微波技术习题问题详解

合集下载

微波技术基础课后参考答案 (田加胜版)

微波技术基础课后参考答案 (田加胜版)

微波技巧基本课后习题答案1 第一章1.7 终端反射系数0050505050125050501005025L L L Z Z j j j j Z Z j j j ------Γ=====+-+--,125L j -Γ==终端驻波比1115LL L ρ+Γ===-Γ; 000505050tantan 504()5010(2)8tan 250(5050)tan 4L in L j j Z jZ d Z Z j Z jZ d j j j πβλπβ-++====-+++-. 1.11 终端反射系数00250-50011=-=250+50033j L L L Z Z e Z Z π-Γ==+,终端反射系数模值13L Γ=,相角=L φπ.依据行驻波状况时电压的变更纪律可知:=L φπ时,若1n =,则4234L n φλπλλ+=,电压处于波腹点,是以在输入端电压处于波腹点.max (1)500L L U U V +=+Γ=,所以1500=3754L U V V +=,min (1)250L L U U V +=-Γ=;max500(1)1500L L U IA Z +=+Γ==,min250(1)0.5500L L U IA Z +=-Γ==. 因为0L R Z <,负载处为电压波节点;驻波比11+1+3==211-1-3L L ρΓ=Γ,0min 250Z R ρ==Ω,max 01000R Z ρ==Ω.1.13 (1)负载1z 处的反射系数122821()0.5pp j j z L L L z e e j j λπλβ-⋅⋅-Γ=Γ=Γ=-Γ=,是以0.5L Γ=-.随意率性不雅察点z 处的反射系数22()0.5j z j z L z e e ββ--Γ=Γ=-;等效阻抗2021()10.5()501()10.5j zj zz e Z z Z z e ββ--+Γ-==-Γ+.(2)已知0L L L Z Z Z Z -Γ=+,050Z =Ω;(1)中求得0.5L Γ=-,可解出50/3L Z =Ω.(3)由等效阻抗公式2210.5()5010.5j zj ze Z z e ββ---=+,取z=0,得10.55050/310.5L Z -==Ω+. 1.14 min122()444422LLLl φλπφφλππββππΓΓΓ=+=+=+, 所以min1sin()sin()cos()222LLl φφπβΓΓ=+=,min1cos()cos()sin()222L L l φφπβΓΓ=+=-.或:在min1l 处的输入阻抗为()00min1min100min1tan tan L L Z Z jZ l Z l Z Z jZ l βρβ+==+所以()0min10min1tan tan L L Z jZ l Z jZ l βρβ+=+ 1.15(a )终端短路:0L Z =,2200()j zj zL L Z Z z e e Z Z ββ---Γ==-+,23223()12j e πλλλ-⋅⋅Γ=-=-,033()tan()022Z jZ λβλ=⋅=或031()32()0321()2Z Z λλλ+Γ==-Γ. (b )终端开路:L Z =∞,2200()j zj zL L Z Z z e e Z Z ββ---Γ==+,2142551()5j j e e πλπλλ-⋅⋅-Γ==,0112()cot()cot 555Z jZ j λβλπ=-⋅=-. (c )虚线右半部分:负载为0Z ,长度为5λ传输线的输入阻抗000in 000000tan tan tan tan L L Z jZ d Z jZ dZ Z Z Z Z jZ d Z jZ dββββ++===++;是以,从最左端看去,负载为两个0Z 并联,等效负载阻抗为02Z .传输线输入端阻抗00in 0000tan 242tan 24Z jZ Z Z Z Z Z j λβλβ+==+, 反射系数002204000112()=-=332j j zj L L Z Z Z Z z ee e Z Z Z Z λββπ-----Γ==++. (d )终端短路的/4λ传输线输入阻抗为∞,终端匹配的/2λ传输线输入阻抗为0Z ,所以支节点处等效输入阻抗为00||Z Z ∞=;再经/2λ阻抗变换得输入端输入阻抗为0Z ,反射系数-j200200e =0Z Z Z Z λβ-Γ=+;(e )终端阻抗02Z 经由两个/2λ阻抗变换之后输入阻抗仍为02Z ,另一歧路在支节点处输入阻抗仍为0/2Z ,所以支节点处等效输入阻抗为0002Z ||Z /22Z /5=;再经/4λ阻抗变换得输入端输入阻抗为20005/22/5Z Z Z =,反射系数-j2-j 004002/533e =-e 2/577Z Z Z Z λβπ-Γ==+; (f )主线上第一节点处输入阻抗为0Z ,支线支节点处00in 0000tan 8tan 8Z jZ Z Z Z Z jZ λβλβ+==+,支节点等效输入阻抗000Z ||Z Z /2=,输入端等效阻抗仍为0/2Z ,反射系数-j200200/21e =/23Z Z Z Z λβ-Γ=-+;(g )支节点处输入阻抗0002Z ||2Z Z =,输入端输入阻抗0Z ,反射系数-j200200e =0Z Z Z Z λβ-Γ=+.1.160025-j25-5025251=0.20.425-j25+5075253L L L Z Z j jj Z Z j j-----Γ====--+--,1+2.6171-2ρΓ==≈Γ,距离负载0.375λ处阻抗in003tan252550850350(2525)tan825755050(2)2525LLLLZ jZ Z jZ j jZ Z ZZ jZ j jZ jZjjjλβλβ+---===---+-==--11125255050LY jj==+-,LY的实部等于01=50Y,依据传输线导纳公式:依据单支节在传输线上的匹配前提:()inY z的实部应为01=50Y,是以:()2211tan1zβ=-+,tan0zβ=或2当tan0zβ=时,单支线在主线0d=处(即终端负载处),此处()115050inY z j=+.是以短路支节导纳为11-=50j50tanjdβ,所以tan1dβ=,支节长度/8lλ=.当tan2zβ=时,单支线在主线arctan22dλπ=处,此处()115025inY z j=-.所以短路支节导纳为11=25j50tanjdβ,所以tan0.5dβ=-,支节长度()arctan0.52lλπ=-.1.17 已知1+51-ρΓ==Γ,所以-12+13ρρΓ==;相邻电压波节点之间的距离=452cmλ,所以=90cmλ;第一电流波腹点(电压波节点)设为min1l,则min12-LlβφπΓ=,所以min1=44LlφλλπΓ+,由=90cmλ,min1=20cml得-9LπφΓ=,所以923LjjL Le eπφΓ-Γ=Γ=,进而可求出9921+13=250725.19595.271213j LL jL e Z Z j e ππ--+Γ=≈-Ω-Γ-. 1.21(1)将负载阻抗归一化得30150.60.350L j z j +==+,对应圆图上点A;在等反射系数圆上往电源偏向顺时针扭转/6λ(120度)得到点B;读取B 点的阻抗为91.5493+j13.4512Ω; (2)将输入阻抗归一化得6055111+j 6012L j z +==,对应圆图上点A;从A点做OA 射线,得角度为65.3785;从A 点做等反射系数圆与X 轴右半轴交点,读出=2.4ρ;依据-10.4167+1ρρΓ=≈; (3)在X 轴左半轴读出1==0.42.5ρ的地位,对应圆图点A;在圆图等反射系数圆上,往负载偏向逆时针扭转0.15λ(108度),读出归一化负载阻抗为0.88-j0.91L z =,0(0.88-j0.91)52.854.6L Z Z j ==-Ω.1.22 将负载阻抗归一化0.5+j0.5L z =,对应圆图点A;从点A 沿电源偏向扭转2圈,得到'BB 处输入阻抗'0.50.5BB z j =+,''05050BB BB Z Z z j =⋅=+Ω’;再将'BB z 归一化对应圆图上点B,扭转4圈得到'0.250.25AA z j =+,''0200(0.250.25)5050AA AA Z Z z j j =⋅=⋅+=+Ω.2 第二章2.6 7.214a cm =,3.404b cm =,矩形波导的截止波长c λ=;对于10TE 模,m=1,n=0,214.428c a cm λ===,83310 2.0792914.42810c c cf GHz λ-⨯==≈⨯,故c f f <,不消失10TE 模; 对于01TE 模,m=0,n=1,2 6.808c b cm λ===,83310 4.406586.80810c c cf GHz λ-⨯==≈⨯,c f f <,也不消失01TE 模; 显然11TE 和22TE 模的截止频率大于10TE 和01TE ,也不成能消失11TE 模和22TE 模.2.7 10a mm =,6b mm =,对10TE 模,220c a mm λ===;对于01TE 模,212c b mm λ===;对于11TE 模,210.29c mm λ-===≈.2.9 22.8a mm =,10.15b mm =,工作波长12mm λ=.10TE 模:245.6c a mm λλ==>,可以消失; 01TE 模:220.3c b mm λλ==>,可以消失; 02TE模:10.15c b mm λλ===<,不成以消失;11TE (11TM )模:18.5454c mm λλ===≈>,可以消失;12TE (12TM ):9.9075c mm λλ===≈<,不消失;21TE (21TM )模:15.1641c mm λλ===≈>,可以消失;20TE模:22.8c a mm λλ===>,可以消失; 30TE模:215.23c a mm λλ===>,可以消失; 40TE模:111.42c a mm λλ===<,不成以消失; 31TE (31TM ):12.167c mm λλ===≈>,可以消失.2.15 圆波导的主模为11TE 模,其截止波长3.41 3.41310.23c R cm cm λ==⨯=;截止频率892310 2.931010.2310c f Hz -⨯==⨯⨯;波导波长2247.426w cm λ--====≈;波形阻抗111787TE Z ===Ω. 2.16 11TE 模 3.41 3.413c R cm cm λ==>,01TM 模 2.61 2.613c R cm cm λ==<,所以只能传输11TE 模.2.18 β=因为波在两波导中传输时β和K 都相等,所以截止波束c K 也相等,即两个波导中截止波长相等.矩形波导中10TE 模c K aπ=,22c ca K πλ==,圆波导01TE 模 1.64c R λ=,所以圆波导半径327.11108.671.64m R mm -⨯⨯=≈.2.21 衰减20lg 100c lL edB α-=-=,求出5ln1011.513115.13/0.1c dB m l α--===;已知8.686280)c παλ=⋅--,tan 0.001δ=,8931031010m cm λ⨯==⨯,由以上解得 3.00 3.41c cm R λ≈=,所以圆波导的半径0.88R cm =. 3 第三章3.5 微带线传输的主模是准TEM 模;现实上微带传输线的准TEM 模的场部分在空气中,部分在介质中,一般用等效介电常数eff ε来暗示这种情形对传输特征的影响.eff ε的界说如下:eff CC ε=,0C 为无介质填充时微带传输线单位长度的散布电容,C 为现实上部分填充介质时微带传输线的单位长度上的散布电容.介质填充系数1/2110[1(1)]2h q w-=++.当/1w h 时,1(1)eff r q εε≈+-.3.10 w/h=0.95<1,疏忽导带厚度,00860ln()460ln(8.4210.2375)129.5125h w Z w h=+=+=Ω,1/2110[1(1)]0.64732h q w-=++=,1(1)10.6473(9.51) 6.5eff r q εε≈+-=+⨯-=;050.79Z ===Ω. 4 第四章4.1 微波谐振器和低频谐振器回路重要有3点不合:1)LC 回路为集总参数电路,微波谐振器属于散布参数电路,所以LC 回路能量只散布在LC 上,而微波谐振器的能量散布在全部腔体中;2)LC 回路在L 及C 一准时,只有一个谐振频率,而微波谐振器有无穷多个谐振频率,这称为微波谐振器的多谐性;3)微波谐振腔储能多,损耗小,是以微波谐振器品德因数很高,比LC 回路的Q 值高许多. 4.40.1mλ=,3a 10m-=,21.510b m-=⨯,特征阻抗060ln 366bZ a=≈Ω; 810r 231022/ 1.885100.1r f v πωππλ⨯⨯===≈⨯;10110-9-521l 220.110.1=2 1.88510106621.2810+p 510r r r tg p CZ tg p mλλπωπ---=++⨯⨯⨯≈⨯⨯⨯. 4.9已知r f =f 3r GHz =时,有9310⨯=;f 6r GHz =时,有9610⨯=解得a 6.3cm =≈,l 8.2cm =≈,b<a. 4.12 l 10cm =时,l/R=2<2.1,最低谐振模式为010TM 模,谐振波长2.61 2.61513.05R cm cmλ==⨯=;l15cm=时,l/R=3>2.1,最低谐振模式为111TE模,谐振波长14.8cm λ=≈.。

