初等数论一

合集下载

初等数论 1 习题参考答案

初等数论 1 习题参考答案

附录1 习题参考答案第一章习题一1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b =(a)q,即a b,a b及a b。

反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。

2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mnpq可知m p mq np。

3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。

4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。

5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。

第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。

2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 =3Q r12r22知r1 = r2 = 0,即3a且3b。

3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。

初等数论(1)整除

初等数论(1)整除

本讲中所涉及的数都是整数,所用的字母除特别申明外也都表示整数. ⑪整除设a 、b 是给定的数,0b ≠.若存在整数c ,使得a bc =,则称b 整除a ,记作b a ∣,并称b 是a 的一个约数(或因子),而称a 为b 的一个倍数.如果不存在上述的整数c ,则称b 不能整除a ,记作b a Œ.由整除的定义,容易推出整除的几个简单性质: ①若b ∣c ,且c a ∣,则b a ∣,即整除性质具有传递性. ②若b a ∣,且b c ∣,则()ba c ±∣,即某一个整数倍数的集合关于加法和减法运算封闭.反复应用这一性质,易知:若b a ∣及bc ∣,则对任意整数u 、v 有()b au cv +∣.更一般地,若1a ,2a , ,n a 都是b 的倍数,则12()n ba a a ++ ∣. ③若b a ∣,则或者0a =,或者||a b ≥.因此,若b a ∣且a b ∣,则||||a b =.④(带余除法)对任意两个整数a 、b (0)b >,则存在整数q 和r ,使得a b q r =⋅+,其中0r b <≤,并且q 和r 由上述条件惟一确定.整数q 称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数.r 共有b 种可能的取值,若0r =,即为前面说的a 被b 整除.易知,带余除法中的商实际上是a b ⎡⎤⎢⎥⎣⎦(不超过ab的最大整数),而带余除法的核心是关于余数的不等式:0r b <≤.⑤证明b a ∣的基本手法是将a 分解为b 与一个整数之积.在比较初级的问题中,这种数的分解常通过在一些代数式的分解中取特殊值而产生.下面两个整除分解式在这类论证中应用较多. 若n 是正整数,则1221()()n n n n n n x y x y x x y xy y -----=-++++ ;若n 是正奇数,则1221()()n n n n n n x y x y x x y xy y ----+=+-+-+ .⑫最大公约数与最小公倍数最大公约数是数论中的一个重要概念.设a 、b 不全为零,同时整除a 、b 的整数称为它们的公约数.因为a 、b 不全为零,故由整除的性质③推知,a 、b 的公约数只有有限多个,将其中最大的一个称为a 、b 的最大公约数,用符号()a b ,表示. 当()1a b =,时,即a ,b 的公约数只有1±,称a 与b 互素(或互质).对于多于两个的不全为零的整数a ,b , ,c ,可类似的定义它们的最大公约数()a b c ,,,.若()a b c ,,,1=,则称a ,b , ,c 互素.但此时并不能推出a ,b , ,c 两两互素;但反过来,若a ,b , ,c 两两互素,则显然有()a b c ,,,1=. 由定义容易得到最大公约数的一些简单性质:任意改变a 、b 的符号和先后顺序不改变()a b ,的值,4整除即有()()()a b b a a b ±±==,,,;()a b ,作为b 的函数,以a 为周期,即()()a b a a b +=,,. 下面给出最大公约数的若干性质,它们是解决关于公约问题的基础.①设a 、b 是不全为0的整数,则存在整数x 、y ,使得()ax by a b +=,.如果00x x y y =⎧⎨=⎩是满足上式的一组整数,则00x x buy y au =+⎧⎨=-⎩(其中u 为任意整数)也是满足上式的整数.这表明,满足上式的x 、y 有无穷组,并且在0ab >时,可选择x 为正(负)数,此时y 则相应的为负(正)数.特别的,两个整数a 、b 互素的充分必要条件是存在整数x 、y ,使得1ax by +=,这通常称为a 、b 适合的裴蜀(Bezout )等式.事实上,条件的必要性是性质①的特例.反过来,若有x 、y 使等式成立,设()a b d =,,则d a ∣且d b ∣,故d ax ∣及d by ∣,于是()d ax by +∣,即1d ∣,从而1d =. ②若m a ∣,m b ∣,则()m a b ,∣,即a 、b 任一个公约数都是它们的最大公约数的约数.③若0m >,则()()ma mb m a b =,,. ④若()a b d =,,则1a b d d ⎛⎫= ⎪⎝⎭,.因此,由两个不互素的整数,可自然地产生一对互素的整数. ⑤若()1a m =,,()1b m =,,则()1ab m =,.这表明,与一个固定整数互素的整数构成的集合关于乘法封闭.由此可以推出:若()1a b =,,则对任意0k >与()1k a b =,,进而对任意0l >有()1k l a b =,.⑥设bac ∣,若()1b c =,,则b a ∣. ⑦设正整数a 、b 之积是一个整数的k 次幂(2)k ≥.若()1a b =,,则a 、b 都是整数的k 次幂.一般地,设正整数a b c ,,,之积是一个整数的k 次幂,若a b c ,,,两两互素,则a b c ,,,都是整数的k 次幂.下面介绍最小公倍数.设a 、b 是两个非零整数,一个同时为a 、b 倍数的数称为它们的一个公倍数.a 、b 的公倍数有无穷多个,其中最小的正数称为a 、b 的最小公倍数,记作[]a b ,.对于多个非零整数a b c ,,,,可类似地定义它们的最小公倍数[]a b c ,,,. ⑧a 与b 的任意公倍数都是[]a b ,的倍数.对于多于两个整数的情形,类似的结论也成立. ⑨两个整数a 、b 的最大公约数与最小公倍数满足()[]||a b a b ab =,,. 思考:对于多于两个整数的情形,类似的结论不成立,请举出例子.⑩若a b c ,,,两两互素,则有[]||a b c ab c = ,,,.由此以及性质⑧可知若ad ∣,b d ∣, ,c d ∣,且a b c ,,,两两互素,则有ab c d ∣.⑬素数及唯一分解定理大于1的整数n 总有两个不同的正约数:1和n .若n 仅有这两个正约数(称为n 没有真约数),则称n 为素数(或质数).若n 有真约数,即n 可表示为a b ⋅的形式(这里a 、b 为大于1的整数),则称n 为合数.