基于MATLAB的车牌识别
(完整版)基于matlab的车牌识别(含子程序)
基于matlab的车牌识别系统一、对车辆图像进行预处理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg', 'JPEG 文件(*.jpg)'});if(filename == 0), return, endglobal FILENAME %定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title('原图像');%将车牌的原图显示出来结果如下:2.将彩图转换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图转换为灰度图figure(2),subplot(1,2,1),imshow(I1);title('灰度图像');figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图结果如下所示:3. 用roberts算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测figure(3),imshow(I2);title('roberts 算子边缘检测图像');结果如下:4.图像实施腐蚀操作:se=[1;1;1];I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作figure(4),imshow(I3);title('腐蚀后图像');5.平滑图像se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个seI4=imclose(I3,se);% 图像聚类、填充图像figure(5),imshow(I4);title('平滑图像');结果如下所示:6. 删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于2000的部分figure(6),imshow(I5);title('从对象中移除小的对象');结果如下所示:二、车牌定位[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic表示计时的开始,toc表示计时的结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定%temp为向量white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x方向车牌区域确定%%%%%% X方向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1; endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌区域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理区域');%行方向车牌区域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域如下所示:三、字符分割及处理1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
基于MATLAB的车牌识别程序详解..精要
(2)图像增强与边缘检测 figure(2),subplot(1,2,2),imhist(I1;title('灰度图直方图');)%显 示图像直方图,图像增强处理,直方图均衡 I2=edge(I1,'robert',0.15,'both');%将灰度图像用Robert算子计算, 间距0.15,方向水平,垂直两个方向,图像边缘处理,利用Robert算 子运算 figure(3),imshow(I2)%显示边缘处理后的;title('robert算子边缘检 测') se=[1;1;1];%创造一个维度矩阵,用于腐蚀单位扫描 I3=imerode(I2,se);%将I3灰度腐蚀,se为腐蚀算子 figure(4),imshow(I3);title('腐蚀后图像');%对裁剪好的图像进行 图像增强处理,利用腐蚀处理 se=strel('rectangle',[25,25]);%构建一个25为边长的正方形结构体 图
(一)图像预处理 收集到的图片一般为彩色图片,由于彩色图片占用存储容
量大,处理时间长,因此需要对图像进行灰度转换,将彩色图像转 换为灰度图像,灰度图像只保留亮度信息,方便使用,也为后面的 对图像进行二值化处理提供方便。
程序:I1=rgb2gray(I); rgb2gray,MATLAB中灰度图像转换函数,原图及处理后的
PX1=PX1+1; end %从上至下截取一段区域,区域上限位PY1 PX2=x; while ((Blue_x(1,PX2)<3)&&(PX2>PX1))
基于MATLAB的车牌识别系统设计
基于MATLAB的车牌识别系统设计
在1 汽车牌照识别系统总体设计与主要功能模块设计
基于MATLAB 汽车牌照识别系统,主要实现了数字
2 沥青混合料数字2.1 由于汽车长期置于户外环境中,使降低了车牌的
清洁度,另外还有自然光照的条件、照相机与汽车牌照之间的矩离以及角度等因素的影响,汽车牌照
2.2 车牌定位与分割模块
由于本系统采集到的汽车牌照数字同时可通过峰谷分析中车牌的水平、垂直投影确定车牌字符高度的范围,为之后的字符提取打好基础。
如
2.3 字符分割与识别模块
