2015年广东省珠海市七年级下学期数学期末试卷与解析答案
广东省珠海市七年级下学期数学期末试卷
广东省珠海市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共18分)1. (3分) (2016八上·河源期末) 如图,数轴上点P表示的数可能是()A .B . ﹣C .D . ﹣2. (3分) (2019七下·同安期中) 点A(-1,2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (3分) (2015七上·罗山期中) 若a、b互为相反数,c、d互为倒数,m的绝对值为2,则代数式的值为()A . ﹣3B . 3C . ﹣5D . 3或﹣54. (3分)(2017·洛宁模拟) 一中学有学生3000名,2016年母亲节,晓彤为了调查本校大约有多少学生知道自己母亲的生日,随机调查了200名学生,有20名同学不知道自己母亲生日,关于这个数据收集和处理的问题,下列说法错误的是()A . 个体是该校每一位学生B . 本校约有300名学生不知道自己母亲的生日C . 调查的方式是抽样调查D . 样本是随机调查的200名学生是否知道自己母亲的生日5. (3分)若不等式组只有3个整数解,则a的取值范围是()A . -3<a<-2B . -3≤a<-2C . -3≤a≤-2D . -3<a≤-26. (3分) (2020八上·沈阳期末) 下列等式成立的是()A .B .C .D .二、填空题 (共8题;共23分)7. (3分)(2017·德州) 计算:﹣ =________.8. (3分) (2018九上·成都期中) 如图,直线,且相邻两条平行线的距离都相等,若等腰的三个顶点都在直线上,则 ________.9. (3分)若5+ 的整数部分为a,小数部分为b,则a=________,b=________.10. (2分)已知关于x的不等式9x﹣a≤0的正整数解为1、2、3、4,则a的取值范围________.11. (3分)点P到x轴的距离为3,到y轴的距离为5,则点P的坐标是________12. (3分)(2017·浦东模拟) 一个不透明的袋子里装有3个白球、1个红球,这些球除了颜色外无其他的差异,从袋子中随机摸出1个球,恰好是白球的概率是________.13. (3分)(2018·天水) 已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是________.14. (3分) (2017八下·宝丰期末) 不等式组的解集是________.三、(本大题共5小题,每小题6分,共30分) (共5题;共30分)15. (6分) (2017七上·海南期中) 解方程组:16. (6分)(2018·阳信模拟) 解不等式组:17. (6分)如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.18. (6分)(2018·洪泽模拟) 我市组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定,现随机抽取部分学生书法作品的评定结果进行统计,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图②中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?19. (6分)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?四、(本大题共3小题,每小题8分,共24分) (共3题;共24分)20. (8分)(2017·安陆模拟) 综合题。
2015学年七年级(下)期末数学试题(含答案)
七年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法来选取正确答案.1.下列各式的计算中,正确的是()A.﹣2﹣2=﹣4 B.(+1)0=0 C.(﹣)﹣3=27 D.(m2+1)0=12.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的一组对边上,如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°(第2题) (第5题)3.若3x=a,3y=b,则3x﹣2y等于()A.B.2ab C.a+D.4.若分式方程=2+有增根,则a的值为()A.4 B.2 C.1 D.05.如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1﹣19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A.3个B.2个C.1个D.0个6.计算1÷的结果是()A.﹣m2﹣2m﹣1 B.﹣m2+2m﹣1 C.m2﹣2m﹣1 D.m2﹣17.已知多项式ax+b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,则a b的值为()A.﹣2 B.2 C.﹣1 D.18.为保证某高速公路在2013年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.+=B.+=C.﹣=D.+=9.下列不等式变形中,一定正确的是()A.若ac>bc,则a>b B.若a>b,则ac2>bc2C.若ac2>bc2,则a>b D.若a>0,b>0,且,则a>b10.不等式组的解集是3<x<a+2,则a的取值范围是()A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:2x3﹣8xy2=.12.芝麻作为食品和药物,均广泛使用,经测算,一粒芝麻重量约有0.00000201kg,用科学记数法表示10粒芝麻的重量为.13.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线a∥b,b∥c,则a∥c;(5)两条直线被第三条直线所截,同位角相等.其中正确的是.14.如果关于x的不等式(a﹣1)x>a+5和2x>4的解集相同,则a的值为.15.如果x2﹣2(m﹣1)x+m2+3是一个完全平方式,则m=.16.