微波技术习题解答(部分)

微波技术习题解答(部分)

率的波,而是一个含有多种频率的波。这些多种频率成分构成一个“波群”
又称为波的包络,其传播速度称为群速,用 vg 表示,即 vg v 1 c 2
第三章 微波传输线
TEM波:相速
vp
1 v
相波长
p
2
v f
群速 vg vp v
即导波系统中TEM波的相速等于电磁波在介质中的传播速度,而相波长 等于电磁波在介质中的波长(工作波长)
插入衰减 A
A
1 S21 2
A%11 A%12 A%21 A%22 2 4
对于可逆二端口网络,则有
A
1 S21 2
1 S12 2
第四章 微波网络基础
插入相移 argT arg S21
对于可逆网络,有 S21 S12 T ,故
T T e j S12 e j12 S21 e j21
何不同?
答案:截止波长:对于TEM波,传播常数 为虚数;对于TE波和TM波,对 于一定的 kc 和 、 ,随着频率的变化,传播长数 可能为虚数,也可能为实
数,还可以等于零。当 0 时,系统处于传输与截止状态之间的临界状态,此 时对应的波长为截止波长。
当 c 时,导波系统中传输该种波型。 当 c 时,导波系统中不能传输该种波型。
第三章 微波传输线
3-3 什么是相速、相波长和群速?对于TE波、TM波和TEM波,它们的相速 相波长和群速有何不同?
答案: 相速 vp 是指导波系统中传输的电磁波的等相位面沿轴向移动的速
度,公式表示为
vp
相波长 p
是等相位面在一个周期T内移动的距离,有
p
2
欲使电磁波传输信号,必须对波进行调制,调制后的波不再是单一频
T S21 0.98e j 0.98