于是,正整数被分成三类,数1单独作一类,素数类及合数类.素数在正整数中特别重要,我们常用字母p 表示素数.由定义易得出下面的基本结论: ①大于1的整数必有素约数.②设p 是素数,n 是任意一个整数,则或者p 整除n ,或者p 与n 互素.事实上,p 与n 的最大公约数()p n ,必整除p ,故由素数的定义推知,或者()1p n =,,或者()p n p =,,即或者p 与n 互素,或者p n ∣.③设p 是素数,a 、b 为整数.若p ab ∣,则a 、b 中至少有一个数被p 整除.特别地可以推出,若素数p 整除(1)n a n ≥,则pa ∣. ④素数有无穷多个.思考:如何证明素数有无穷多个?(提示:用反证法,假设素数只有有限多个,为12k p p p ,,,,考虑数121k N p p p =+ ,利用性质⑬.①)⑤每个大于1的正整数都可以分解为有限个素数的积;并且,若不计素因数在乘积中的次序,这样的分解是唯一的.将n 的素因数分解中的相同的素因子收集在一起,可知每个大于1的正整数n 可惟一的表示为1212k a a a k n p p p = ,其中12k p p p ,,,是互不相同的素数,12k a a a ,,,是正整数,这称为n 的标准分解.⑥n 的全部正约数为1212k b b b k p p p ,其中i b 是满足0(12)i i b a i k = ,,,≤≤的任意整数. 由此易知,若记()n τ为n 的正约数的个数,()n σ为n 的正约数之和,则有12()(1)(1)(1)k n a a a τ=+++ ,121111212111()111k a a a k k p p p n p p p σ+++---=⋅---. 虽然素数有无穷多个,但它们在自然数中的分布却极不规则.给定一个大整数,判断它是否为素数,通常是极其困难的,要作出其标准分解,则更加困难.证明某些特殊形式的数不是素数(或者给出其为素数的必要条件),是初等数论中较为基本的问题,在数学竞赛中尤为常见.处理这类问题的基本方法是应用各种分解技术,指出所涉及数的一个真约数.【例 1】 证明:⑪设0m n >≥,有22(21)1)n m+-∣(2;⑫对正整数n ,记()S n 为n 的十进制表示中各个数位数码之和,则99()n S n ⇔∣∣. ⑬设p 和q 均为自然数,使得111112313181319p q =-+--+ ,证明:p 可被1979整除.【解析】 ⑪11112222221(21)[(2)21]mn n m n n ++-++-=-+++ 122(21)(21)n m+⇒--∣,又122221(21)(21)n nn+-=-+,从而122(21)(21)nn ++-∣. 于是由整除的传递性,有22(21)1)nm+-∣(2.⑫设101010k k n a a a =⨯++⨯+ ,其中09i a ≤≤,且0k a ≠,则01()k S n a a a =+++ .于是有1()(101)(101)k k n S n a a -=-++- .对1i k ≤≤,由整除分解式知9(101)i -∣,故上式右端k 个加项中的每一个都是9的倍数,从而由整除的性质知,它们的和也被9整除,即9(())n S n -∣.由此容易推出结论的两个方面. ⑶11111112231319241318p q ⎛⎫⎛⎫=++++-+++ ⎪ ⎪⎝⎭⎝⎭ 11111112313192659⎛⎫⎛⎫=++++-+++ ⎪ ⎪⎝⎭⎝⎭11111166013196611318989990⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111197966013196611318989990⎛⎫=⨯+++ ⎪⨯⨯⨯⎝⎭【点评】 整除的性质②提供了证明12()n ba a a +++ ∣的一种基本的想法,我们可以试着去证明更强的(也往往是更容易证明的)命题:1i n ∀≤≤,有i ba ∣.这一更强的命题当然不一定成立,即使在它不成立的时候,上述想法仍有一种常常有效的变通:将12n a a a +++ 适当的分组成为12k c c c ++ ,而(12)i bc i k = ,,,∣. 例1⑫的证明,实际上给出了更强的结论,9())n n S n ∀-,∣(,即()(m od 9)S n n ≡.有些情形,我们能够由正整数十进制表示中的数字的性质,推断这个整数能否被另一个整数整除,这样的结论,常称为整除的数字特征.被2、3、5、10整除的数的数字特征是显而易见的.【变式】 设1k ≥是一个奇数,证明:(2)12)k k k n n n ∀++++ ,Œ(.【解析】1n =结论显然成立.设2n ≥,记所涉及的和为A ,则 22(2)(3(1))(2)k k k k k k A n n n =++++-+++ .因为k 是正奇数,故由整除分解式可知,对每个2i ≥,数(2)k k i n i ++-被(2)2i n i n ++-=+整除,故2A 被2n +除得的余数是2,从而A 不可能被2n +整除(注意22n +>).【点评】 论证中我们应用了“配对法”,这是数论中变形和式的一种常用手法.【变式】 设m 、n 为正整数,2m >,证明:(21)(21)m n -+Œ. 【解析】 当n m =时,结论平凡;当n m <时,结果可由1212121n m m -++<-≤推出来(注意2m >,并运用整除的性质③); 当n m >的情形可化为上述特殊情形:由带余除法,n mq r =+,0r m <≤,而0q >.由于21(21)221n mq r r +=-++,由整除分解式知(21)(21)m mq --∣;而0r m <≤,故由上面证明了的结论知(21)(21)m r -+Œ(注意0r =时,结论平凡).从而当n m >时也有(21)(21)m r -+Œ.这就证明了本题结论.【例 2】 设10a m n >>,,,证明:()(11)1m n m n a a a --=-,,. 【解析】 设(11)m n D a a =--,.通过证明()(1)m n a D -,∣及()(1)m n D a -,∣来推导出()1m n D a =-,,这是数论中证明两数相等的常用手法.∵()m n m ,∣,()m n n ,∣,由整除分解式即知()(1)(1)m n m a a --,∣,以及()(1)(1)m n n a a --,∣,故可知,()1m n a -,整除(11)m n a a --,,即()(1)m n a D -,∣. 为了证明()(1)m n D a -,∣,设()d m n =,. ∵0m n >,,∴可以选择0u v >,使得mu nv d -=.∵(1)m D a -∣,∴(1)mu D a -∣.同样,(1)nv D a -∣.故()mu nv D a a -∣,从而由mu nv d -=,得(1)nv d D a a -∣. 此外,因1a >,及(1)m D a -∣,故()1D a =,,进而()1nv D a =,.于是,从()mu nv D a a -∣可导出(1)d D a -∣,即()(1)m n D a -,∣. 综上所述,可知()1m n D a =-,.【变式】 记2210kk F k =+,≥.证明:若m n ≠,则()1m n F F =,. 【解析】 论证的关键是利用(2)n m F F -∣(例1⑪),即存在一个整数x 使得2m n F xF +=.不妨设m n >,()m n d F F =,,则由存在一个整数x 使得2m n F xF +=,推出2d ∣,所以1d =或2.