如果记y ==f (x ),并且f (1)表示当x =1时y 的值,即f (1)==;f ()表示当x =时y 的值,即f ()==;…那么f (1)+f (2)+f ()+f (3)+…+f (n +1)+f()= (结果用含n 的代数式表示).三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以) 17.解下列方程(组):(1) (2)﹣2=.18.计算:(1)()﹣1﹣4×(﹣2)﹣2+(﹣π+3.14)0﹣()﹣2(2)用简便方法计算:1252﹣124×126﹣2101×(﹣0.5)99.19.解不等式组,并从其解集中选取一个能使下面分式有意义的整数,代入求值.20.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.21.设b=ma是否存在实数m,使得(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)能化简为2a2,若能,请求出满足条件的m值;若不能,请说明理由.22.某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.23.(1)已知a、b、c是△ABC的三边长,试判断代数式(a2+b2﹣c2)2与4a2b2的大小.(2)已知a、b、c是△ABC的三边长,且3a3+6a2b﹣3a2c﹣6abc=0,则△ABC是什么三角形?24.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B 种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?参考答案一、仔细选一选1.解:A、﹣2﹣2=﹣,错误;B、(+1)0=1,错误;C、(﹣)﹣3=﹣27,错误;D、(m2+1)0=1,正确;故选D2.解:∵a∥b,∴∠1=∠3,∵∠2+∠3=45°,∴∠2=45°﹣∠3=45°﹣∠1=20°.故选C3.3x﹣2y=3x÷32y=3x÷32y=3x÷(3y)2=a÷b2=.故选A.4.解:已知方程去分母得:x=2(x﹣4)+a,解得:x=8﹣a,由分式方程有增根,得到x=4,即8﹣a=4,则a=4.故选:A5.解:①2007年的财政收入应该是,不是2007年我国财政收入约为61330(1﹣19.5%)亿元,所以①错.②因为是正增长所以2009年比2007年和2008年都高,所以②错.③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.所以③正确.故选C.6.解:1÷=1××(m+1)(m﹣1)=﹣(m﹣1)2=﹣m2+2m﹣1.故选B.7.解:∵(ax+b)(2x2﹣x+2)=2ax3+(2b﹣a)x2+(2a﹣b)x+2b,又∵展开式中不含x的一次项,且常数项为﹣4,∴,解得:,∴a b=(﹣1)﹣2=1,选D.8.解:设规定的时间为x天,由题意得,+=.故选D.9.解:A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.分母越大,分数值越小,故此选项错误.故选C.10.解:根据题意可知a﹣1≤3即a+2≤5,所以a≤3,又因为3<x<a+2,即a+2>3,所以a>1,所以1<a≤3,故选:D.二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.解:∵2x3﹣8xy2=2x(x2﹣4y2)=2x(x+2y)(x﹣2y).故答案为:2x(x+2y)(x﹣2y).12.解:0.00000201=2.01×10﹣6,故答案为:2.01×10﹣6.13.解:(1)在同一平面内,不相交的两条直线叫做平行线;故错误;(2)经过直线外一点,有且只有一条直线与已知直线平行;故错误;(3)在同一平面内,垂直于同一条直线的两直线平行;故错误;(4)直线a∥b,b∥c,则a∥c;故正确;(5)两条平行直线被第三条直线所截,同位角相等,故错误.其中正确的是(4).14.解:由2x>4得x>2,∵两个不等式的解集相同,∴由(a﹣1)x>a+5可得x>,∴=2,解得a=7.故答案为:7.15.解:∵x2﹣2(m﹣1)x+m2+3是一个完全平方式,∴(m﹣1)2=m2+3,即m2﹣2m+1=m2+3,解得:m=﹣1,故答案为:﹣116.解:∵根据题意,f(2)==,f()==;f(3)==,f()==;…f(n+1)=,f()==;∴f(1)+f(2)+f()+f(3)+…+f(n+1)+f()=+++++…++=+1+1+…+1=故答案为:+n.三、全面答一答(本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以)17.解:(1)方程组整理得:,①×6+②×5得:57x=﹣38,解得:x=﹣,把x=﹣代入①得:y=﹣,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=2﹣4×+1﹣9=﹣7;(2)原式=1252﹣(125﹣1)×(125+1)﹣2×(﹣2×0.5)99=1252﹣1252+1+2=3.19.解:,由①得,x<2,由②得,x>﹣3,所以,不等式组的解集是﹣3<x<2,÷﹣=×﹣=﹣=,分式有意义,则x2﹣1≠0,3x≠0,解得x≠±1,x≠0,所以,使得分式有意义的整数只有﹣2,代入得:原式===.20.解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:不能化简为2a2,理由:∵设b=ma,∴(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)=4a2﹣4ab+b2﹣a2+4b2+4ab+4a2=7a2+5b2=7a2+5(ma)2=7a2+5m2a2=(7+5m2)a2=2a2,故7+5m2=2,解得:5m2=﹣5,不合题意,错误.22.解:(1)100÷20%=500,∴本次抽样调查的样本容量是500;(2)∵360°×=43.2°,∴扇形统计图中“最喜欢足球运动”的学生数所对应的扇形圆心角度数为43.2°;(3)如图:(4)21000×=2520(人)全市本届学生中“最喜欢足球运动”的学生约有2520人;23.