微波技术习题解

微波技术习题解

《微波技术》习题解(一、传输线理论)(共24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--机械工业出版社《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著习 题 解一、 传输线理论1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。

若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需s ,求该电缆的特性阻抗Z 0 。

[解] 脉冲信号的传播速度为tlv 2=s /m 102101.010286⨯=⨯⨯=-该电缆的特性阻抗为 00C L Z =00C C L =lC εμ=Cv l =8121021060010⨯⨯⨯=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。

[解] (本题应注明z 轴的选法)如图,z 轴的原点选在负载端,指向波源。

根据时谐场传输线方程的通解()()()()()())1()(1..210...21.⎪⎪⎩⎪⎪⎨⎧+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i zj z j r i zj z j ββββ 。

为传输线的特性阻抗式中02.22.1;;,Z U A U A r i ==:(1),,212.2.的瞬时值为得式设ϕϕj r j i e U U eU U -+==⎪⎩⎪⎨⎧+--++=+-+++=-+-+)()cos()cos([1),()()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ϕβωϕβωϕβωϕβω1-2 均匀无耗传输线,用聚乙烯(εr =作电介质。

(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =,求线间距D 。

(2) 对Z 0 =75Ω的同轴线,内导体半径 a =,求外导体半径 b 。

[解] (1) 对于平行双导线(讲义p15式(2-6b ))0C L Z =rD r D ln ln πεπμ=r D ln 1εμπ=r D rln 120ε=300= Ω 得52.42=rD, 即 m m 5.256.052.42=⨯=D (2) 对于同轴线(讲义p15式(2-6c ))Z LZ 0○ ~ z补充题1图示0C L Z =dD d D ln 2ln2πεπμ=d D r ln 60ε=ab r ln 60ε=75= Ω 得52.6=ab, 即 mm 91.36.052.6=⨯=b 1-3 如题图1-3所示,已知Z 0=100Ω, Z L =Z 0 ,又知负载处的电压瞬时值为u 0 (t)=10sin ωt (V), 试求: S 1 、S 2 、S 3 处电压和电流的瞬时值。

《微波技术》习题解(一、传输线理论)

《微波技术》习题解(一、传输线理论)

《微波技术》习题解(一、传输线理论)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII机械工业出版社《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著习 题 解一、 传输线理论1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。

若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需0.1s ,求该电缆的特性阻抗Z 0 。

[解] 脉冲信号的传播速度为tlv 2=s /m 102101.010286⨯=⨯⨯=-该电缆的特性阻抗为 00C L Z =00C C L =l C εμ=Cv l=8121021060010⨯⨯⨯=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。

[解] (本题应注明z 轴的选法)如图,z 轴的原点选在负载端,指向波源。

根据时谐场传输线方程的通解()()()()()())1()(1..210...21.⎪⎪⎩⎪⎪⎨⎧+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i zj z j r i zj z j ββββ 。

为传输线的特性阻抗式中02.22.1;;,Z U A U A r i ==:(1),,212.2.的瞬时值为得式设ϕϕj r j i e U U eU U -+==⎪⎩⎪⎨⎧+--++=+-+++=-+-+)()cos()cos([1),()()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ϕβωϕβωϕβωϕβω1-2 均匀无耗传输线,用聚乙烯(εr =2.25)作电介质。

(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =0.6mm ,求线间距D 。

(2) 对Z 0 =75Ω的同轴线,内导体半径 a =0.6mm ,求外导体半径 b 。

微波技术习题答案3

微波技术习题答案3

3-1 一根以聚四氟乙烯 2.10r ε=为填充介质的带状线,已知其厚度b =5mm ,金属导带厚度和宽度分别为0t =、W =2mm ,求此带状线的特性阻抗及其不出现高次模式的最高频率。

解: 由于/2/50.40.35W b ==>,由公式20(0.35/)eW Wb b W b ⎧=-⎨-⎩ /0.35/0.35W b W b <> 得中心导带的有效宽度为:2e W W m m ≈=,077.3Z ==Ω带状线的主模为TEM 模,但若尺寸不对也会引起高次模,为抑止高次模,带状线的最短工作波长应满足:1010m ax (,)cT E cT M λλλ>102 5.8c T E W m m λ== mmbr cTM5.14210==ελ所以它的工作最高频率GHzc f 20105.1410338=⨯⨯==-λ3-2 对于特性阻抗为50Ω的铜导体带状线,介质厚度b =0.32cm ,有效相对介电常数2.20r ε=,求线的宽度W 。

若介质的损耗角正切为0.001,工作频率为10GHz ,计算单位为dB /λ的衰减,假定导体的厚度为t =0.01mm 。

解:00)74.2120==<和030)0.4410.830x π=-=,所以 由公式00,1200.85120x Wb ⎧<⎪=⎨->⎪⎩其中,300.441x =-计算宽度为(0.32)(0.830)0.266W b x cm ===。

在10GHz ,波数为1310.6k mc-==由公式)(/2tan 波TEM m Np k d δα=介电衰减为mNp k d /155.02)001.0)(6.310(2tan ===δα在10GHz 下铜的表面电阻为0.026s R =Ω。

于是,根据公式300002.710120,30()/0.16120,s r cs R Z A b t N p m R B Z b επα-⎧⨯<⎪-⎪=⎨>⎪⎪⎩其中2121ln ()W b tb t A b tb tt π+-=++--0.414141(0.5ln)(0.50.7)2bt W B W t Wtππ=++++得出的导体的衰减为mNp A t b Z R r s c /122.0)(30107.203=-⨯=-πεα因为 4.74A =。

廖承恩《微波技术基础》习题解答(最全的版本)

廖承恩《微波技术基础》习题解答(最全的版本)

所以可以得到 Z L = Z 0
又因为当电压最小点时,电流为最大点,即
kh da
课 后
Z L + Z 0 thγd Z 0 + Z L thγd Z L + jZ 0 tgβ d Z 0 + jZ L tgβ d Z in (d ) − jZ 0 tgβ d Z 0 − jZ in (d )tgβ d
Z =Z0 证明:对于无耗线而言 L
kh da
课 后
Z0 =
60
答 案
εr
ln
60
b 60 0.75 = ln = 65.9Ω a 1 0.25
=2.1
1
L1C1
=
1
µε r ε 0
1
2.1
sc Zin (d) −Zin (d) ZL = Z (d) oc Zin (d) −Zin (d) oc in
(d=l-z,如图,d 为一新坐标系, l=λ/4)
当 z=0,即 d=l 时 Vin=450V 所以 | V (l ) |=| V L+ e j β λ / 4 [1 + ΓL e −2 j β λ / 4 ] |= 450V
由于行波状态下沿线电压和电流振幅不变,因而 V0+=Vin=450V 而 I0+=V0+/Z0=1A 所以 AB 段的电压、电流、阻抗表达式为
kh da
课 后
V0+ − j β z e Z0
(图) 解:首先在 BC 段,由于 Z0=Z01=600Ω,ZL=400Ω 且因为 d=λ/4 所以在 BB’处向右看去,Zin=Z012/ZL=6002/400=900Ω 又由于 BB’处有一处负载 R=900Ω,所以对 AB 段的传输线来说 终端负载为 ZL’=Zin//R=450Ω 所以对 AB 段的等效电路为