但n F 显然是奇数,故必须1d =.【点评】(0)k F k ≥称为费马(Fermat )数.本变式表明,费马数两两互素,这是费马数的一个有趣的基本性质.利用这一性质,可以证明素数有无穷多个的结论.无穷数列{}(0)k F k ≥中的项两两互素,所以每个k F 的素约数与这个数列中其他项的素约数不同,因此素数必然有无穷多个.【变式】 设0m n >,,22()mn m n +∣,则m n =. 【解析】 设()m n d =,,则11m m d n n d ==,,其中11()1m n =,.于是,条件转化为221111()m n m n +∣,故有22111()m m n +∣,从而211m n ∣.但11()1m n =,,故211()1m n =,.结合211m n ∣,可知必须11m =.同理11n =,因此m n =.【点评】 对两个给定的不全为零的整数,我们常借助它们的最大公约数,并应用性质⑵-④,产生两个互素的整数,以利用互素的性质作进一步论证(参见性质⑵-⑤,⑵-⑥.就本题而言,由于mn 为二次式,22m n +为二次齐次式,上述手段的实质是将问题化归成m 、n 互素这种特殊情形.在某些问题中,已知的条件(或者已经证明的结论)c a ∣并不使用,我们可以试着选取c 的一个恰当的约束b ,并从c a ∣过度到较弱的结论b a ∣,以期望后者提供适宜于进一步论证的信息.在本例中,我们就是由221111()m n m n +∣产生了211m n ∣,进而推导出11m =.【变式】 m 个盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是()1m n =,. 【解析】 设()1m n =,,则有u v ∈Z ,使得1(1)(1)un vm v m v =+=-++,此式说明:对盒子连续加球u 次,可使1m -个盒子各增加了v 个,一个增加(1)v +个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若()1m n d =>,,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为||1d m d n d >,,,所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须()1m n =,.【例 3】 设正整数a 、b 、c 的最大公约数为1,并且abc a b=-.证明:a b -是一个完全平方数.【解析】 方法一:设()a b d =,,则1a da =,1b db =,其中11()1a b =,.由于()1a b c =,,,故有()1d c =,. 于是问题中的等式转化为1111da b ca cb =-,由此可见11a cb ∣.因11(,)1a b =,故1a c ∣. 同样可得1b c ∣.再由11(,)1a b =便推出11a b c ∣(参考性质⑵-⑧⑨).设11c a b k =,其中k 是一个正整数.一方面,显然k 整除c ;另一方面,结合1111da b ca cb =-, 得11()d k a b =-,故k d ∣.从而()k c d ,∣.但()1c d =,,故1k =. 因此11d a b =-.故211()a b d a b d -=-=.这就证明了a b -是一个完全平方数. 方法二:记a b k -=,则已知等式可化为2()k c b b -=.记()k b c d -=,. 若1d >,则d 有素因子p .由上式知2p b ∣,故p ∣b .结合()p b c -∣及p k ∣,得出p c ∣及p a ∣,这与()1a b c =,,相违. 因此1d =,进而知k 与c b -都是完全平方数.【变式】 设k 为正奇数,证明:(12)(12)k k k n n ++++++ ∣.【解析】 因为(1)122n n n ++++= ,故问题等价于证明:(1)n n +整除2(12)k k k n +++ .因n 与1n +互素,所以这又等价于证明2(12)k k k n n +++ ∣.事实上,由于k 是奇数,故由整除的分解式,可知2(12)k k k n +++= [1(1)][2(2)][(1)1]2k k k k k k k n n n n +-++-++-++ 是n 的倍数.同理,2(12)[1][2(1)][1]k k k k k k k k k n n n n ++=+++-+++ 是1n +的倍数.【点评】 整除问题中,有时直接证明b a ∣不容易.若b 可分解为11b b b =,其中12()1b b =,,则我们可以将原命题b a ∣分解为等价的两个命题1b a ∣以及2b a ∣.本例应用了这一手法.更一般地,为了证明b a ∣,可将b 分解为若干两两互素的整数12n b b b ,,,之积,而证明等价的(12)i b a i n = ,,,∣(参见性质⑵-⑩).【例 4】 设正整数a 、b 、c 、d 满足ab cd =,证明:a b c d +++不是素数. 【解析】 方法一:由ab cd =,可设a d m c b n ==,其中m 和n 是互素的正整数,由a m c n=意味着有理数ac 的分子、分母约去了某个正整数u 后,得到既约分数mn,因此a my =,c nu =.同理,有正整数使得b nv =,d mv =.因此,()()a bcd m n u v +++=++是大于1的整数之积,从而不是素数. 方法二:由ab cd =,得cd b a=.因此a b c d +++=cd a c d a +++()()a c a d a ++=.因为a b c d +++是整数,故()()a c a d a++也是整数,若它是一个素数,设为p ,则有()()a c a d ap ++=,可见p整除()()a c a d ++,从而p 整除a c +或a d +.不妨设()pa c +∣ ,则a c p +≥,结合⑶-③推出a d a +≤,矛盾.【变式】 设a 、b 是正整数,满足2223a a b b +=+,则a b -和221a b ++都是完全平方数. 【解析】 已知关系式即为2()(221)a b a b b -++=,论证的关键是证明正整数a b -与221a b ++互素.记(221)d a b a b =-++,.若d 有素因子p ,从而由性质⑶-①知2p b ∣.因p 是素数,故p b ∣.结合()p a b -∣知p a ∣.再由(221)p a b ++∣推导出p ∣1,矛盾,故1d =. 从而由性质⑶-①推知正整数a b -与221a b ++都是完全平方数.【例 5】 证明:两个连续正整数之积不能是完全平方,也不能是完全立方. 【解析】 反证法,假设有正整数x ,y 使得2(1)x x y +=.则24(1)4x x y +=22(21)41x y ⇔+=+(212)(212)1x y x y ⇔+++-=.因左边两个因数都是正整数,故有21212121x y x y ++=⎧⎨+-=⎩,解得0x y ==,矛盾.然而对于方程3(1)x x y +=,上面的分解方法不易奏效.采用另一种分解:设所说的方程有正整数解x 、y ,则由于x 和1x +互素,而它们的积是一个完全立方数,故x 与1x +都是正整数的立方,即3x u =,31x v +=,y uv =,u 、v 都是正整数,由此产生331v u -=,易知这不可能.不难看到,用类似的论证,可以证明连续两个正整数之积不会是整数的k 次幂(这里2k ≥).