解:(1)(a2+b2﹣c2)2﹣4a2b2第11页(共11页)=(a 2+b 2﹣c 2+2ab )(a 2+b 2﹣c 2﹣2ab )=[(a +b )2﹣c 2][(a ﹣b )2﹣c 2]=(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +c ),∵a ,b ,c 是三角形ABC 三边,∴a +b +c >0,a +b ﹣c >0,a ﹣b ﹣c <0,a ﹣b +c >0,∴(a +b +c )(a +b ﹣c )(a ﹣b ﹣c )(a ﹣b +C )<0,即值为负数,(a 2+b 2﹣c 2)2<4a 2b 2(2)3a 3+6a 2b ﹣3a 2c ﹣6abc =0,可得:a (a ﹣c )(a +2b )=0,所以a =c ,所以△ABC 是等腰三角形.24.解:(1)设我校购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,由题意,得,∴解方程组得:答:购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元.(2)设我校购进A 种纪念品x 个,购进B 种纪念品y 个,由题意,得则,解得,解得:20≤y ≤25 ∵y 为正整数∴y =20,21,22,23,24,25答:共有6种进货方案;(3)设总利润为W 元,由题意,得W =20x +30y =20(200﹣2 y )+30y =﹣10y +4000(20≤y ≤25)∵﹣10<0,∴W 随y 的增大而减小,∴当y =20时,W 有最大值W 最大=﹣10×20+4000=3800(元)答:当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元.。
2015年广东省珠海市七年级下学期数学期末试卷及解析答案
2014-2015学年广东省珠海市七年级(下)期末数学试卷一、选择题1.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.已知a<b,则下列式子正确的是()A.a+5>b+5 B.3a>3b C.﹣5a>﹣5b D.>3.下列说法正确的是()A.3是9的算术平方根 B.1的平方根是1C.16的平方根是﹣4 D.27的立方根是﹣34.如图,能够判定AB∥CD的是()A.∠2=∠4 B.∠B=∠D C.∠1=∠3 D.∠B+∠BAC=180°5.下列调查工作需采用普查方式的是()A.对珠江某段水域的水质情况的调查B.对一批奶粉质量的调查C.对全国中学生近视情况的调查D.对某班学生使用手机情况的调查6.如图,两条平行线a,b被直线c所截,若∠1=70°,则∠2等于()A.20°B.70°C.110° D.120°二、填空题7.计算:+=.8.如图,把直角三角形的直角顶点放在两条平行线a,b上,已知∠1=40°,则∠2=.9.下列五个命题中,是真命题的是(填序号).①相等的角是对顶角;②同位角相等;③垂线段最短;④垂直于同一条直线的两条直线互相平行;⑤邻补角是互补的角.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回●这个数,●=.11.已知关于x的不等式2x﹣m>﹣3的解为x>﹣2,则m的值是.12.已知:A、B、C是某平行四边形的其中三个顶点,A(1,0),B(2,2),C (5,0),则最后一个顶点D的坐标为.三、解答题13.解方程组.14.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度得△A1B1C1,解答下列各题.(每个小方格的边长为1个单位长度)(1)画出△A1B1C1;(2)写出A1,B1,C1的坐标.15.解不等式组,并判断是否为该不等式组的解.16.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.17.某学校为了做好学生的交通安全宣传工作,特别对在校学生上学所乘交通工具做了随机调查,并将调查结果统计后绘制成如图所示的不完整的统计图.(1)这次被调查的学生共有人;扇形图中“骑自行车”部分的圆心角为;(2)把条形统计图补充完整;(3)通过对调查数据的分析,该校共有学生1500人,请你估计该校大约有多少人骑自行车上学.18.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?19.(1)比较下列两个算式的结果的大小(在横线上选填“>”、“=”或“<”)①22+322×2×3;②()2+()22××;③(﹣2)2+(﹣3)22×(﹣2)×(﹣3);④(﹣)2+(﹣)22×(﹣)×(﹣);⑤32+322×3×3…(2)观察并归纳(1)中的规律,用含a,b的一个关系式把你的猜想表示出来;(3)若已知ab=10,且a,b都是正数,则a2+b2的值不小于多少?20.如图,在△ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以3cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以cm/s 的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF +S△ACE<S△ABC.2014-2015学年广东省珠海市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(﹣2,3)在第二象限.故选:B.2.已知a<b,则下列式子正确的是()A.a+5>b+5 B.3a>3b C.﹣5a>﹣5b D.>【解答】解:A、不等式两边都加5,不等号的方向不变,错误;B、不等式两边都乘3,不等号的方向不变,错误;C、不等式两边都乘﹣5,不等号的方向改变,正确;D、不等式两边都除以3,不等号的方向不变,错误;故选:C.3.下列说法正确的是()A.3是9的算术平方根 B.1的平方根是1C.16的平方根是﹣4 D.27的立方根是﹣3【解答】解:3是9的算术平方根,故选项A正确,1的平方根是±1,故选项B错误,16的平方根是±4,故选项C错误,27的立方根是3,故选项D错误,故选:A.4.如图,能够判定AB∥CD的是()A.∠2=∠4 B.∠B=∠D C.∠1=∠3 D.∠B+∠BAC=180°【解答】解:根据∠2=∠4,可得AD∥BC;根据∠B=∠D,不能得到AB∥CD;根据∠1=∠3,可得AB∥CD;根据∠B+∠BAC=180°,不能得到AB∥CD;故选:C.5.