字符提取主要通过对旋转后的车牌进行水平投影和垂直投影分析,计算出汽车牌照字符的高度、宽度、字符顶行、字符尾行以及字符的中心位置来进行实现。
由于汽车车牌字符间的间隔较大,较少出现字符粘连现象,所以本文采用查找连续有文字区域的方法实现字符分割。
通过字符分割,得到单个字符,其中包三大类汉字、字母和数字。
由于分割得到的单个字符大小不一,所以需要对单个字符进行归一化处理,防止因为牌照倾斜导致的单个字符在位置和大小上的误差。
目前字符识别主要有两种识别方法:模板匹配法和神经网络法。
本文主要是运用模板匹配法对分割出来的字符进行识别。
字符提取、分割和识别的效果如
3 结语
本文主要以数字图像处理技术在汽车牌照识别中的应用为基础,基于MATLAB 平台开发了汽车牌照识别系统。
并给出了汽车牌照识别系统的总体。
基于matlab图像处理的车牌识别系统_毕业设计论文
基于matlab图像处理的车牌识别系统目录摘要 (1)第一章绪论 (3)1.1研究背景及意义 (3)1.2车牌系统简介 (4)1.2.1国内外现状 (5)1.2.2车牌识别难点 (6)1.3 MATLAB的简介 (7)1.3 MATLAB语言特点 (8)第二章图像预处理 (8)2.1 图像采集 (8)2.2 图像预处理 (9)2.2.1 图像灰度化 (9)2.2.2 图像增强 (11)第三章车牌定位与分割 (12)3.1 车牌定位 (13)3.2 车牌分割 (17)3.3 车牌进一步处理 (17)第四章字符分割和归一化 (18)4.1 字符分割 (19)4.2 字符归一化 (19)4.3 字符识别 (20)第五章汽车号牌识别系统实现与分析 (22)5.1 系统实现 (22)5.2 系统分析 (25)总结 (28)参考文献 (29)致谢 (30)摘要随着二十一世纪到来,经济快速发展和人们生活水平显著提高,汽车逐渐成为家庭的主要交通工具。
汽车的产量快速增多,车辆流动也变得越来越频繁,因此给交通带来了严重问题,如交通堵塞、交通事故等,智能交通系统(Intelligent Transportation System)的产生就是为了从根本上解决交通问题。
在智能交通系统中车牌识别技术占有重要位置,车牌识别技术的推广普及必将对加强道路管理、城市交通事故、违章停车、处理车辆被盗案件、保障社会稳定等方面产生重大而深远的影响。
该设计主要研究基于MATLAB软件的汽车号牌设别系统设计,系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五大核心部分。
系统的图像预处理模块是将图像经过图像灰度化、图像增强、边缘提取、二值化等操作,转换成便于车牌定位的二值化图像;利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字图像、形态学等技术对车牌进行定位;字符的分割采用的方法是将二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的阈值则切割,从而完成字符的分割;字符识别运用模板匹配算法完成。
如何使用Matlab技术进行车牌识别
如何使用Matlab技术进行车牌识别车牌识别技术是一种在现代交通管理、安保等领域应用广泛的技术。
通过使用Matlab软件,我们可以轻松实现车牌识别功能。
本文将介绍如何使用Matlab技术进行车牌识别。
一、图像预处理在进行车牌识别之前,首先需要对图像进行预处理。
图像预处理的目的是提取车牌信息并减小噪声干扰。
在Matlab中,我们可以使用一系列图像处理函数来实现图像预处理,包括图像二值化、边缘检测、形态学操作等。
这些函数可以帮助我们提取车牌轮廓,并去除背景和噪声。
二、车牌定位车牌定位是车牌识别的关键步骤之一。
通过车牌定位,我们可以找到图像中的车牌区域,并将其与其他区域进行区分。
在Matlab中,可以使用图像分割、形态学滤波等技术来实现车牌定位。
这些技术可以帮助我们提取车牌的形状、颜色和纹理等特征,并将其与其他区域进行区分。
三、字符分割一旦我们成功地定位了车牌区域,就需要将车牌中的字符进行分割。
字符分割是车牌识别中的一个重要环节。
通过将车牌中的字符进行分割,我们可以得到单个字符的图像,为后续的字符识别做准备。
在Matlab中,可以使用一系列图像处理函数来实现字符分割,包括边缘检测、连通性分析和投影分析等。
这些函数可以帮助我们将车牌中的字符与其他区域进行分离。
四、字符识别字符识别是车牌识别的核心任务。
通过对字符进行识别,我们可以得到车牌中的文本信息。
在Matlab中,可以使用模式识别、神经网络或者深度学习等技术来实现字符识别。
这些技术可以帮助我们训练一个分类器,将字符图像与对应的字符进行匹配。
通过匹配算法,我们可以得到车牌的文本信息。
五、车牌识别结果展示在进行车牌识别之后,我们可以将识别结果进行展示。
通过将识别结果与原始图像进行对比,我们可以验证车牌识别的准确性。
在Matlab中,可以使用图像绘制函数和文本显示函数来实现车牌识别结果的展示。
通过这些函数,我们可以在原始图像中标注出识别结果,并将结果显示在图像上。
基于MATLAB的车牌识别研究_毕业设计论文
车牌识别技术研究摘要:车牌识别是现代智能交通系统中的重要组成部分之一,应用十分的广泛。
它以数字图像处理、模式识别、计算机视觉等技术基础,对摄像机所拍摄的车辆图像进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程,它对汽车防盗、缓解交通紧张等起到了积极的作用。