【变式】 给定的正整数2k ≥,证明:连续三个正整数的积不能是整数的k 次幂. 【解析】 假设有正整数2x ≥及y ,使得(1)(1)k x x x y -+=.注意到上述式子左端的三个因数1x -、x 、1x +并非总两两互素,因此不能推出它们都是k 次方幂.克服这个困难的一种方法是将其变形为2(1)k x x y -=.因x 和21x -互素,故可由上式推出,有正整数a 、b ,使得k x a =,21k x b -=,ab y =,由此我们有221()k k k k a b a b =-=-22224221()()k k k k a b a a b a b b ----=-++++ ,由于2x ≥,故2a ≥,又2k ≥,故上式后一个因数必大于1,导出矛盾.【点评】 实际上,连续四个正整数的积也不能是整数的k 次幂,由于证明需要使用二项式定理,所以将在以后介绍.【例 6】 (09年集训队测试题)设n 是一个合数.证明存在正整数m ,满足|m n ,m n 3()()d n d m ≤.这里()d k 表示正整数k 的正约数的个数.【解析】 若n 有一个素因子p 满足p n >,令nm p=,则有m n <由p n >知()1m p =,,因此()()()2()d n d p d m d m ==.又由n 是合数知1m >,即()2d m ≥.因此2()()d n d m ≤.现在设n n 1m 为n n 2m 为1nm 的不n 21m >. 若不然,则1n m 没有大于1n 1n m 是合数,则它在区间1(1]n m ,内至少有一个因子,矛盾!因此1nm 是素数.但前面已假设n 的所有素因子都不大于n ,又1n n m n =1n n m =2m n 21m =矛盾!由21m >知121m m m >,且12m m 是n 的因子,由1m 的选取可知12m m n >,因此令312nm m m =,则有(123)i m n i =,,.因此,333123123123()()()()()max{()()()}d n d m m m d m d m d m d m d m d m =≤≤,,,故取123m m m ,,中因子数最多的一个为m 即可. 【点评】 以上用到一个基本的事实:若u v ,为正整数,则()()()d uv d u d v ≤,这可用数()d x 的计算公式推出来.【变式】 求出最小的正整数n ,使其恰有144个不同的正约数,且其中有10个连续约数.【解析】 从n 有10个连续正约数条件出发,我们不难得到n 必须被23410 ,,,,整除,对n 进行质因数分解进行讨论.n 是322357,,,的倍数,设n 的标准分解式为312235k r r r r k n p = ,则 12343211r r r r ,,,≥≥≥≥.又n 的正约数的个数12()(1)(1)(1)144k d n r r r =+++= ,而 1234(1)(1)(1)(1)432248r r r r ++++⨯⨯⨯=≥,因此 56(1)(1)(1)3k r r r +++ ≤.所以,在56k r r r ,,,中最多还有一个不为0. 要使n 最小,则5502k r =,≤≤.于是n 的形式为 35124235711r r r r r n =,此处12345321102r r r r r ,,,,≥≥≥≥≤≤.从而有1234(1)(1)(1)(1)144r r r r ++++=或12345(1)(1)(1)(1)(1)144r r r r r +++++=.显然当12345r r r r r ≥≥≥≥时,n 最小.由144222233=⨯⨯⨯⨯⨯,试算满足上式的数组12345()r r r r r ,,,,,得数组(52111),,,,可使n 最小.这样,最小的52235711110880n =⨯⨯⨯⨯=.习题 1. 证明:⑪2001001 共能被1001整除; ⑫设正整数n 的十进制表示为10k n a a a = (090i k a a ≠,≤≤),记 01()(1)k k T n a a a =-++- (由n 个各位起始的数字的正、负交错和). 证明:()n T n -被11整除.由此得出被11整除的数的数字特征:11整除n 的充分必要条件是11整除()T n .【解析】 ⑪2001001 共201101=+367(10)1=+33663653(101)[(10)(10)101]=+-+-+ ,所以 1001∣2001001 0. ⑫()n T n -=0011()(10)[10(1)]k k k k a a a a a a -++++⨯-- .按i 为偶数、奇数分别用整除分解式可以得到数10(1)i i i i a a ⨯--被11整除.因此()n T n -被11整除,故问题中结论的两方面均成立.习题 2. 利用Bezout 等式证明,任给整数n ,分数214143n n ++是既约分数.【解析】 ∵3(143)2(214)1n n +-+=,∴(214,143)n n ++1=.所以原命题成立.习题 3. 证明:对任意给定的正整数1n >,都存在连续n 个合数. 【解析】 容易验证,(1)!2,(1)!3,(1)!(1)n n n n +++++++ 是n 个连续的合数.习题 4. 求自然数N ,使它能被5和49整除,并且包括1和N 在内,它共有10个约数.【解析】 把N 写成素因数分解形式1223n a a a n N p = ,其中012i a i n = ,,,,≥. 则它所有约数的个数为12(1)(1)(1)10n a a a +++= , 由于25|7|N N ,,则34121a a ++,≥≥3, 因此125n a a a a ,,,,必然都为0,即3457a a N =. 由于34(1)(1)1025a a ++==⨯,可得3414a a ==,, 即本题有唯一解457N =⋅.习题 5. 求所有的正整数对()a b ,,使得22(7)|()ab b a b a b ++++. 【解析】 由条件,22(7)|()ab b a b a b b ++++,而222()(7)7a b a b b a ab b b a ++=+++-,故22(7)|(7)ab b b a ++-.⑴当270b a ->时,要使22(7)|(7)ab b b a ++-,必须2277b a ab b -++≥,易知这不可能; ⑵当270b a -=时,即27b a =,此时a b ,应具有277*a k b k k ==∈N ,,的形式,经检验, 2()(77)a b k k =,,满足要求;⑶当270b a -<时,要使22(7)|(7)ab b b a ++-,必须2277a b ab b -++≥,那么2222777a b ab b ab b +++>⇒<≥,于是1b =或2b =.①1b =时,由题中条件2157788a a a a a ++=-+++是自然数,可知11a =或49a =,得解 ()(111)a b =,,或(491),;②2b =时,由22(7)|(7)ab b b a ++-得7449a a -+是自然数,而74249a a -<+,所以74149a a -=+,此时133a =非自然数,舍去. 综上,所有解为2()(111)(491)(77)*a b k k k =∈N ,,,,,,,.建国60周年(四)我古老而年轻的祖国啊,我是你广袤大地上一棵稚嫩的幼苗,摇曳在你温暖呵护的怀抱,我是你无垠天空中一只飞翔的小鸟,鸣唱在你春风和煦的心头,我的血管里,涌动着黄河的波浪,我的心灵里,开放着文明的鲜花,我心中的理想,正展现在祖国蔚蓝的天空里。