下列调查工作需采用普查方式的是()A.对珠江某段水域的水质情况的调查B.对一批奶粉质量的调查C.对全国中学生近视情况的调查D.对某班学生使用手机情况的调查【解答】解:A、对珠江某段水域的水质情况的调查无法普查,故A不符合题意;B、对一批奶粉质量的调查调查具有破坏性适合抽样调查,故B不符合题意;C、对全国中学生近视情况的调查调查范围广适合抽样调查,故C不符合题意;D、对某班学生使用手机情况的调查适合普查,故D符合题意;故选:D.6.如图,两条平行线a,b被直线c所截,若∠1=70°,则∠2等于()A.20°B.70°C.110° D.120°【解答】解:∵∠1=70°,∠3与∠1是对顶角,∴∠3=∠1=70°;又∵直线a∥b,∴∠2+∠3=180°,即∠2=180°﹣∠3=180°﹣70°=110°.故选:C.二、填空题7.计算:+=1.【解答】解:原式=﹣2+3=1,故答案为:18.如图,把直角三角形的直角顶点放在两条平行线a,b上,已知∠1=40°,则∠2=50°.【解答】解:如图,∵a∥b,∴∠3=∠1=40°,∴∠2=180°﹣∠3﹣90°=180°﹣40°﹣90°=50°.故答案为:50°.9.下列五个命题中,是真命题的是③⑤(填序号).①相等的角是对顶角;②同位角相等;③垂线段最短;④垂直于同一条直线的两条直线互相平行;⑤邻补角是互补的角.【解答】解:①相等的角不一定是对顶角,①是假命题;②同位角不一定相等,②是假命题;③垂线段最短,③是真命题;④在同一平面内,垂直于同一条直线的两条直线互相平行,④是假命题;⑤邻补角是互补的角,⑤是真命题,故答案为:③⑤.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回●这个数,●=8.【解答】解:把x=5代入方程组得:,解得:y=﹣2,则●这个数为10﹣2=8,故答案为:811.已知关于x的不等式2x﹣m>﹣3的解为x>﹣2,则m的值是﹣1.【解答】解:不等式变形得:2x>m﹣3,解得:x>,∵x>﹣2,∴=﹣2,解得:m=﹣1.故答案为:﹣1.12.已知:A、B、C是某平行四边形的其中三个顶点,A(1,0),B(2,2),C (5,0),则最后一个顶点D的坐标为(6,2),(5,﹣2),(﹣2,2).【解答】解:如图所示:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(6,2),(5,﹣2),(﹣2,2).故答案为:(6,2),(5,﹣2),(﹣2,2).三、解答题13.解方程组.【解答】解:两式相减,得3n=15,解得n=5,把n=5代入m﹣n=1,解得m=6,原方程组的解为.14.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度得△A1B1C1,解答下列各题.(每个小方格的边长为1个单位长度)(1)画出△A1B1C1;(2)写出A1,B1,C1的坐标.【解答】解:(1)如图所示:(2)A1(0,5),B1(﹣1,1),C1(5,1).15.解不等式组,并判断是否为该不等式组的解.【解答】解:,由①得x>﹣3,由②得x≤1,∴原不等式组的解集是﹣3<x≤1.∵>1,∴不是该不等式组的解.16.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.17.某学校为了做好学生的交通安全宣传工作,特别对在校学生上学所乘交通工具做了随机调查,并将调查结果统计后绘制成如图所示的不完整的统计图.(1)这次被调查的学生共有500人;扇形图中“骑自行车”部分的圆心角为144°;(2)把条形统计图补充完整;(3)通过对调查数据的分析,该校共有学生1500人,请你估计该校大约有多少人骑自行车上学.【解答】解:(1)由题意可得,本次被调查的学生共有:150÷30%=500(人),扇形图中“骑自行车”部分的圆心角为:360°×=144°,故答案为:500,144°;(2)步行的有:500﹣150﹣50﹣200=100(人),补充完整的条形统计图如右图所示;(3)由题意可得,该校大约骑自行车上学的有:1500×=600(人),答:该校大约有600人骑自行车上学.18.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【解答】解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾.由题意得:0.5x+0.8(6000﹣x)=3600,解方程,可得:x=4000,∴乙种鱼苗:6000﹣x=2000,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)设购买鱼苗的总费用为w,甲种鱼苗买了a尾,则购买乙种鱼苗(6000﹣a)尾.则w=0.5a+0.8(6000﹣a)=﹣0.3a+4800,由题意,有a+(6000﹣a)≥×6000,解得:a≤2400,在w=﹣0.3a+4800中,∵﹣0.3<0,∴w随a的增大而减少,∴当a取得最大值时,w便是最小,即当a=2400时,w=4080.最小答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.19.(1)比较下列两个算式的结果的大小(在横线上选填“>”、“=”或“<”)①22+32>2×2×3;②()2+()2>2××;③(﹣2)2+(﹣3)2>2×(﹣2)×(﹣3);④(﹣)2+(﹣)2>2×(﹣)×(﹣);⑤32+32=2×3×3…(2)观察并归纳(1)中的规律,用含a,b的一个关系式把你的猜想表示出来;(3)若已知ab=10,且a,b都是正数,则a2+b2的值不小于多少?【解答】解:(1)①∵22+32=13,2×2×3=12,∴22+22>2×2×3;②∵()2+()2=,2××=,∴()2+()2>2××,③∵(﹣2)2+(﹣3)2=4+9=13,2×(﹣2)×(﹣3)=12,∴(﹣2)2+(﹣3)2>2×(﹣2)×(﹣3);④∵(﹣)2+(﹣)2=,2×(﹣)×(﹣)=,∴(﹣)2+(﹣)2>2×(﹣)×(﹣);⑤∵32+32=18,2×3×3=18,∴(32+32=2×3×3;(2)观察(1)中的计算可发现规律:a2+b2≥2ab;(3)∵a2+b2的最小值是2ab,∴a2+b2的值不小于2ab=20.故答案为:①>,②>,③>,④>,⑤=.20.