本文主要介绍了有关于车牌识别技术的原理,以及基于MA TLAB的车牌识别的设计,对一张车辆图片进行一系列的预处理(灰度化、边缘检测、腐蚀、填充、形态滤波)之后,将车牌中的字符分割出来,最后将分割出的字符与数据库中存储的字符进行模板匹配。
通过以上的步骤的实现,该系统便能完成牌照图像的定位分割和牌照字符的自动识别。
关键词:MA TLAB;图像预处理;车牌定位;字符分割;字符识别License plate recognition technology research Abstract:License plate recognition is one of the modern intelligenttransportation system is an important part of a wide range of applications. It is technology-based digital image processing, pattern recognition, computer vision, vehicle camera captured images were analyzed, only every car license plate number, thus completing the identification process, its car security, relieve stress and other traffic from to a positive role. This paper introduces the principle of license plate recognition technology and design based on MATLAB license plate recognition, for a series of vehicle image preprocessing (gray, edge detection, corrosion, fill, morphological filtering) after the license plate characters split up, and finally split the data stored in the character and the character template matching. By implementing the above steps, the system will be able to complete the positioning of the vehicle license plate image segmentation and automatic license plate character recognition.Key words:MA TLAB;image preprocessing; license plate location; character segmentation; character recognition目录1 绪论 (1)1.1研究目的和意义 (1)1.2国内外研究现状 (2)1.3我国车牌分析 (3)1.4本文章节安排 (3)2 数字图像处理概述 (5)2.1图像及其组成要素 (5)2.2数字图像及其表示 (5)2.3数字图像处理基础 (6)2.4MATLAB在数字图像处理中的应用 (6)3 车牌识别系统的原理及方法 (8)3.1车牌识别系统简述 (8)3.2车牌图像预处理 (9)3.2.1 图像灰度化 (9)3.2.2 边缘检测 (9)3.2.3 形态学图像处理 (10)3.3车牌定位原理 (11)3.4车牌字符分割 (13)3.4.1 字符分割 (13)3.4.2 字符归一化处理 (13)3.5字符识别 (13)3.5.1 字符识别简述 (13)3.5.2 字符识别分类 (14)3.5.3 基于模板匹配的字符识别 (14)4 运用MATLAB实现车牌识别 (17)4.1车牌图像灰度化 (17)4.1.1 程序分析 (17)4.1.2 结果分析 (18)4.2车牌图像预处理 (19)4.2.1 程序分析 (19)4.2.2 结果分析 (20)4.3牌照定位 (22)4.3.1 程序分析 (22)4.3.2 结果分析 (23)4.4字符分割 (24)4.4.1 程序分析 (24)4.4.2 结果分析 (25)4.5字符识别 (25)4.5.1 程序分析 (26)4.5.2 结果分析 (27)5 总结 (29)附录 (30)参考文献 (34)致谢 (35)1 绪论1.1 研究目的和意义随着计算机、通信技术、计算机网络技术在人们日常生活中的不断发展和应用,带来了经济的快速发展,社会已经进入了信息化时代,自动处理信息的能力不断提高并在人们生活的各个领域中得到广泛的应用。
基于matlab的车牌识别算法
基于Matlab的车牌识别算法摘要车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。
车牌识别系统是以特定目标为对象的专用计算机系统,该系统主要包括三个内容:车牌定位、字符分割和字符识别。
其中车牌定位的目的就是从所拍摄的汽车图像中确定车牌的位置,从而便于后续的字符分割和字符识别工作。
目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。
本设计采用基于模板匹配算法和基于人工神经网络算法对车牌进行定位识别,此算法只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,。