初等数论第一章整除

初等数论第一章整除
a b
例1:设 x, y 为整数,且5 | x 9 y 则 5 | 8x 7 y
证:因为 8x 7 y
8( x 9 y) 65y
因为5 | x 9 y
所以有

5 | 65y
5 | 8x 7 y
例2:证明若3|n,7|n,则21|n
证:因为3|n,所以n= 3n1 又因为7|n,所以 7 | 3n1 显然有 7 | 7n 1 则有 7 | 7n1 2 3n1 即 7 | n1 有 n1 ห้องสมุดไป่ตู้7n2 即有 n 21n2 所以有21|n
注: (1)连续n个整数中必有一个数被n整除。 可作为一个定理,在证明整除问题时非常 有用。 (2)注意整数的各种表示。 例2: 证明若a不是5的倍数,则

中有且仅有一个数被5整除
证明: 这四个数有一个是5的倍数 若 5 | a 1或 又 所以 即 a 1, a 1 有且仅有一个数被5整除
n 是整数,所以 3

n2 2

n3 6

注:这里用了连续n个整数的乘积是n!的 倍数的结论.
注:连续n个整数的乘积是n!的倍数。 a、当n个整数都大于零时,由
m( m1)( m n1) n!
C
n m n1
而组合数为整数,可知连续n个整数的乘积是n! 的倍数。 b、当n个整数中有一个为零时,显然成立。
n 注:1、
2、
a b (a b)M1
n
n
a b (a b)M 2 , 2†n
n
3、
(a b) aM3 b ,
n n
例5、试证明任意一个整数与它的各位数 字和的差必能被9整除。

初等数论第一章3

初等数论第一章3

则11(n 1)2,因此,由定理4的推论1得到
11n 1,112(n 1)2。
再由式(3)得到
11211,
这是不可能的。所以式(3)不能成立。
第三节 最大公约数
注:这个例题的一般形式是: 设p是素数,a,b是整数,则
Pk b)k pk 1c, |(an
其中c是不被p整除的任意整数,k是任意的大于1
3,
于是b = a = 1,这是不可能的,所以式(6)不成
立。
第三节 最大公约数
(ⅲ) 若a > b,记a = kb r,0 r < b,此时
2kb1=(2b1)(2(k 1)b2(k 2)b1)=(2b 1)Q,
其中Q是整数。所以 2a 1 = 2kb + r 1 = 2r(2kb 1 1) 1 = 2r((2b 1)Q 1) 1 = (2b 1)Q (2r 1), 其中Q是整数。因此 2b 12a 1 2b 12r 1, 在(ⅰ)中已经证明这是不可能的,所以式(6)不能成
的整数。
第三节 最大公约数
例3 设a,b是整数,且
9a2 ab b2,
则3(a, b)。 证明 由式(4)得到 9(a b)2 3ab 3(a b)2 3ab
(4)
3(a b)2 3a b
9(a b)2。
(5)
第三节 最大公约数
再由式(4)得到 93ab 3ab。 3a或3b。
a1x1 a2x2 … akxk = 1。
证明 必要性 由定理2得到。
(1)
充分性 若式(1)成立,如果 (a1, a2, …, ak) = d > 1, 那么由dai(1 i k)推出da1x1 a2x2 … akxk = 1,这是不可能的。所以有(a1, a2, …,

初等数论第一章第一节

初等数论第一章第一节

练习题 1证明: 若3 | n且7 | n,则21| n.
2 设a = 2k -1, k 源自 Z ,若a | 2n,则a | n.
4 证明: 若m - p | mn + pq,则m - p | mq + np.
1证明:∵3 | n,∴可设n = 3m, 由7 | n得, 7 | 3m,而7 | 7m,所以7 | (7m - 2× 3m), 即7 | m,∴21| 3m,即21| n.
证明:∵ n = n(ax + by) = nax + nby 又 ab | na, ab | nb ∴ab n.
例3 已知a,b, c, d ∈ Z且a − c | ab + cd. 求证 : a − c | ad + bc.
证明:∵ a − c | (a − c)(b − d ), ∴a − c | ab + cd − (ad + bc) 又a − c ab + cd,∴a − c ad + bc.
2证明:∵ a | 2n,∴a | 2kn, 而2kn = (2k -1)n + n = an + n, ∴a | an + n,又a | an,∴a | n.
4证明:∵ mq + np = (mn + pq) − (m − p)(n − q), 又∵ m − p|mn + pq, ∴m − p|mq + np.
例题
例1 已知a,b, c, d,t ∈ Z,且t |10a − b,t |10c − d. 求证 : t | ad − bc.
证明: ad − bc = c(10a − b) − a(10c − d ) ∵t 10a − b,t 10c − d ∴t ad − bc.

初等数论 第一章 整数的可除性

初等数论 第一章 整数的可除性

第一章整数的可除性§1 整除整数集对于加、减、乘三种运算都是封闭的,但是对于除法运算不封闭。

为此,我们引进整除的概念。

定义1设a,b∈Z,b≠0,如果存在q∈Z,使得等式a=bq成立,那么称b 整除a或a被b整除,记作:b|a,此时称b为a的因数(约数),a为b的倍数。

如果不存在满足等式a=bq的整数q,那么称b不能整除a或a不被b整除,记作b| a。

定理1设a,b,c∈Z,b≠0,c≠0,则(1)如果c|b,b|a,那么c|a;(2)如果b|a,那么bc|ac;反之亦真;(3)如果c|a,c|b,那么,对于任意m,n∈Z,有c|(ma+nb);(4)如果b|a,a≠0,那么|b|≤|a|;(5)如果b|a,a|b,那么|b|=|a|。

证明可选证。

定理2(带余除法)设a,b∈Z,b≠0,则存在q,r∈Z,使得a=bq+r,0≤r<|b|,并且q及r是唯一的。

证明当b|a时,取q=a/b,r=0即可。

当b!|a时,考虑集合E={a-bk|k∈Z },易知E中有正整数,因此E中有最小正整数,设为r=a-bk>0,下证:r<|b|。

因为b!|a,所以r≠|b|,若r>|b|,则r’=r-|b|>0,又r’∈E,故与r的最小性矛盾,从而存在q,r∈Z,使得a=bq+r,0≤r<|b|。

唯一性。

设另有q’,r’∈Z,使得a=bq’+r’,0≤r’<|b|,则b(q-q’)=r’-r,于是b|(r’-r),但由于0≤|r’-r|<|b|,故r’-r=0,即r=r’,从而q=q’。