廖承恩《微波技术基础》习题解答(最全的版本)

廖承恩《微波技术基础》习题解答(最全的版本)
| V (d ) |=| VL+ | [1+ | ΓL |2 +2 | ΓL | cos(Φ L − 2 βd )]1/ 2 = 450[10 / 9 − 2 / 3 cos(2πd / λ )]1 / 2 | I ( d ) |=| VL+ | [1+ | ΓL |2 −2 | ΓL | cos(Φ L − 2 βd )]1 / 2 = 450[10 / 9 + 2 / 3 cos(2πd / λ )]1 / 2 | Z in (d ) |=| V ( d ) / I (d ) |
(2) (3)
(4)
sc oc 当 Z in (d ) = j100Ω , Z in (d ) = − j 25Ω , Z in (d ) = 75∠30°Ω 时
1562 . 5 +1875 × 75 ×
3 + 62 . 5 j 2
sc oc 2-6 在长度为 d 的无耗线上测得 Z in (d ) = j50Ω , Z in (d ) = − j 50Ω ,接 实
第二三四六七章习题解答 第二章习题解答
2-1 某双导线的直径为 2mm,间距为 10cm,周围介质为空气,求 其特性阻抗。某同轴线的外导体内直径为 23mm,内导体外直径为 10mm, ,求其特性阻抗;若在内外导体之间填充εr 为 2.25 的 介 质 , 求其特性阻抗。
解:双导线:因为直径为 d=2mm=2×10-3m 间距为 D=10cm=10-1m 所以特性阻抗为
ZL = Z0
2 — 12 画出图 2— 1 所示电路沿线电压、电流和阻抗的振幅分布图,
所以 ΓL =
Z L '− Z 02 450 − 450 = =0 Z L '+ Z 02 450 + 450

微波原理习题答案

微波原理习题答案

微波原理习题答案微波原理习题答案微波技术作为一种高频电磁波技术,已经广泛应用于通信、雷达、医疗等领域。

学习微波原理是理解和应用微波技术的基础。

下面将针对一些微波原理的习题进行解答,帮助读者更好地掌握相关知识。

1. 问题:什么是微波?答案:微波是一种频率高于射频、低于红外线的电磁波。

它的频率范围一般为300MHz到300GHz。

相比于射频信号,微波信号具有更高的频率和更短的波长。

2. 问题:微波与直流信号有什么不同?答案:微波与直流信号在频率和传输方式上存在明显的差异。

直流信号的频率非常低,一般为0Hz,而微波信号的频率较高。

此外,微波信号一般采用空间传输,而直流信号主要通过导线传输。

3. 问题:为什么微波信号适合用于通信和雷达系统?答案:微波信号具有较高的频率和短波长,能够有效地穿透大气层,减少传输损耗。

此外,微波信号还具有较高的方向性和较小的散射,有利于提高通信和雷达系统的性能。

4. 问题:什么是微波的衰减?答案:微波的衰减是指微波信号在传输过程中的能量损失。

衰减的原因包括自由空间损耗、大气吸收、反射损耗等。

衰减会导致微波信号的功率降低,影响通信和雷达系统的可靠性。

5. 问题:什么是微波的驻波比?答案:微波的驻波比是指在传输线上微波信号的最大值与最小值之比。

驻波比反映了传输线上的反射程度。

当驻波比为1时,表示传输线上没有反射,微波信号完全被传输;当驻波比不为1时,表示传输线上存在反射,部分微波信号被反射回去。

6. 问题:什么是微波的功率分配?答案:微波的功率分配是指将输入的微波功率按照一定的比例分配到不同的输出端口。

常见的功率分配方式包括等分功率分配、不等分功率分配和反向功率分配等。

功率分配的设计对于微波系统的性能和稳定性具有重要影响。

7. 问题:什么是微波的相位?答案:微波的相位是指波的起始点在时间上的位置。

相位可以用角度或时间表示。

相位差是指两个波之间的相位差异。

相位差可以用来描述波的干涉和衍射现象。

微波技术习题解答

微波技术习题解答

微波技术习题解答第1章练习题1.1 无耗传输线的特性阻抗Z0= 100()。

根据给出的已知数据,分别写出传输线上电压、电流的复数和瞬时形式的表达式:(1) R L= 100 (),I L = e j0(mA);(2) R L = 50(),V L = 100e j0(mV);(3) V L = 200e j0 (mV),I L = 0(mA)。

解:本题应用到下列公式:(1)(2)(3)(1) 根据已知条件,可得:V L = I L R L = 100(mV),复数表达式为:瞬时表达式为:(2) 根据已知条件,可得:复数表达式为:瞬时表达式为:(3) 根据已知条件,可得:复数表达式为:瞬时表达式为:1.2 无耗传输线的特性阻抗Z0 = 100(),负载电流I L = j(A),负载阻抗Z L = j100()。

试求:(1) 把传输线上的电压V(z)、电流I(z)写成入射波与反射波之和的形式;(2) 利用欧拉公式改写成纯驻波的形式。

解:根据已知条件,可得:V L = I L Z L = j(j100) = 100(V),1.3 无耗传输线的特性阻抗Z0 = 75(),传输线上电压、电流分布表达式分别为试求:(1) 利用欧拉公式把电压、电流分布表达式改写成入射波与反射波之和的形式;(2) 计算负载电压V L、电流I L和阻抗Z L;(3) 把(1)的结果改写成瞬时值形式。

解:根据已知条件求负载电压和电流:电压入射波和反射波的复振幅为(1) 入射波与反射波之和形式的电压、电流分布表达式(2) 负载电压、电流和阻抗V L = V(0) = 150j75,I L = I(0) = 2 + j(3) 瞬时值形式的电压、电流分布表达式1.4 无耗传输线特性阻抗Z0 = 50(),已知在距离负载z1= p/8处的反射系数为 (z1)= j0.5。

试求(1) 传输线上任意观察点z处的反射系数(z)和等效阻抗Z(z);(2) 利用负载反射系数 L计算负载阻抗Z L;(3) 通过等效阻抗Z(z)计算负载阻抗Z L。

微波技术基础期末试题与答案(一)

微波技术基础期末试题与答案(一)