此算法分割出的图像像素值和模板图像达到了一致,由此便避免了切割出的图像像素值不一致所带来的问题。
但对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0)。
关键词:车牌识别系统;字符分割;车牌定位LICENSE PLATE RECOGNITION ALGORITHM BASEDON MATLABABSTRACTLicense plate system is a computer vision and pattern recognition technology in one of the important application research topic in the field of intelligent transportation. License plate recognition system based on specific goals of a special computer system, the system mainly includes three contents: license plate locating, character segmentation and character recognition. One of the purpose of license plate location is taken from the auto locate the license plate in the image, so as to facilitate the subsequent work character segmentation and character recognition. Now commonly used methods are: based on template matching method, based on the characteristics of the method and neural network, etc.This design USES based on template matching algorithm and based on artificial neural network algorithm to locate license plate recognition, the algorithm is only for blue white license plate segmentation recognition, the algorithm can be directly applicable in principle to the black white plate,. This algorithm to segment the image pixel values and template image, thus to avoid the cut out in the process of image pixel values are not consistent. But black on white background and black text plate, yellow bottom plate, adjustments need to license plate localization algorithm, and the image inversion of (0, 1, 1, 0).Key words: license plate recognition system; Character segmentation; License plate location目录1 前言 (4)1.1车牌号识别研究背景 (4)1.2 车牌号识别技术研究现状和趋势 (5)1.2.1国内外车牌识别技术情况及我国车牌特点 (5)1.2.2车牌识别技术的应用前景 (6)1.3 车牌识别研究内容 (7)2 车牌识别系统设计原理概述 (9)3 车牌识别系统程序设计 (11)3.1图像读取及车牌区域提取 (11)3.1.1图像灰度图转化 (11)3.1.2图像的边缘检测 (13)3.1.3灰度图腐蚀 (14)3.1.4图像平滑处理 (15)3.1.5移除小对象 (16)3.1.6车牌区域的边界值计算 (17)3.2字符切割 (18)3.2.1字符切割前的图像去噪处理 (18)3.2.2字符切割前的图像膨胀和腐蚀处理 (19)3.2.3字符切割 (19)3.3字符识别 (22)3.3.1字符识别方法选择 (22)3.3.2字符归一化 (22)3.3.3字符匹配识别 (23)4 仿真结果及分析 (26)4.1 车牌定位及图像读取及其图像处理 (26)4.2 车牌字符分割及其图像处理 (26)5 结论 (28)参考文献 (29)致谢............................................... 错误!未定义书签。
【精编完整版】基于MATLAB的车牌识别系统设计_毕业论文设计
南京工程学院毕业设计说明书(论文)院系:计算机工程学院专业:电子信息科学与技术题目:基于MATLAB的车牌识别系统设计2013年5月南京随着计算机多媒体技术的发展,车牌自动识别技术(license plate recognition)已经成为智能交通系统的重要组成部分。
在欧美许多发达国家,车辆识别技术已经广泛的应用在交通管理的各个方面。