如图,在△ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以3cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以cm/s 的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF +S△ACE<S△ABC.【解答】解:当点F运动时间为ts时,AE=3(t+1)cm,BF=tcm.(1)∵∠BAF<∠BAC,∴BF<BC,即t<6,解得:t<,∴当0<t<时,∠BAF<∠BAC.(2)∵BF=tcm,BC=6cm,∴CF=|BF﹣BC|=|t﹣6|cm.∵AE=CF,即3(t+1)=|t﹣6|,解得:t1=,t2=6,∴当t=或6时,AE=CF.(3)∵S△ABF +S△ACF=S△ABC,S△ABF+S△ACE<S△ABC,∴S△ACE <S△ACF(点F在点线段BC上).∵AG∥BC,∴△AFC和△AEC的高相等,∴AE<CF,即3(t+1)<6﹣t,解得:t<,∴当0<t<时,S△ABF +S△ACE<S△ABC.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。
【推荐】广东省广州市海珠区七年级下册第二学期期末数学试卷解析
广东省广州市海珠区七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣B.C.|﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A.x﹣2>y﹣2 B.x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A.6本B.9本C.11本D.12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3)B.(﹣2,﹣2)C.(2,5)D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A.B.C.D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE=.15.已知≈2.078,≈20.78,则y=.16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(2015春•海珠区期末)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(2015春•海珠区期末)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积=.20.(10分)(2015春•海珠区期末)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)(2015春•海珠区期末)李红在学校的研究性学习小组中负责了解初一年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m=,n=;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校初一年级女生掷实心球的成绩达到优秀的总人数.22.(12分)(2015春•海珠区期末)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)(2015春•海珠区期末)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周3台A种型号5台B种型号720元第二周4台A种型号10台B种型号1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)(2015春•海珠区期末)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)(2015春•海珠区期末)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.2019-2020学年广东省广州市海珠区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣B.C.|﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A.x﹣2>y﹣2 B.x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析:A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A.6本B.9本C.11本D.12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3)B.(﹣2,﹣2)C.(2,5)D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A.1 B.2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A.B.C.D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE=2.考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y=8996.考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(2015春•海珠区期末)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(2015春•海珠区期末)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(3,﹣2)、B(4,3);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积=7.