定义2等式a=bq+r,0≤r<|b|中的整数q称为a被b除所得的(不完全)商,整数r称为a被b除所得的余数。

注r=0的情形即为a被b整除。

例1 设b=15,则当a=255时,a=17b+0,故q=17,r=0;当a=417时,a=27b+12,故q=27,r=12;当a=-81时,a=-6b+9,故q=-6,r=9。

初等数论:数的整除性

初等数论:数的整除性

此时 2b-1=
k
0,3 ,或
2
3k
,这都是不可能的,
所以
k
3
|
2b
1。
17
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 6. 写出不超过 100 的所有的素数。 解: 将不超过 100 的正整数排列如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
若 n 2s,由上式知 n 22, 因为 n 2 > 2,这是不可能的,所以 n 2 | s。
10
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 2. 设 A = { d1, d2, , dk }是 n 的所有约数的集合,
则B
={dn1
,
n d2
,,
n dk
}也是
n
的所有约数的集合。
8
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
推论. 任何大于 1 的合数 a 必有一个不超过 a 的素约数。
证明:使用定理 2 中的记号,有 a = d1d2,
其中 d1 > 1 是最小的素约数,
所以
d2 1
a。证毕。
9
第一节 1 数的整除性
《初等数论》 第一章 整数的可除性
例 1. 设 r 是正奇数,证明:对任意的正整数 n,有

(完整word版)《初等数论》

(完整word版)《初等数论》

第一节 整数的p 进位制及其应用正整数有无穷多个,为了用有限个数字符号表示出无限多个正整数,人们发明了进位制,这是一种位值记数法。

进位制的创立体现了有限与无限的对立统一关系,近几年来,国内与国际竞赛中关于“整数的进位制”有较多的体现,比如处理数字问题、处理整除问题及处理数列问题等等。

在本节,我们着重介绍进位制及其广泛的应用。

基础知识给定一个m 位的正整数A ,其各位上的数字分别记为021,,,a a a m m,则此数可以简记为:021a a a A m m (其中01 m a )。

由于我们所研究的整数通常是十进制的,因此A可以表示成10的1m 次多项式,即012211101010a a a a A m m m m ,其中1,,2,1},9,,2,1,0{ m i a i 且01 m a ,像这种10的多项式表示的数常常简记为10021)(a a a A m m 。

在我们的日常生活中,通常将下标10省略不写,并且连括号也不用,记作021a a a A m m ,以后我们所讲述的数字,若没有指明记数式的基,我们都认为它是十进制的数字。

但是随着计算机的普及,整数的表示除了用十进制外,还常常用二进制、八进制甚至十六进制来表示。

特别是现代社会人们越来越显示出对二进制的兴趣,究其原因,主要是二进制只使用0与1这两种数学符号,可以分别表示两种对立状态、或对立的性质、或对立的判断,所以二进制除了是一种记数方法以外,它还是一种十分有效的数学工具,可以用来解决许多数学问题。

为了具备一般性,我们给出正整数A 的p 进制表示:012211a p a p a p a A m m m m ,其中1,,2,1},1,,2,1,0{ m i p a i 且01 m a 。

而m 仍然为十进制数字,简记为p m m a a a A )(021 。

典例分析例1.将一个十进制数字2004(若没有指明,我们也认为是十进制的数字)转化成二进制与八进制,并将其表示成多项式形式。

自考初等数论第一章试题及答案

自考初等数论第一章试题及答案

自考初等数论第一章试题及答案一、选择题1. 下列哪个数是质数?A. 4B. 9C. 17D. 20答案:C2. 一个数能被3整除的特征是什么?A. 该数的各位数字之和能被3整除B. 该数的最后两位能被3整除C. 该数的倒数能被3整除D. 该数的各位数字之积能被3整除答案:A3. 如果a和b是互质数,那么它们的最大公约数是多少?A. 1B. aC. bD. ab答案:A二、填空题4. 一个数的最小倍数是______。

答案:它本身5. 100以内最大的质数是______。

答案:976. 如果两个数的最大公约数是12,最小公倍数是72,那么这两个数分别是______和______。

答案:12和72三、解答题7. 证明:如果a是质数,那么a^2 + a与1同为质数。

证明:假设a是质数,那么a只有1和a两个因数。

考虑a^2 + a,我们可以看到它不能被a整除,因为a^2 + a = a(a + 1),而a与a + 1是互质的。

如果a^2 + a是合数,那么它必须有一个大于1小于a^2 + a的因数,但这与a是质数矛盾,因为这意味着a^2 + a有除了1和a^2 + a之外的因数。

因此,a^2 + a与1同为质数。

8. 一个数被7除余1,被8除余3,被9除余4,求这个数。

解答:设这个数为x,根据题意我们有以下三个同余方程:x ≡ 1 (mod 7)x ≡ 3 (mod 8)x ≡ 4 (mod 9)我们可以使用中国剩余定理来解决这个问题。

首先找到7, 8, 9的乘积,即504,然后计算每个方程的Mi和Mi':M1 = 504 / 7 = 72, M1' = 1 (因为72 * 1 % 7 = 1)M2 = 504 / 8 = 63, M2' = 3 (因为63 * 3 % 8 = 3)M3 = 504 / 9 = 56, M3' = 2 (因为56 * 2 % 9 = 4)接下来计算x:x = (1 * 72 * 1) + (3 * 63 * 3) + (4 * 56 * 2)= 72 + 567 + 448= 1087但是我们需要找到小于504的最小正整数解,所以我们对1087取模504:x = 1087 % 504 = 87因此,满足条件的最小正整数是87。

初等数论第一章

初等数论第一章

第一章 整除理论整除性理论是初等数论的基础。

本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。

第一节 整除定义1 设a ,b 是整数,b ≠ 0,如果存在整数c ,使得a = bc成立,则称a 被b 整除,a 是b 的倍数,b 是a 的约数(因数或除数),并且使用记号b ∣a ;如果不存在整数c 使得a = bc 成立,则称a 不被b 整除,记为b |/a 。

被2整除的整数称为偶数,不被2整除的整数称为奇数。

定理1 下面的结论成立:(ⅰ) a ∣b ⇔ ±a ∣±b ; (ⅱ) a ∣b ,b ∣c ⇒ a ∣c ;(ⅲ) b ∣a i ,i = 1, 2, , k ⇒ b ∣a 1x 1 + a 2x 2 + + a k x k ,此处x i (i = 1, 2, , k )是任意的整数;(ⅳ) b ∣a ⇒ bc ∣ac ,此处c 是任意的非零整数;(ⅴ) b ∣a ,a ≠ 0 ⇒ |b | ≤ |a |;b ∣a 且|a | < |b | ⇒ a = 0。