由于我国车牌种类多,并且是由汉字、英文字母和数字组成,这给自动识别系统的设计带来较大的难度。
本文在学习研究图像处理理论的基础上,设计了一个车牌自动识别系统。
本系统包括三个主要模块:车辆图像预处理、车牌定位和车牌字符识别。
识别系统处理过程主要包括获取车辆源图像、图像灰度化、图像增强去噪、边缘检测、车牌定位、车牌图像预处理、车牌字符分割、字符识别等部分,其中车牌定位和字符识别部分是整个系统设计的核心和难点。
车牌识别系统可以广泛应用在高速公路自动收费、小区无人停车场、城市道路监控、车辆流量统计等方面,本系统具有一定的实用价值。
关键词:车牌识别车牌定位LPR 模式识别毕业设计说明书(论文)中文摘要毕业设计说明书(论文)外文摘要Title Design of the license plate recognition AbstractWith the development of computer multimedia technology, lice nse plate recognition (LPR) has become an important component ofIntelligent Transportation Systems. In many developed countriesofEurope and America, the license plate recognition technology hasbeen widely used in all aspects of traffic management. Because plates in China have many different styles, in addition, they consist of Chinese letters, English letters and numbers. So, it's very hard to identify Chinese license plates.This study propose a license plate recognition based on kno wledge of image processing. This recognition has three main modu les: preprocessing of original image, locate license plate and c haracters identification. This license plate recognition mainly includes several parts: get original image, make gray, enhance i mage,edge detect, locate license plate, preprocess plate image, segment characters and characters identification. The key of thewhole system is location of license and character recognition.License plate recognition can be extensively used in highwaytoll collection,Intelligent parking, urban road monitoring, traffic flow statistics and so on, what is more, this recognition c anbring some practical value.Key words: plate recognition, plate locate, LPR, pattern recognition目录前言 (1)第一章技术概览 (2)1.1MATLAB简介 (2)1.2MATLAB图像处理工具箱简介 (2)1.3车辆源图像 (3)1.4车牌识别的主要流程 (3)1.5车牌识别系统的结构图 (3)第二章系统人机界面的设计与实现 (5)2.1GUI简介 (5)2.2本文的GUI界面设计 (5)第三章图像预处理及实现 (7)3.1数字图像基本知识 (7)3.2车辆图像灰度化 (8)3.3车辆图像增强 (9)3.4二值化 (14)第四章车牌定位及实现 (18)4.1边缘检测 (18)4.2车牌定位 (24)第五章车牌字符识别及实现 (29)5.1字符分割 (29)5.2车牌字符识别 (32)第六章系统测试及分析 (34)6.1测试的目的 (34)6.2车牌识别系统的测试 (34)6.3测试效果 (35)结束语 (40)参考文献 (42)致谢 (44)附录1:英文技术资料翻译 (45)附录2:程序清单 (60)前言由于我国道路交通的发展迅速,汽车数量特别是轿车数量不断增加,出现了许多车辆管理方面问题。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展,车牌识别系统在交通管理、安全监控、车辆定位等领域的应用越来越广泛。
MATLAB作为一种强大的编程语言和数据处理工具,被广泛应用于图像处理和机器视觉等领域。
本文旨在研究基于MATLAB的车牌识别系统,包括系统的基本原理、实现方法、实验结果和结论。
二、车牌识别系统的基本原理车牌识别系统是一种基于图像处理和机器视觉技术的自动识别系统。
其主要原理包括图像预处理、车牌定位、字符分割和字符识别四个部分。
在MATLAB中,这些过程通过数字图像处理算法、计算机视觉算法以及机器学习算法实现。