《微波技术基础》期末试题一与参考答案一、选择填空题(每题 3 分,共30 分)1.下面哪种应用未使用微波(第一章)b(a)雷达(b)调频(FM)广播(c)GSM 移动通信(d)GPS 卫星定位2.长度1m,传输900MHz 信号的传输线是(第二章)b(a)长线和集中参数电路(b)长线和分布参数电路(c)短线和集中参数电路(d)短线和分布参数电路3.下面哪种传输线不能传输TEM 模(第三章)b(a)同轴线(b)矩形波导(c)带状线(d)平行双线4.当矩形波导工作在TE10 模时,下面哪个缝不会影响波的传输(第三章)b5.圆波导中的TE11模横截面的场分布为(第三章)b(a)(b)(c)6.均匀无耗传输线的工作状态有三种,分别为行波、驻波和行驻波。

(第二章)Z L 0L 7.耦合微带线中奇模激励的对称面是 电 壁,偶模激励的对称面是 磁 壁。

(第三章)8.表征微波网络的主要工作参量有阻抗参量、 导纳 参量、 传输 参量、散射参量和 转移参量。

9.衰减器有吸收衰减器、 截止衰减器和 极化衰减器三种。

10.微波谐振器基本参量有 谐振波长 、 固有品质因数 和等效电导衰减器三种。

二、传输线理论工作状态(7 分)(第二章)在特性阻抗Z 0=200Ω的传输线上,测得电压驻波比ρ=2,终端为电压波节点,传输线上电压最大值 U max =10V ,求终端反射系数、负载阻抗和负载上消耗的功率。

解: Γ = ρ -1 = 12ρ +1 3由于终端为电压波节点,因此Γ =- 123由Γ =Z L - Z 0= - 12+ Z 3 可得,Z L =100Ω 负载吸收功率为P 2Z 0 ρ三、Smith 圆图(10 分)(第二章)已知传输线特性阻抗Z 0=75Ω,负载阻抗Z L =75+j100Ω,工作频率为 900MHz ,线长l =0.1m ,试用Smith 圆图求距负载最近的电压波腹点与负载的距离和传输线的输入阻抗Z 0Z L解:由工作频率为900 MHz,可得λ=1 m 3而线长为l=0.3λ1.计算归一化负载阻抗ZL=ZLZ= 1+j1.33在阻抗圆图上找到 A 点。

微波技术复习题知识讲解

微波技术复习题知识讲解

微波技术复习题如图1所示网络,。

022Z R =当终端接匹配负载时,要求输入端匹配。

试求:(1)电阻R1的取值;(2)网络的工作特性参量:电压传输系数T ;插入衰减L(dB)以及插入相移θ。

图1 某微波网络1 二口网络的级联如图所示。

写出参考面T 1、T 2之间的组合网络的A 参量。

(参考面T 1处即组合网络的端口1,参考面T 2处即组合网络的端口2)解 []⎥⎦⎤⎢⎣⎡=1j 011B A []⎥⎥⎦⎤⎢⎢⎣⎡=θθθθcos sin 1j sin j cos 002Z Z A Z[]⎥⎦⎤⎢⎣⎡=1j 013B A[][][][]321A A A A =⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡+-+=1j 01cos sin sin 1j j sin j cos 000B BZ Z B Z θθθθθZ 0βlT 1j Bj BZ 0Z 0T 2ZZ 0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛+-+-=θθθθθθθθsin cos cos sin sin 11j sin j sin cos 00000BZ BZ B Z B Z BZ (l βθ=)24 如下图所示网络,试计算下列工作特性参量(1)输入驻波比ρ(2)电压传输系数Τ(3)插入衰减L(dB)(4)插入相移θ1 尺寸为2mm 04.3414.72⨯的JB-32矩形波导,问: (1)当cm 6=λ时波导中能传输哪些波型? (2)写出该波导的单模工作条件。

1 解 (1)矩形波导的导行条件是222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛<b n a m λ依题意,cm 6=λ,cm 214.7=a ,cm 404.3=b当0,1==n m 时得a 26<; 当1,1==n m 时得1570.62622=+<ba ab当2,1==n m 时得3130.342622>+>ba ab ; 当0,2==n m 时得a <6;当1,2==n m 时得 4.951342622=+>ba ab因此,可传输的波型是:TE 10,TE 11,TM 11,TE 20(2)单模传输条件是a a 2<<λ,即14.428cm cm 214.7<<λ2尺寸为2mm 04.3414.72⨯的JB-32矩形波导,问:(1)当cm 6=λ时,能传输哪些波型?(2)测得10TE 波两相邻波节的距离为cm 4.10,?=p λ,?=λ解 (1)计算部分波型的截止波长,得10TE 波的=c λ14.428cm ;20TE 波的=c λ7.214cm ;01TE 波的=c λ 6.808 cm ;11TE 、11TM 波的=c λ 6.157 cm ;21TE 、21TM 波的=c λ 4.951 cm 。

微波技术期末试题及答案

微波技术期末试题及答案

微波技术期末试题及答案以下是微波技术的一些期末试题以及对应的答案,供参考。

试题一:什么是微波技术?请简要介绍微波技术的应用领域。

答案一:微波技术是一种利用微波频段(300MHz-300GHz)进行通信、雷达、天文学和其他相关应用的技术。

其应用领域包括但不限于通信领域的无线电波传输、雷达系统、卫星通信、微波炉等。

试题二:请简要解释什么是微波谐振腔回路?答案二:微波谐振腔回路是指在微波电路中的一个闭合回路,由电感、电容和/或其他元件构成。

当该回路的电感和电容的数值合适时,可以使得微波信号在该回路内反射和传输的特性达到最佳的谐振状态。

试题三:简述微波网络分析器的原理及其主要应用。

答案三:微波网络分析器是一种用于测量微波电路的参数和性能的仪器。

其原理是将测试信号送入待测电路并测量其在不同频率和功率下的传输和反射特性,从而获取电路的参数和性能指标。

主要应用包括电路设计、信号分析、无线通信系统测试等。

试题四:解释微波导的概念和特点。

答案四:微波导是一种专门传输和导引微波信号的传输线路,具有一定的截止频率和传输特性。

其特点包括低传播损耗、高载波容量、较小的尺寸、较高的频率响应等。

试题五:简要解释集成电路在微波技术中的应用。

答案五:集成电路在微波技术中的应用主要是利用微波集成电路的高度集成性和小尺寸优势,实现微波频段上的信号处理和通信功能。

常见的应用领域包括通信系统中的低噪声放大器、混频器、振荡器等。

试题六:什么是微波功率管?请简要描述其原理和应用。

答案六:微波功率管是一种用于放大微波信号并提供较大功率输出的高频电子器件。

其原理是通过电子束与电磁场的相互作用来实现信号放大。

主要应用于雷达、通信系统等需要较高功率输出的场合。

试题七:简述微波天线的作用及其常见类型。

答案七:微波天线用于接收和发射微波信号,在微波通信和雷达系统中起到关键的作用。

常见的微波天线类型包括方向性天线、宽角度天线、偶极子天线等,用于满足不同的应用需求。

微波技术习题答案1

微波技术习题答案1

1-1什么是行波,它的特点是什么,在什么情况下会得到行波;什么是纯驻波,它有什么特点,在什么情况下会产生纯驻波?解:当传输线是无限长,或其终端接有等于线的特性阻抗的负载时,信号源传向负载的能量将被负载完全吸收,而无反射,此时称传输线工作于行波状态,或者说,传输线与负载处于匹配状态。