例1 设r 是正奇数,证明:对任意的正整数n ,有n + 2|/1r+ 2 r+ + n r。

例2 设A = { d 1, d 2, , d k }是n 的所有约数的集合,则B =}{,,,21kd n d n d n也是n 的所有约数的集合。

例3 以d (n )表示n 的正约数的个数,例如:d (1) = 1,d (2) = 2,d (3) = 2,d (4) = 3, 。

问:d (1) + d (2) + + d (1997)是否为偶数?例4 证明:存在无穷多个正整数a ,使得n 4 + a (n = 1, 2, 3, )都是合数。

例5 设a 1, a 2, , a n 是整数,且a 1 + a 2 + + a n = 0,a 1a 2 a n = n ,则4∣n 。

初等数论第一、二章

初等数论第一、二章

例7 设a,b,c是三个互不相等的正整数,
求证: a
3
b ab , b c bc , c a ca
3 3 3 3
3
三数中至少有一个能被10整除。 例8 设n 为自然数,求证:
A 3237 632 855 235
n n n
n
能被1985整除。
例9 设p为大于5的素数 ,
如果允许b取负值,则要求 0 r b . 思考 28 6 14 3 4 (余 2) 正确吗?
带余数除法的第二种表示 定理 若a, b是两个整数,其中b 0,则存在着两个整数 a bq r, 0r b q及r,使得
成立,而且q及r是唯一的。
证明分析:作整数序列 ,-3 b ,-2 b ,- b ,0,b ,2 b ,3 b , 则a必满足q b a<(q+1) b , 其中q Z , 令a q b r可得到a b q r , 分b 0和 b 0来讨论q, 进一步证明q, r的唯一性。
• 1、定义:设a,b是整数,b≠0。如果存在一个 整数q使得等式: a=bq 成立,则称b能整除a或a能被b整除,记b∣a; 如果这样的q不存在,则称b不能整除a,记为b | a。
注:显然每个非零整数a都有约数 1,a,称这四个 数为a的平凡约数,a的另外的约数称为非平凡约数。
• 素数: –定义 设整数n≠0,±1.如果除了平凡因数 ±1,±n以外,n没有其他因数,那么,n 叫做素数(或质数或不可约数),否则,n 叫做合数. –规定:若没有特殊说明,素数总是指正整 数,通常写成p或 p1, p2,…, pn. –例 整数2,3,5,7都是素数,而整数4,6, 8,10,21都是合数.

初等数论

初等数论

• ⑷性质:定理1.3.3推论1(裴蜀恒等式)
• 如果两个数a,b的最大公约数是d,那么存在两
个整数x与y,使得等式ax+by=d成立.(可以推 广到n个数的情况) • 推论2:两个数a,b互质的必要且充分条件是存 在整数x与y,使ax+by=1成立。 推论1的推广 设 a1 ,a2 , …, an ∈N+ (n≥2) ,则一定存在整数 s1, s2, …, sn,使 a1s1+a2s2 + … + ansn= (a1 ,a2 , …,an ) .
第一章 整数的整除性
主要内容
整除的定义、性质,奇数和偶数,带余除法 定理、余数,最大公因数、最小公倍数、辗转相 除法、互素、两两互素、素数、合数、算术基本 定理
1.1整除 1、整除的概念:
• 定义1.1 设 a,b ∈Z ,b≠0,如果存在 q ∈Z ,使得等式 a=bq成立.我们就说,a 能被b整除或b整除a ,记作b | a. • 如果整数 q 不存在( 即对任何整数 q,恒有 bq ≠a ),那么就说a不能被 b 整除 (或者说b 不能整除a),记作 b |a。
σ( a )表示正整数 a 的所有正约数的和,如 σ(2) = 3, σ( 4 ) = 7,等等。 σ1( a)表示正整数 a 的所有正约数的乘积.如 σ1( 4 ) = 8 , σ1( 10 ) = 100,等等.
我喜欢数学
• 定理1. 26 如果自然数a的标准分解式为
a p1 p2
1
2
特别地,n 个偶数的积是 2n 的倍数( n∈N+).
性质2 (关于奇数)
(1) 双数个奇数的和是偶数;
(2) 单数个奇数的和是奇数;
(3) 任意个奇数的积还是奇数。
性质3 奇数与偶数的和是奇数. 性质4 任一奇数与任一偶数不相等.

初等数论-第一章

初等数论-第一章



x (1)31Q3 3,
y (1)3 P 22, 3
125 3+17(-22)=(125,17)=1
定理2、
若a, b, c是三个整数,且(a, c) 1,则
(i)ab, c与b, c有相同的公因数, (ii ) (ab, c) (b, c), 上面假定了b, c至少有一不为零。
如果不存在整数q使得a bq成立,则称a不被b整除, 记为b † a。
2、整除的基本定理
定理1(传递性):ab,bc ac 定理2:若a,b都是m的倍数,则ab都是m的倍数
定理3
若a1 , a2 ,, an都是m的倍数,q1 , q2 ,, qn
是任意n个整数,则a1q1 a2 q2 an qn是m的倍数
rn 1 rn qn 1 +rn 1,
定理4
rn 1 0。
若a, b是任意两个正整数,则(a, b) rn ,
rn是上式中最后一个不等于零的余数。
推论4.1
a, b的公因数与(a, b)的因数相同。
说明: (1)利用辗转相除法可以求两个整数的最大公因数
(2 )辗转相除法中所包含的等式个数, 即所要做的带余数除法的次数估计为 2 log b n log 2
数的倍数,则d就叫作a1 , a2 , , an的一个公倍数。所有公 倍数中最小的一个叫最小公倍数,记作[a1 , a2 , , an ]。
定理3
定理4
[a1, a2 ,, an ] [ a1 , a2 ,, an ].
设a, b是任意两个正整数,则(i)a, b的所有公倍数

即当a与b是正整数时,只要使用被2除的除法运算和 减法运算就可以计算出(a,b) 例1、求(12345,678)