(一)图像预处理图像预处理是车牌识别系统的第一步,主要目的是消除图像中的噪声和干扰信息,提高图像的清晰度和对比度,以便后续的图像处理和分析。
常用的预处理方法包括灰度化、二值化、滤波等。
(二)车牌定位车牌定位是车牌识别系统的关键步骤,其主要目的是从图像中准确地检测出车牌的位置。
常用的车牌定位方法包括基于颜色特征的方法、基于形状特征的方法和基于模板匹配的方法等。
在MATLAB中,可以通过边缘检测、Hough变换等方法实现车牌的定位。
(三)字符分割字符分割是将车牌图像中的每个字符分割出来的过程。
常用的字符分割方法包括投影法、连通域法等。
在MATLAB中,可以通过图像形态学操作、阈值分割等方法实现字符的分割。
(四)字符识别字符识别是将分割后的字符进行分类和识别的过程。
常用的字符识别方法包括模板匹配法、神经网络法等。
在MATLAB中,可以通过训练分类器、使用机器学习算法等方法实现字符的识别。
三、车牌识别系统的实现方法在MATLAB中,我们可以通过编写程序实现车牌识别系统的各个步骤。
具体实现方法如下:(一)图像预处理首先,对输入的图像进行灰度化和二值化处理,消除噪声和干扰信息。
然后,通过滤波等操作提高图像的清晰度和对比度。
(二)车牌定位通过边缘检测和Hough变换等方法检测出车牌的轮廓,并确定车牌的位置。
基于Matlab的车牌识别(完整版)
基于Matlab的车牌识别(完整版)基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:车辆→图像采集→图像预处理→车牌定位→字符分割→字符定位→输出结果基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
基于MATLAB的车牌识别系统研究
基于MATLAB的车牌识别系统探究摘要:随着交通的快速进步和车辆数量的增加,车牌识别系统在车辆管理和交通安全方面扮演着重要角色。
本文基于MATLAB平台,探究和设计了一种车牌识别系统,包括车牌图像的得到、预处理、特征提取和识别等关键技术。
试验结果表明,该系统可以有效地检测和识别车牌图像,并具有较高的识别准确率。
1. 引言车牌作为车辆唯一的标识符,在交通管理和公共安全中具有重要意义。
传统的车牌识别方式主要依靠人工进行,效率低下且容易出错。
近年来,随着计算机视觉和模式识别等技术的进步,基于计算机的车牌识别系统得到广泛应用。
本文旨在探究和设计一种基于MATLAB的车牌识别系统,以提高车辆管理和交通安全的效率和准确性。
2. 方法2.1 车牌图像的得到车牌图像的得到是车牌识别系统的第一步,可以通过摄像头或已有的车牌图像数据库进行得到。
本文使用摄像头采集车辆图像,并对图像进行预处理。
2.2 图像预处理图像预处理是车牌识别的基础,目标是消除图像中的噪声和干扰,提高图像的质量。
本文接受灰度化、二值化、去噪等方法对图像进行预处理。
2.3 特征提取特征提取是车牌识别系统的核心技术之一,依据车牌图像的特点提取有效的特征信息。
本文接受图像分割、轮廓提取和统计特征等方法进行特征提取。
2.4 车牌识别车牌识别是车牌识别系统的最终目标,通过对特征进行分类和匹配来实现对车牌的识别。
本文接受模式识别算法和机器进修方法进行车牌识别,并通过试验验证其准确性和可靠性。
3. 试验与结果本文基于MATLAB平台进行试验,接受了大量的车牌图像进行测试和验证。
试验结果表明,所设计的车牌识别系统在车牌图像的得到、预处理、特征提取和识别等方面具有较高的准确性和效率。
识别率达到了90%,满足了车辆管理和交通安全的需求。
4. 谈论与分析通过对试验结果的分析和对比,可以发现该系统在车牌识别的准确性和效率方面相对较好。
然而,该系统还存在一些问题和不足之处,如对光照和遮挡的敏感性,对多种车牌样式的识别能力等。
基于MATLAB的车牌识别系统研究
基于MATLAB的车牌识别系统研究车牌识别系统是一种利用计算机视觉技术对车辆上的车牌进行自动识别的系统。
它具有广泛的应用前景,例如车辆管理、交通违法监测、停车场管理等领域。
本文将针对基于MATLAB的车牌识别系统进行研究,探讨系统的实现原理、算法和应用。
车牌识别系统的实现需要借助计算机视觉技术和图像处理技术。
首先,图像采集模块用于获取经过摄像头拍摄的车辆图像。
其次,图像预处理模块对采集到的图像进行几何校正、灰度化和二值化等操作,将其转化为数字图像。
然后,车牌定位模块通过提取图像中的特征,如颜色、形状等,来确定车牌的位置。
接下来,字符分割模块将车牌中的字符分隔开,以便后续的字符识别。
最后,字符识别模块使用模式匹配或者机器学习算法来识别出车牌中的字符。
在车牌识别系统中,字符识别是最核心的任务之一、常见的字符识别算法包括基于模板匹配的方法、基于统计模型的方法和基于深度学习的方法。
其中,基于模板匹配的方法通过计算字符图像与已有模板之间的相似度来进行匹配。
基于统计模型的方法则通过计算字符的特征向量与已知字符样本的特征向量之间的相似度来进行识别。
而基于深度学习的方法则使用深度神经网络来进行字符识别,具有较高的识别准确率。
MATLAB作为一种常用的科学计算和图像处理软件,提供了丰富的函数和工具箱,以支持车牌识别系统的开发。
它包括图像处理工具箱、机器学习工具箱和深度学习工具箱等。
通过使用这些工具箱,可以方便地实现车牌图像的预处理、车牌定位、字符分割和字符识别等功能。
在实际应用中,车牌识别系统可以应用于各种场景。
例如,交通管理部门可以使用车牌识别系统来识别违法车辆,从而提高交通管理的效率和准确性。