在行波状态下,均匀无耗线上各点电压复振幅的值是相同的,各点电流复振幅的值也是相同的,即它们都不随距离z 而变化;而且,电压和电流的瞬时值是相同的。

当负载l c Z Z =时,反射波为零,由此得到行波。

从信号传向负载的入射波在终端产生全反射,线上的入射波和反射波相叠加,从而形成了纯驻波状态。

对于任意的电抗性负载都可以用一个有限长的短路线或开路线的输入阻抗来代替。

当传输线终端是短路、开路,或接有纯电抗性(电感性和电容性)负载时。

1-2传输线的总长为5/8λ,终端开路,信号源内阻等于特性阻抗。

终端的电压为15045∠ ,试写出始端、以及与始端相距分别为/8λ和/2λ等处电压瞬时值的表达式。

解:(1) 求终端电压L U终端开路,将产生全反射,线上为纯驻波状态。

终端电压L U 应等于入射电压加反射电压,即+L U U (0)U (0)-=,开路处+U (0)U (0)-=,即L U 2U (0)+=。

而开路线上任一处z 的电压,由下式求出L U z U cos z β()=题中,始端z 5/8λ=处有 0U (z )U (5/8)150/45λ== 故有 0j 45L5150e U c o s ()8βλ=⋅ 即00j45j45j(45)L 150e U 5cos()8πλβ±==-=⋅因此,线上任一处的电压复振幅为0+j (45)LU (z )U c o s z =2U (0)c o 1502c o sz eπβββ±== (2)开路状态下,沿线各处的瞬时电压为j w tu (z ,t )R e [U (z )e1502c o s z c o s (w t 45)βπ==+± 故始端瞬时电压j(45)jwt055u(,cos()e]=100cos zcos(wt+45)88πλλββ±⋅据终端8λ处,则距终端为z2λ=j(45)jwt0u(,)e e)22πλλβ±⋅据终端2λ处,则距终端为z8λ=j(45)jwt0u(,)e e]=150cos(wt+45)88πλλβπ±⋅±1-3传输线的特性阻抗为cZ,行波系数为K,终端负载为LZ,第一个电压最小点距终端的距离为l mi m,试求LZ的表达式。

第一次习题课问题详解

第一次习题课问题详解

第一次习题课#第1讲作业绪论1微波的频率和波长范围分别是多少?答:频率范围从300MHz到3000GHz,波长从O.1mm到1m。

2微波与其它电磁波相比,有什么特点?答:主要特点是:微波波长可同普通电路或元件的尺寸相比拟,即为分米、厘米、毫米量级,其他波段都不具备这个特点。

普通无线电波的波长大于或远大于电路或元件的尺寸,电路或元件内部的波的传播过程(相移过程)可忽略不计,故可用路的方法进行研究。

光波、X射线、 射线的波长远小于电路或元件的尺寸,甚至可与分子或原子的尺寸相比拟,难以用电磁的或普通电子学的方法去研究它们。

(有同学仅仅写微波的特点,有同学是把课本上微波特点写下来)正是上述特点,使人们对微波产生极大兴趣,并将它从普通无线电波波段划分出来进行单独研究。

3微波技术、天线、电波传播三者研究的对象分别是什么?它们有何区别和联系?答:微波技术:主要研究引导电磁波在微波传输系统中如何进行有效传输,它希望电磁波按一定要求沿传输系统无辐射地传输。

天线:是将微波导行波变成向空间定向辐射的电磁波,或将空间的电磁波变为微波设备中的导行波。

电波传播:研究电波在空间的传播方式和特点。

微波技术、天线与电波传播是微波领域研究的三个重要组成部分,它们共同的基础是电磁场理论,但三者研究的对象和目的有所不同。

(有同学没有写区别和联系) #第2讲作业1.导出如图9.1(C )所示的平行导体板传输线的等效电路参量。

假设平行导体板间填充媒质的电参数为,εμ,其中'''εεεj -=,且W b >>。

解:令传输线上仅传播沿z 向的行波,则传输线上的行波电压为zj e U U γ-=0,行波电流为z j e I I γ-=0。

WbI-0U I从能量或者功率的角度来求,方程中有未知量为E ,H ,所以求得这两个未知量就可以。

由于W b >>的条件,可以忽略不均匀性,视两板间为均匀电场,有b U E =其中,zj e U U γ-=0由于传输线理论和电路理论中传输线单位长度的电场储能相等,可得:S 为电场和磁场所处的横截面积,这里的S 是标量bWWbb U U dSE E UC St t '2020'*20'εεε=⋅⎪⎭⎫⎝⎛⋅=⋅=⎰注意是'ε而不是ed ε,因为点容与损耗无关。

微波技术与天线[王新稳][习题解答]第一章

微波技术与天线[王新稳][习题解答]第一章

1-1 解: f=9375MHz, / 3.2,/ 3.1251c f cm l λλ===> 此传输线为长线1-2解: f=150kHz, 4/2000,/0.5101c f m l λλ-===⨯<<此传输线为短线1-3答: 当频率很高,传输线的长度与所传电磁波的波长相当时,低频时忽略的各种现象与效应,通过沿导体线分布在每一点的损耗电阻,电感,电容和漏电导表现出来,影响传输线上每一点的电磁波传播,故称其为分布参数。