考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)(2015春•海珠区期末)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)(2015春•海珠区期末)李红在学校的研究性学习小组中负责了解初一年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m=10,n=50;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校初一年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校初一年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)(2015春•海珠区期末)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a 的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)(2015春•海珠区期末)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周3台A种型号5台B种型号720元第二周4台A种型号10台B种型号1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A 型号5台B型号的计算器收入是720元,4台A型号10台B型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)(2015春•海珠区期末)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)(2015春•海珠区期末)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:S阴影=×2×2=2.点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.。
广东初一初中数学期末考试带答案解析
广东初一初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.的相反数是()A.B.C.2018D.﹣20182.(2015秋•陕西校级期末)下列调查方式合适的是()A.为了了解电视机的使用寿命,采用普查的方式B.为了了解全国中学生的视力状况,采用普查的方式C.对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式3.深圳是一个美丽的海滨城市,海岸线长约230000米,东临大亚湾,西濒珠江口,数据230000用科学记数法表示为()A.23×104B.2.3×105C.2.3×106D.0.23×1074.下列各对数中,数值相等的是()A.与B.与C.与D.与5.下面几何体的截面图可能是圆的是()A.正方体B.棱柱C.圆锥D.三棱锥6.左边几何体的展开图最有可能是()7.已知代数式x+2y的值是3,则代数式2x+4y+1的值是(▲ )A.1B.4C.7D.98.如果,那么的值一定是()A.B.C.D.或9.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行。
已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米,则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.510.如图,直线a、b都与直线c相交,给出下列条件:(1)∠1=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断的是()A.(1)、(3)B.(2)、(4)C.(1)、(3)、(4)D.(1)、(2)、(3)、(4)11.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°12.如图,若,则()A.∠1= ∠2+∠3B.∠1=∠3-∠2C.∠1+∠2+∠3=180°D.∠1-∠2+∠3=180°二、填空题1.单项式的系数是______,次数是______.2.已知与是同类项,则=_______.3.将两块直角三角尺的直角顶点重合为如图的位置, 若∠AOD=110°,则∠BOC=_______。
珠海市七年级下学期数学期末考试试卷
珠海市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共29分)1. (3分)下列图形中,是轴对称图形的是()A .B .C .D .2. (3分)全球可被人类利用的淡水总量仅占地球上总水量的0.00003,因此珍惜水、保护水,是我们每一位公民义不容辞的责任.其中数字0.00003用科学记数法表示为()A . 3×10-4B . 3×10-5C . 0.3×10-4D . 0.3×10-53. (3分)(2016·遵义) 下列运算正确的是()A . a6÷a2=a3B . (a2)3=a5C . a2•a3=a6D . 3a2﹣2a2=a24. (3分)如图:Rt△ABC中,∠C=90°,CD⊥AB于D.图中与∠A互余的角有()A . 0个B . 1个C . 2个D . 3个5. (3分)下列各式中,计算错误的是()A . (x+1)(x+2)=x2+3x+2B . (x-2)(x+3)=x2+x-6C . (x+4)(x-2)=x2+2x-8D . (x+y-1)(x+y-2)=(x+y)2-3(x+y)-26. (3分)(2016·海曙模拟) 已知三角形的两边长分别为3,4,则第三边长的取值范围在数轴上表示正确的是()A .B .C .D .7. (3分)下列运算正确的是()A .B .C .D .8. (3分)如图所示,∠1=∠2,则下列结论正确的是()A . ∠4=∠3B . ∠2=∠4C . ∠3+∠4=180°D . c//d9. (3分)(2017·洛阳模拟) 如图,AB∥CD,已知∠BED=64°,BC平分∠ABE,则∠ABC的度数是()A . 16°B . 32°C . 64°D . 116°10. (2分) (2015九上·宁波月考) 已知函数y=|(x﹣1)2﹣1|,则使y=k成立的x值恰好有三个,则k 的值为()A . 0B . 1C . 2D . 