初等数论1——整除性

初等数论1——整除性

第四讲初等数论1——整除性本讲概述数论是数学中极其重要又非常迷人的一个分支,目前我们仅学习初等数论中较浅的内容.初等数论是数学竞赛四大模块中较难以掌握的模块之一,在数学竞赛中占据极其重要的位置.特别是联赛改制以后,二试必考一道50分的数论大题,一试也会有一到两道数论方面的问题.数论与组合水平如何是大家能否获得联赛一等奖甚至更好成绩的关键.初等数论这块的竞赛问题涉及到的知识点极少,甚至可以说绝大部分同学在小学初中的培训中基本都接触过.但是限于初中的知识面和同学的年龄,考试中一般不出现较为深入、难度较高的数论问题.到了高中,大家将复习小学初中阶段的数论知识,并将其中的很多知识更为理论化、系统化.高中的数论问题难度也会明显增高. 但是在数论这一模块中,我们并不提倡大家过多地掌握很多高深的数论知识,而是提倡大家真正去灵活熟练地运用最基本、最重要的数论基础知识和重要定理来解决问题.由于同学们在小学、初中都已经学过不少关于初等数论的初步知识,所以这里我们把大家比较熟悉的知识都罗列在下面,对其中大部分定理将不给出证明,直接给出结论.如果不特别说明,本讲中所有字母均代表正整数.一、整除1.整除的定义两个整数a和b(b≠0),若存在整数k,使得a=bk,我们称a能被b整除,记作b|a.此时把a叫做bŒ.的倍数,b叫做a的约数.如果a除以b的余数不为零,则称a不能被b整除,或b不整除a,记作b a 2.数的整除特征(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2,5;4,25;8,125;3,9;11,7,13整除的数的特征:能被2整除的数的特征:个位为0,2,4,6,8的整数能被2整除,我们记为2k(k为整数).能被5整除的数的特征:个位数为0或5的整数必被5整除,我们记为5k(k为整数).能被4、25整除的数的特征:末两位数字组成的两位数能被4(25)整除的整数必能被4(25)整除.能被8,125整除的数的特征:末三位数字组成的三位数能被8(125)整除的整数必能被8(125)整除.能被3,9整除的数的特征:各个数位上数字之和能被3或9整除的整数必能被3或9整除.能被11整除的数的特征:一个整数的奇数位数字之和与偶数位数字之和的差如果是11的倍数,则这个数就能被11整除.能被7,11,13整除的数的特征:一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除.3.整除的几条性质(1)自反性:a|a(a≠0)(2)对称性:若a|b, b|a,则a=b(3)传递性:若a|b, b|c,则a|c(4)若a|b, a|c,则a|(b, c)(5)若a|b, m≠0,则am|bm(6)若am|bm, m≠0,则a|b(7)若a|b, c|b, (a, c)=1,则ac|b高一·联赛班·第4讲·学生版2 二、带余除法对于任一整数a 及大于1的整数m ,存在唯一的一对整数q, r (0≤r<m),使得a=qm+r 成立,这个式子称为带余除法式。

初等数论简介

初等数论简介

初等数论
勒让德[法]1752~1833,在分 析学、数论、初等几何与天体 力学,取得了许多成果,是椭 圆积分理论奠基人之一。对数 论的主要贡献是二次互反律, 还是解析数论的先驱者之一.
雅可比[德]1804~1851,在偏 微分方程中,引进了“雅可比 行列式。对行列式理论作了奠 基性的工作,在代数学、变分法 复变函数论、分析力学 、动 力学及数学物理方面也有贡献。
初等数论
陈景润1933-1996,主要研究 解析数论,他研究哥德巴赫猜 想和其他数论问题的成就,至 今仍然在世界上遥遥领先。其 成果也被称之为陈氏定理。
王元1930-50年代至60年 代初,首先在中国将筛法 用于哥德巴赫猜想研究, 并证明了命题3+4,1957年 又证明2+3,这是中国学者 首次在此研究领域跃居世 界领先地位.
初等数论
欧几里得[前330年~前275年] 丢番图Diophante 246~330 欧氏几何学的开创者 , “代数学之父” 古希腊数学家,以其所著的 古希腊数学家,著《算术》 《几何原本》闻名于世。
初等数论
刘徽,生于公元250年左右, 三国时期数学家,是世界上最 早提出十进小数概念的人,著 《九章算术注》10卷;《海岛 算经》;《九章重差图》.割圆 术求圆面积和圆周率.
初等数论 三 、 几个著名数论难题 初等数论是研究整数性质的一门学科,历史上遗
留下来没有解决的大多数数论难题其问题本身容易搞
懂,容易引起人的兴趣,但是解决它们却非常困难。 其中,非常著名的问题有:哥德巴赫猜想 ;费 尔马大定理 ;孪生素数问题 ;完全数问题等。
初等数论 1、哥德巴赫猜想: 1742年,由德国中学教师哥德巴赫在教学中首先发 现的。1742年6月7日,哥德巴赫写信给当时的大数学

初等数论 第一章 整数的可除性

初等数论 第一章 整数的可除性

第一章整数的可除性§1 整除整数集对于加、减、乘三种运算都是封闭的,但是对于除法运算不封闭。

为此,我们引进整除的概念。

定义1设a,b∈Z,b≠0,如果存在q∈Z,使得等式a=bq成立,那么称b 整除a或a被b整除,记作:b|a,此时称b为a的因数(约数),a为b的倍数。

如果不存在满足等式a=bq的整数q,那么称b不能整除a或a不被b整除,记作b| a。

定理1设a,b,c∈Z,b≠0,c≠0,则(1)如果c|b,b|a,那么c|a;(2)如果b|a,那么bc|ac;反之亦真;(3)如果c|a,c|b,那么,对于任意m,n∈Z,有c|(ma+nb);(4)如果b|a,a≠0,那么|b|≤|a|;(5)如果b|a,a|b,那么|b|=|a|。

证明可选证。

定理2(带余除法)设a,b∈Z,b≠0,则存在q,r∈Z,使得a=bq+r,0≤r<|b|,并且q及r是唯一的。

证明当b|a时,取q=a/b,r=0即可。

当b!|a时,考虑集合E={a-bk|k∈Z },易知E中有正整数,因此E中有最小正整数,设为r=a-bk>0,下证:r<|b|。

因为b!|a,所以r≠|b|,若r>|b|,则r’=r-|b|>0,又r’∈E,故与r的最小性矛盾,从而存在q,r∈Z,使得a=bq+r,0≤r<|b|。

唯一性。

设另有q’,r’∈Z,使得a=bq’+r’,0≤r’<|b|,则b(q-q’)=r’-r,于是b|(r’-r),但由于0≤|r’-r|<|b|,故r’-r=0,即r=r’,从而q=q’。

定义2等式a=bq+r,0≤r<|b|中的整数q称为a被b除所得的(不完全)商,整数r称为a被b除所得的余数。

注r=0的情形即为a被b整除。

例1 设b=15,则当a=255时,a=17b+0,故q=17,r=0;当a=417时,a=27b+12,故q=27,r=12;当a=-81时,a=-6b+9,故q=-6,r=9。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档