用1111,,,R L C G 表示,分别称其为传输线单位长度的分布电阻,分布电感,分布电容和分布电导。

1-4 解: 特性阻抗050Z ====Ω f=50Hz X 1=ωL 1=2π×50×16.65×10-9Ω/cm=5.23×10-6Ω/cmB 1=ωC 1=2π×50×0.666×10×10-12=2.09×10-9S/cm 1-5 解: ∵ ()22j z j z i r U z U e U e ββ''-'=+ 将 2223320,2,42i r U V U V z πβλπλ'===⋅= 代入 1-6 解: ∵Z L =Z 0 ∴()()220j z i r U z U e U β''==1-7 解:210.20.2130j L e ccmfπρρλ-Γ=-=-==Γ+==由 011L L L Z Z +Γ=-Γ 得 0110.2100150110.2L LL Z Z -Γ+===Ω+Γ- 由 ()()()22max 0.20.2j z j z L z e e z πββ-'-''Γ=Γ==Γ= 得 max1max120,7.54z z cm λπβ''-===1-8 解: (a) ()(),1in in Z z z ''=∞Γ= (b) ()()0100,0in in Z z Z z ''==ΩΓ= (c) ()()00012200,3in in in in Z Z Z z Z z Z Z -''==ΩΓ==+(d) ()()02200,1/3in in Z z Z z ''==ΩΓ=1-9 解: 1 1.21.510.8ρ+Γ===-Γ 1-10 解: min2min124z z cm λ''=-= ∴ 2420.20.2j jL eeππ⨯-Γ=-=1-11 解: 短路线输入阻抗 0in Z jZ tg l β= 开路线输入阻抗 0in Z jZ ctg l β=- a) 00252063in Z jZ tgjZ tgj πλπλ=⨯=Ω b) 002252033in Z jZ tg jZ tg j πλπλ=⨯=-Ωc) 0173.23in Z jZ ctgj π=-=-Ωd) 02173.23in Z jZ ctg j π=-=Ω1-12 解: 29.7502050100740.6215010013o j L L L Z Z j j e Z Z j -++Γ=Γ====++1-17 解: 1350.7oj L e Γ= 1-18 解: minmax0.6U K U == min143.2o z β'= 用公式求min1min10min1min111L j tg z K jtg z Z Z Z jtg z jKtg z ρββρββ''--==''-- 用圆图求 ()42.522.5L Z j =-Ω短路分支线的接入位置 d=0.016λ时()0.516B =- 最短分支线长度为 l=0.174λ()0.516B =- 1-19 解: 302.6 1.4,0.3,0.30.16100L L lZ j Y j λ=-===+ 由圆图求得 0.360.48in Zj =+1824in Z j =+Ω 1-20 解: 12L Y j =+ 0.5jB j = ∴ 6577in Z j =-Ω 1-21 解: 11 2.5 2.50.20.2L L Y j j Z ===+- 并联支节输入导纳 min 2.5B ctg l β=-=- min 0.061l λ=此时 1/2.5L Z '= 500/2.5200LZ '==Ω(纯电阻) 变换段特性阻抗 0316Z '===Ω 1-22 解: 1/0.851.34308.66o o L arctg ϕ=-=-=由 max120L z ϕβ'=-= 得 max10.43z λ'= 由 min12L z ϕβπ''=-=- 得 min10.1804L z ϕπλλπ+'== 1-23 解: 原电路的等效电路为由 1in Z j '+= 得 1in Z j '=- 向负载方向等效(沿等Γ图)0.25电长度 得 1in in Z Z ''='则 in in Y Z '''=由in in in Y Y j Z ''''''=+= 得 12in in Y Z j j ''''=-=- 由负载方向等效0.125电长度(沿等Γ图)得1-24 答: 对导行传输模式的求解还可采用横向分量的辅助标位函数法。

微波技术基础习题3讲解

微波技术基础习题3讲解

解: BJ-100波导的尺寸: a×b=22.86mm×10.16mm
信号波长: c 3cm 30mm
f

c 2a 45.72mm,
kc
2 c
,
k 2
k 2 kc2 50 (rad / m ),
g
2
40mm
Zw
120 159 1 ( / c )2
②宽边增大一倍
c 2a 91.44mm ,
(2 3.14 3109 2.25 / 3108 )2 0.007
2 (2 3.14 3109 2.25 / 3108 )2 (3.14 / 0.07214)2
8882.64 0.007 2 8882.64 1896.48
0.372(Np / m)
3.23(dB / m)
c d
0.016 3.23 3.246(dB / m)
此时波导中存在 TE10 TE01 TE20 三种模式。主模 TE10
c 2a 45.72mm,
g
2
2.22cm, Zw
k 2 kc2 89.92 120 133.4
1 ( / c )2
3-13直径为2cm的空气圆波导传输10GHz的微波信号,求其 可能传输的模式。
解: 信号波长λ=c/f=3cm,a=1cm
3-33空气同轴线尺寸a为1cm,b为4cm:①计算TE11、TM01、
TE01三种高次模的截止波长;②若工作波长为10cm,求TEM 和TE11模的相速度。
解: ①
cTE11 (a b) 5 15.708cm cTM01 cTE01 2(b a) 3 6cm
存在高次模TE11模
解:
a×b=72.14×34.04mm2

《微波技术》习题解(一、传输线理论)

《微波技术》习题解(一、传输线理论)

机械工业出版社《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著习 题 解一、 传输线理论1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。

若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需0.1μs ,求该电缆的特性阻抗Z 0 。

[解] 脉冲信号的传播速度为t l v 2=s /m 102101.010286⨯=⨯⨯=-该电缆的特性阻抗为0C L Z =00C C L =l C εμ=Cv l=8121021060010⨯⨯⨯=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。

[解] (本题应注明z 轴的选法)如图,z 轴的原点选在负载端,指向波源。

根据时谐场传输线方程的通解()()()()()())1()(1..210...21.⎪⎪⎩⎪⎪⎨⎧+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i zj z j r i zj z j ββββ。

为传输线的特性阻抗式中02.22.1;;,Z U A U A r i ==:(1),,212.2.的瞬时值为得式设ϕϕj r j i e U U eU U -+==⎪⎩⎪⎨⎧+--++=+-+++=-+-+)()cos()cos([1),()()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ϕβωϕβωϕβωϕβω1-2 均匀无耗传输线,用聚乙烯(εr =2.25)作电介质。

(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =0.6mm ,求线间距D 。

(2) 对Z 0 =75Ω的同轴线,内导体半径 a =0.6mm ,求外导体半径 b 。

[解] (1) 对于平行双导线(讲义p15式(2-6b ))0C L Z =rD r D ln ln πεπμ=r D ln 1εμπ=r Drln 120ε=300= Ω 得52.42=rD, 即 mm 5.256.052.42=⨯=D (2) 对于同轴线(讲义p15式(2-6c )) Z L补充题1图示Z g e (t ) 题1-4图示 00C L Z =dD d D ln 2ln2πεπμ=d D r ln 60ε=ab r ln 60ε=75= Ω 得52.6=ab, 即 mm 91.36.052.6=⨯=b 1-3 如题图1-3所示,已知Z 0=100Ω, Z L =Z 0 ,又知负载处的电压瞬时值为u 0 (t)=10sin ωt (V), 试求: S 1 、S 2 、S 3 处电压和电流的瞬时值。

微波技术习题答案

微波技术习题答案

微波技术习题答案1-1何谓微波?微波有何特点?答:微波是频率从300MHz至3000GHz的电磁波,相应波长1m至0.1mm微波不同于其它波段的重要特点:1、似光性和似声性 2 穿透性 3、非电离性 4、信息性1-2何谓导行波?其类型和特点如何?答:能量的全部或绝大部分受导行系统的导体或介质的边界约束,在有限横截面内沿确定方向(一般为轴向)传输的电磁波,简单说就是沿导行系统定向传输的电磁波,简称为导波其类型可分为:TEM波或准TEM波,限制在导体之间的空间沿轴向传播横电(TE)波和横磁(TM)波,限制在金属管内沿轴向传播表面波,电磁波能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播1-3何谓截止波长和截止频率?导模的传输条件是什么?答:导行系统中某导模无衰减所能传播的最大波长为该导模的截止波长,用λc表示;导行系统中某导模无衰减所能传播的最小频率为该导模的截止频率,用fc表示;导模无衰减传输条件是其截止波长大于工作波长( λc >λ)或截止频率小于工作频率(fc<f)2-1某双导线的直径为2mm,间距为10cm,周围介质为空气,求其特性阻抗。

