究二:两边及其一边的对角对应相等的两个三角形是否全等? 通过画图或实验可以得出:不全等 四、精讲精练 1、精讲例1 如图,AC=BD ,∠1= ∠2,求证:BC=AD.DCBADCBA例2、 如图,AC=BD,BC=AD,求证:∠C=∠D2精练练习1、 如图,AC=BD,BC=AD,求证:∠A=∠B练习2、课本第10页第2题练习3、如图,已知OA=OB,应填什么条件就得到 △AOC ≌△BOD(允许添加一个条件)OACDB五、课堂小结SSS、SAS六、作业:第15页习题11.2 3-4 第16页第10题能力提升:(学有余力的同学完成)如图,已知CA=CB,AD=BD,M、N分别是CA、CB的中点,求证:DM=DN11.2三角形全等的判定(3)一、学习目标1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3、积极投入,激情展示,体验成功的快乐。
二、重点难点教学重点:已知两角一边的三角形全等探究.教学难点:灵活运用三角形全等条件证明.三、合作探究1、复习思考(1).到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?(2).在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2、探究一:两角和它们的夹边对应相等的两个三角形是否全等?(1)动手试一试。
已知:△ABCDABFE求作:△'''A B C ,使'B ∠=∠B, 'C ∠=∠C ,''B C =BC ,(不写作法,保留作图痕迹) (2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完全重合? (3)归纳:由上面的画图和实验可以得出全等三角形判定(三):两角和它们的夹边对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(三) 在△ABC 和'''A B C ∆中,∵'B B BC C ∠=∠⎧⎪=⎨⎪∠=⎩∴△ABC ≌ 3、探究二。
两角和其中一角的对边对应相等的两三角形是否全等(1)如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用前面学过的判定方法来证明你的结论吗?(2)归纳;由上面的证明可以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形 (可以简写成“ ”或“ ”) (3)用数学语言表述全等三角形判定(四)C 'B 'A 'C B A例2、尺规作图。
已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB2、精练1、如图,AB=AE,AC=AD,BD=CE,求证:△ABC ≌△ADE。
2、已知:如图,AD=BC,AC=BD.求证:∠OCD=∠ODC五、课堂小结: SSS六、作业:1、第15页习题11.2 1-2 2、第16页第9题11.3角的平分线的性质一、学习目标1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.2、能运用角的平分线性质定理解决简单的几何问题.3、极度热情、高度责任、自动自发、享受成功。
二、重点难点教学重点:掌握角的平分线的性质定理教学难点: 角平分线定理的应用。
三、合作探究、1、复习思考什么是角的平分线?怎样画一个角的平分线?2.OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论PD PE第一次第二次第三次OA BED C P3、命题:角平分线上的点到这个角的两边距离相等. 题设:一个点在一个角的平分线上 结论:这个点到这个角的两边的距离相等结合第2题图形请你写出已知和求证,并证明命题的正确性解后思考:证明一个几何命题的步骤有那些?4、用数学语言来表述角的平分线的性质定理:如右上图,∵OC 是∠AOB 的平分线,点P 是 OC 上的一点,PA ⊥OB 、PD ⊥OA ∴ PD=PE四、精讲精练 五、 1、精讲1、如图所示OC 是∠AOB 的平分线,P 是OC 上任意一点, 问PE=PD?为什么?2、如图:在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EBD2、精练1、在Rt △ABC 中,BD 平分∠ABC , DE ⊥AB 于E ,则 ⑴图中相等的线段有哪些?相等的角呢? ⑵哪条线段与DE 相等?为什么? ⑶若AB =10,BC =8,AC =6, 求BE ,AE 的长和△AED 的周长。