3二、填空题(6个题,每题4分,共24分) (共6题;共24分)11. (4分)平方等于它本身的数是________ ,立方等于它本身的数是________ ;12. (4分)若a+b=0,ab=11,则a2﹣ab+b2的值为________.13. (4分)一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是________枚.14. (4分)从2001年2月21日零时起,中国电信执行新的固定电话收费标准,其中本地网营业区内通话费是:前3分钟是0.2元(不足3分钟近3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟科计算),现有一个学生星期天打本地网营业区内电话t分钟(t>3)应交电话费________元.15. (4分) (2018八上·林州期末) 在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=________.16. (4分)(2018·株洲) 如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(一) (共3题;共18分)17. (6分)(2017·东兴模拟) 计算:20160﹣|﹣ |+ +2sin45°.18. (6分) (2018八上·南召期末) 先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.19. (6分) (2019八下·渭滨月考) 如图,过点A做一条直线,使其将ΔABC分成两个面积相等的三角形.四、解答题(二) (共3题;共21分)20. (7.0分)(2017·徐州模拟) 一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.21. (7分)(2019·南通) 如图,有一池塘要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C ,连接AC并延长到D ,使连接BC并延长到E ,使连接DE ,那么量出DE的长,就是A、B的距离请说明DE的长就是A、B的距离的理由.22. (7.0分)(2017·苏州模拟) 如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.(1)求证:△ABD≌△ECB;(2)若∠ABD=30°,BE=3,求弧CD的长.五、解答题(三) (共3题;共27分)23. (9分) (2017七上·东城期末) 计算:(1) |-12|-(-15)+(-24)×(2) -12×2+(-2)2÷4-(-3).24. (9分) (2016九上·海南期中) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.25. (9分)(2013·杭州) 如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1 .(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.参考答案一、选择题 (共10题;共29分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(6个题,每题4分,共24分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一) (共3题;共18分)17-1、18-1、19-1、四、解答题(二) (共3题;共21分)20-1、20-2、21-1、22-1、22-2、五、解答题(三) (共3题;共27分) 23-1、23-2、24-1、24-2、25-1、第11 页共12 页25-2、第12 页共12 页。
2015—2016学年第二学期期末考试七年级数学试题
珠海市2015—2016学年度第二学期学生学业质量调研测试七年级数学试题考试时间80分钟,满分100分一、选择题(本大题5小题,每小题3分,共15分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑 1. 下列各数中,属于无理数...的是 A. 3- B.31C. 3D. 252. 已知b a >,则下列式子中错误..的是 A. 55+>+b a B. b a 33> C. b a 55->- D.33ba > 3. 在四个点)0,2()3,0(-)3,5(-)5,0(中,在x 轴上的点有 A. 0个 B. 1个 C. 2个 D. 3个 4. 如图,由CD AB //,能推出的正确结论是 A. 31∠=∠ B. 42∠=∠C. D B ∠=∠D. 180=∠+∠BAD B 5. 下列调查工作适宜采用普查方式的是A. 对珠海市某天空气质量情况的调查B. 对广东省中学生使用手机情况的调查C. 对某批食盐的质量情况的调查D. 某列车上有A 级通缉犯,警察对该车乘客的调查 二、填空题(本大题4小题,每小题3分,共12分)请将下列各题的正确答案填写在答题卡相应的位置上 6. 如图,两条平行线a ,b 被直线c 所截,若1152=∠,则1∠度数为 . 7. 已知方程62=+y x ,用含x 的代数式 表示y ,则=y .8. 在平面直角坐标系中,点()3,4P -到x 轴的距离为 .9. 方程组⎩⎨⎧=++=+m y x m y x 23223中,若5=+y x ,则m 的值是 .三、解答题(一)(本大题5小题,每小题5分,共25分) 10. 计算:328)4(9-+-+.11. 已知:32-a 是25的算数平方根,求a 的值.A CDB43 21第4题图ba12. 解方程组: ⎩⎨⎧-=-=+2102n m n m13. 解不等式组: ⎪⎩⎪⎨⎧-≥->+322123x x x x14. 已知:如图 , EF ∥AD , 21∠=∠, 求证:BAC ∠与DGA ∠互补. 请把下列解题的过程补写完整: 证明:∵EF ∥AD (已知)∴ =∠2 (两直线平行,同位角相等)又∵ 21∠=∠ (已知)∴ 31∠=∠ ( )∴ AB ∥_______ ( )∴ ︒=∠+∠180DGA BAC ( ) ∴ BAC ∠与DGA ∠互补.四、解答题(二)(本大题4小题,每小题7分,共28分)15.某校七年级举行“数学计算能力”比赛,比赛结束后,随机抽查部分学生的成绩,以下是根据抽查结果绘制的统计图表. 