某同轴线的外导体内直径为23mm,内导体外径为10mm,求其特性阻抗;若在内外导体之间填充2.25的介质,求其特性阻抗。

2-6在长度为d的无耗线上测得Zinsc=j50Ω, Zinoc=-j50Ω,接实际负载时,VSWR=2,dmin=0,λ/2,λ,···求ZL。

2-10长度为3λ/4,特性阻抗为600Ω的双导线,端接负载阻抗300 Ω ;其输入电压为600V、试画出沿线电压、电流和阻抗的振幅分布图,并求其最大值和最小值。

2-12设某传输系统如图,画出AB段及BC段沿线各点电压、电流和阻抗的振幅分布图,并求出电压的最大值和最小值(R=900Ω)2-15在特性阻抗为200Ω的无耗双导线上,测得负载处为电压驻波最小点,|V|min=8V,距λ/4处为电压驻波最大点, |V|max= 10V,试求负载阻抗及负载吸收的功率。

微波技术练习题及答案

微波技术练习题及答案

ZC1
Z
ZC2
Z0
T
l
T0
题 2-8 图
2-9 在如图所示的传输系统中,各阻抗为 Zc=300 Ω ,Z01=0,Z02=0。又知图中的有关
长度为 l= λ /8,l1+l2= λ /2,求 T2 面的输入阻抗。
T2
l
T1
Z 02
ZC
ZC
Z01
T02
l2
l1
T01
题 2-9 图 2-10 在图示的传输系统中,各段的传输线的特性阻抗均为 Zc=50 Ω 。又知图中的 l1=l2=
T 2
l T1
l T0
ZC
ZC 2
ZC1
Z0
题 2-14 图
2-15 如图所示的传输系统中,l= λ /4,Z0=600 Ω ,Zc2=300 Ω ,Zc1=100 Ω 。又知系统 中的工作波长 λ =120cm,求 T 面的驻波参量。
T
l
T0
ZC1
ZC2
Z0
题 2-15 图
2-16 在下图所示的传输系统中,各段传输线的特性阻抗均为 Zc=300 Ω ,又知图中的
s
ZC
l
ZC
ZC
Z0
T
题 2-24 图
ห้องสมุดไป่ตู้
PDF created with pdfFactory trial version
习题
3-1 在均匀导波装置中可能存在的电磁波模式有哪些? 3-2 在波导中为什么不能存在 TEM 波? 3-3 在矩形波导中,Emn 波和 Hmn 波中的 m,n 的意义是什么? 3-4 如何用截止频率或截止波长来判断波导中能否传播电磁波? 3-5 H10 波有哪几个场分量?其数学表示式的含义是什么? 3-6 怎样保证矩形波导中只传输 H10 波? 3-7 如何理解工作波长,截止波长和波导波长? 3-8 为什么一般矩形波导测量线探针开槽开在波导宽边中心线上? 3-9 已知填充空气的矩形波导的横向尺寸为 a=40mm,b=12mm,又知道电磁场的工作 频率为 f=12GHz,请判断此波导内可能存在的电磁波模式有哪些?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波技术习题答案
1-1何谓微波?微波有何特点?
答:微波是频率从300MHz至3000GHz的电磁波,相应波长1m至0.1mm 微波不同于其它波段的重要特点:1、似光性和似声性 2 穿透性3、非电离性4、信息性
1-2何谓导行波?其类型和特点如何?
答:能量的全部或绝大部分受导行系统的导体或介质的边界约束,在有限横截面沿确定方向(一般为轴向)传输的电磁波,简单说就是沿导行系统定向传输的电磁波,简称为导波
其类型可分为:
TEM波或准TEM波,限制在导体之间的空间沿轴向传播
横电(TE)波和横磁(TM)波,限制在金属管沿轴向传播
表面波,电磁波能量约束在波导结构的周围(波导和波导表面附近)沿轴向传播1-3何谓截止波长和截止频率?导模的传输条件是什么?
答:导行系统中某导模无衰减所能传播的最大波长为该导模的截止波长,用λc 表示;导行系统中某导模无衰减所能传播的最小频率为该导模的截止频率,用f c表示;
导模无衰减传输条件是其截止波长大于工作波长( λc>λ)或截止频率小于工作频率(f c<f)
2-1某双导线的直径为2mm,间距为10cm,周围介质为空气,求其特性阻抗。

某同轴线的外导体直径为23mm,导体外径为10mm,求其特性阻抗;若在外导体之间填充2.25的介质,求其特性阻抗。

2-6在长度为d的无耗线上测得Z in sc=j50Ω, Z in oc=-j50Ω,接实际负载时,VSWR=2,d min=0,λ/2,λ,·求Z L。

2-10长度为3λ/4,特性阻抗为600Ω的双导线,端接负载阻抗300 Ω;其输入电压为600V、试画出沿线电压、电流和阻抗的振幅分布图,并求其最大值和最小值。

2-12设某传输系统如图,画出AB段及BC段沿线各点电压、电流和阻抗的振幅分布图,并求出电压的最大值和最小值(R=900Ω)
2-15在特性阻抗为200Ω的无耗双导线上,测得负载处为电压驻波最小点,|V|min=8V,距λ/4处为电压驻波最大点,|V|max=10V,试求负载阻抗及负载吸收的功率。

2-20 Z0为50Ω的无耗线端接未知负载Z L,测得相邻两电压驻波最小点之间的距离d为8cm,VSWR为2,d min1为1.5cm,求此Z L。

Λ
,2,1),12(4,20'''1'1'''1'1''
000=-==⇒
=⇒++=--++=--n n d n t t tg t
jtg t
tg j t tg j t jtg t
jtg t
tg j Z t tg j t jtg Z r
r r r r r r r r
r r λελββεβεεβεβεβεβεεβεβε
)
/(23.3)/(372.048.189664.88822007.064.8882)
07214.0/14.3()103/25.210314.32(2007
.0)103/25.210314.32()/()/2(2)/2()/()(2)(22
2892892
222222
10m dB m Np a c f tg c f a tg tg k r
r TE d
==-⨯⨯=
-⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=
--==πεπδεππμεωδμεωβδα
4-12 厚度为1mm,εr为9.6的陶瓷基片上的50Ω微带线,工作频率为3GHz,导体材料为铜(t/h=0.01),试求①导体衰减常数和介质衰减常数;②线上一个波长的导体损耗和介质损耗.
⎩⎨⎧==⎩⎨⎧+=+===----2
2
113443322221331221121
221,,l j l j l j l j e a b e a b b S b S a b S b S a a e b a e b ββββ4)(12121131211131221112111211)()(a e S a e S e a e S a e S e b S b S b l l j l j l j l j l j l j +------+=+=+=ββββββ42221)(214
2212132222142212212)()(a e S a e S e a e S a e S e b S b S b l j l l j l j l j l j l j ββββββ-+-----+=+=+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+-+--41222)(21)(122114122
1211a a e S e S e S e S b b l j l l j l l j l j ββββ。

相关文档
最新文档