停车场管理者可以使用车牌识别系统来实现自动收费和车辆进出场的记录等功能。
此外,车牌识别系统还可以用于车辆追踪和智能交通系统等领域。
总之,基于MATLAB的车牌识别系统是一个具有广泛应用前景的研究领域。
通过利用计算机视觉和图像处理技术,结合MATLAB的强大功能,可以实现对车辆上的车牌进行自动识别,从而提高交通管理的效率和准确性,实现智能化的交通系统。
基于MATLAB的车牌识别系统
基于MATLAB的车牌识别系统目录2一、车牌识别研究背景及现状分析: .................................................................... ...... 错误!未定义书签。
2二、设计原理: .................................................................... ........................................................................ .. (3)三、设计步骤 ..................................................................... ........................................................................ .. (4),一,、预处理及辪缘提取 ..................................................................... . (4),二,、牌照的定位和分割 ..................................................................... . (9),三,、字符的分割不归一化 ..................................................................... . (11),四,、字符的识别...................................................................... . (12)三、设计结果及分析 ..................................................................... (14)四、总结 ..................................................................... ........................................................................ .. (15)五、参考文献 ..................................................................... ........................................................................ (16)1基于MATLAB的车牌识别系统内容摘要本文仍预处理、辪缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
基于MATLAB的车牌识别系统
基于MATLAB的车牌识别系统
MATLAB是一款常用的科学计算软件,它具有强大的图像处理功能,因此可以用来实现一些基于图像的应用,如车牌识别系统。
以下是一个基于MATLAB的车牌识别系统的实现步骤:
1. 图像采集:使用摄像头或者其他图像采集设备获取车牌图像。
2. 图像预处理:对采集到的车牌图像进行预处理,实现图像的
灰度化、噪声去除、边缘检测等操作。
3. 车牌定位:在处理后的图像中,通过车牌的大小、形状以及
颜色等特征,确定车牌的位置和范围。
4. 字符切割:根据车牌的字符间距和字符大小等特征,将车牌
区域的字符进行切割和分离,得到每个字符的图像。
5. 字符识别:利用机器学习算法、神经网络等方法,对切割出
的字符进行识别,确定车牌号码。
6. 结果显示:将识别结果显示在屏幕上,以及保存结果。
需要注意的是,在识别车牌号码的过程中,需要大量的实例图
像和标注数据,用来进行训练和测试。
同时,对于车牌识别系统,
还需要考虑一些实际应用中的问题,如光线、角度、车速等因素对
图像质量的影响。
因此,需要设计合适的算法和方法,充分考虑实
际应用中的各种因素,提高识别准确度和可靠性。
基于MATLAB的汽车牌照自动识别技术研究
基于MATLAB的车牌自动识别技术研究1、本文概述随着技术的快速发展和智能时代的到来,自动驾驶、智能交通系统等领域的研究和应用逐渐成为全球热点。
在这些领域,汽车牌照的自动识别技术起着至关重要的作用。
汽车牌照自动识别技术作为车辆的唯一标识,不仅可以提高交通管理效率,还可以为车辆跟踪、违章记录等提供有力支持。
本文旨在通过对相关算法和技术的深入探索,研究基于MATLAB的汽车牌照自动识别技术,为实际应用提供理论支持和技术指导。
本文首先阐述了车牌自动识别技术的研究背景和意义,指出其在智能交通系统中的重要地位。
随后,文章回顾了国内外该领域的研究现状和发展趋势,分析了现有技术的优缺点,为后续研究提供了理论支持。
在此基础上,重点介绍了基于MATLAB的车牌自动识别技术的实现过程,包括预处理、车牌定位、字符分割、字符识别等关键环节。
通过对这些方面的详细阐述,展示了MATLAB在车牌识别技术中的强大功能和优势。
本文还对所提出的算法和技术进行了实验验证和性能分析,并通过对比实验和实际应用案例验证了所提出算法的有效性和实用性。
展望了车牌自动识别技术的未来发展方向,为相关领域的研究人员提供了有益的参考和启示。
通过本文的研究,我们希望能为车牌自动识别技术的发展和推广做出贡献,推动智能交通系统的进一步发展,为人们的出行和生活带来更方便、更安全的体验。
2、车牌自动识别技术综述车牌自动识别(ALPR)是一项利用图像处理、模式识别、人工智能等技术自动捕获、识别和提取车牌的关键技术。
随着智能交通系统的发展,车牌自动识别技术已广泛应用于交通管理、车辆跟踪、违章记录、停车场管理等领域。
车牌自动识别技术主要包括四个步骤:图像预处理、车牌定位、字符分割和字符识别。
图像预处理用于提高图像质量,减少噪声干扰,并为后续步骤提供清晰稳定的图像。
车牌定位是使用算法在预处理的图像中定位车牌的位置,为后续的字符分割提供准确的车牌区域的过程。
字符分割是将车牌中的字符逐一分割,为字符识别中的单个字符提供输入的过程。
基于MATLAB平台下的车牌识别系统设计
3、实验改进
3、实验改进
根据实验结果,我们发现车牌定位和字符分割模块是影响系统性能的关键因 素。因此,我们计划从以下两个方面进行改进:
3、实验改进
1、针对车牌定位模块,尝试引入更多的特征提取方法,以便更准确地定位车 牌区域;
2、针对字符分割模块,研究更为稳健的连通域分析方法,减少误分割和漏分 割。
三、实验结果与分析
1、实验设置
1、实验设置
为了评估车牌识别系统的性能,我们构建了一个包含200张车牌图像的数据集, 其中包含了不同的光照条件、车牌位置和尺寸。评估指标主要包括准确率、召回 率和运行时间。
2、实验结果分析
2、实验结果分析
经过大量实验,我们得到了以下结果: 1、车牌定位模块的准确率为95%,召回率为90%;
1、需求分析
3、适应性:系统应能适应不同的环境条件,包括不同的光照条件、车牌位置 和车牌尺寸等;
1、需求分析
4、可靠性:系统应具备一定的可靠性,能够稳定运行,保证识别结果的准确 性。
2、总体设计
2、总体设计
在总体设计阶段,我们将车牌识别系统分解为以下几个模块: 1、车牌定位模块:该模块主要负责寻找并定位车牌区域,排除其他干扰因素;
基于MATLAB平台下的车牌识别 系统设计
01 一、引言
目录
02
二、车牌识别系统设 计
03 三、实验结果与分析
04 四、结论与展望
05 参考内容
一、引言
一、引言
随着社会的快速发展和科技的不断进步,智能化交通管理成为了研究的热点。 车牌识别系统作为智能化交通管理的重要组成部分,能够自动识别车辆身份,提 高交通监管能力和服务质量。本次演示将基于MATLAB平台,设计一套车牌识别系 统,旨在提高车牌识别的准确性和效率,为智能交通管理提供有力支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
liccode=char(['0':'9' 'A':'Z' '京津沪渝冀晋辽吉黑苏浙皖闽赣鲁豫鄂湘粤琼川贵云陕甘蒙新青藏桂宁港']); %建立自动识别字符代码表
l=1;
[m2,n2]=size(subcol);
for k=findmax-4:findmax+3
cleft=markcol5(k)-maxwidth/2;
cright=markcol5(k)+maxwidth/2-2;
if cleft<1
cleft=1;
cright=maxwidth;
end
if cright>n2
cright=n2;
cleft=n2-maxwidth;
end
SegBw1=sbw(rowtop:rowbot,cleft:cright);
SegBw2 = imresize(SegBw1,[32 16]); %变换为32行*16列标准子图
if l==1 %第一位汉字识别
kmin=37;
kmax=68;
elseif l==2 %第二位A~Z 字母识别
kmin=11;
kmax=36;
elseif l>=3 & l<=5 %第三、四位0~9 A~Z字母和数字识别
kmin=1;
kmax=36;
else %第五~七位0~9 数字识别
kmin=1;
kmax=10;
end
for k2=kmin:kmax
fname=strcat('D:\sample\',liccode(k2),'.bmp');
SamBw2 = imread(fname,'bmp');
SubBw2 = SamBw2-SegBw2;
Dmax=0;
for k1=1:32
for l1=1:16
if ( SubBw2(k1,l1) > 0 | SubBw2(k1,l1) <0 )
Dmax=Dmax+1;
end
end
end
Error(k2)=Dmax;
end
Error1=Error(kmin:kmax);
MinError=min(Error1);
findc=find(Error1==MinError);
RegCode(l*2-1)=liccode(findc(1)+kmin-1);
RegCode(l*2)=' ';
l=l+1;
end
title (['识别车牌号码:', RegCode],'Color','r');
运行结果总是出错:
??? Error using ==> minus
Integers can only be combined with integers of the same class, or scalar doubles.
这怎么解决啊?大家帮帮忙啊!。