组别 分数x频数 A 5040<≤x 20 B 6050<≤x 30 C 7060<≤x 50 D 8070<≤x m E9080<≤x40根据以上信息解决下列问题:(1)请计算上述图表中m 和n 的值,并补全直方图. m = ,n = ; (2)扇形统计图中“D 组”所对应的圆心角的度数是 度;(3)若七年级共有1000名学生,分数不低于60分为合格,请你估算本次比赛全年级合格学生的人数.第14题图16. 如图,平面直角坐标系中,把三角形ABC 向下平移4个单位长度,再向左平移5个单位长度得到对应的三角形111C B A .(每小方格的边长为1个单位长度) (1)画出三角形111C B A ,并分别写出点1A 、1B 、1C 的坐标;(2)若线段AB 的长度为5个单位长度,则点1C 到直线11B A 的距离 为 .(直接写出答案,不用解题过程)17. 以下是小明和李叔叔的对话,利用图中的全部信息,解答下列问题.(1)求每支笔、每本练习本各多少元?(2)若小红共花了31元用于购买上述的笔和练习本,请直接写出....她所有可能的购买方案? 18. 如图,四边形ABCD 中,点E 和点F 和分别为边CD 和BC 上的点, 并且 1∠=∠ABC , ︒=∠+∠1802A .(1)请判断直线AD 和直线BE 的位置关系,并证明你的结论;(2)若BE 恰好是ABC ∠的角平分线,CD AD ⊥,︒=∠55FEC ,求1∠的度数.第16题图注:他们买的笔单价一样;练习本单价也一样。
珠海市七年级下学期数学期末试卷
珠海市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共17分)1. (2分)(2018·金乡模拟) 下列图标中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (3分)下列各式计算中,正确的是()A . 2a+2=4aB . ﹣2x2+4x2=2x2C . x+x=x2D . 2a+3b=5ab3. (3分)(2016·义乌) 一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A .B .C .D .4. (3分)(2019·常熟模拟) 如图,是一块直角三角板,,,现将三角板叠放在一把直尺上,与直尺的两边分别交于点D,E,AB与直尺的两边分别交于点F,G,若∠1=40°,则∠2的度数为()A . 40ºB . 50ºC . 60ºD . 70º5. (3分)若(x+6)(x﹣2)=x2+mx+n,则m.n分别为()A . m=4,n=12B . m=﹣4,n=12C . m=﹣4,n=﹣12D . m=4,n=﹣126. (3分) (2019八上·温州期末) 如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B→A→D→C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A . 10B .C . 8D .二、填空题 (共6题;共17分)7. (3分)(2020·阳新模拟) “白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084可以用科学记数法表示为________.8. (3分) (2020七下·江阴月考) 若,,则的值是________.9. (3分)(2017·江都模拟) 等腰三角形的两边长分别是4cm和8cm,则它的周长是________.10. (3分) (2019九上·宜兴月考) 如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=53o ,则∠BAC的度数等于________.11. (3分) (2019八下·松北期末) 如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF= ________.12. (2分) (2020八下·成都期中) 一个面积为的等腰三角形,它的一个内角是30°,则以它的腰长为边长的正方形面积为________.三、(本大题共5小题,每小题6分,共30分) (共5题;共30分)13. (6分) (2019七下·柳江期中) 计算:14. (6分) (2019八上·西岗期末) 计算:(1)(2)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣1.15. (6分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.16. (6分) (2019七下·高安期中) 如图,若∠ADE=∠ABC,BE⊥AC于E,MN⊥AC于N,试判断∠1与∠2的关系,并说明理由17. (6分)(2019·苏州模拟) 小明最喜欢吃芝麻馅的汤圆了,一天早晨小明妈妈给小明下了四个大汤圆,一个花生馅,一个水果馅,两个芝麻馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)直接列式求出小明吃第一个汤圆恰好是芝麻馅的概率;(2)请利用树状图或列表法,求小明吃前两个汤圆恰好是芝麻馅的概率.四、(本大题共3小题,每小题8分,共24分) (共3题;共24分)18. (8分) (2019七下·南山期末) 已知△ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM 至点D,使DM=BM,连接AD.(1)如图①,求证:△DAM≌△BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:△BCM≌△ACN;②如图③,延长NA至点E,使AE=NA,连接DE,求证:BD⊥DE.19. (8分) (2015七下·深圳期中) 观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)通过猜想写出与第n个点阵相对应的等式.20. (8分)(2011·河南) 如图,在Rt△ABC中,∠B=90°,BC=5 ,∠C=30°.点D从点C出发沿CA 方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC 于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.五、(本大题共2小题,每小题9分,共18分) (共2题;共11分)21. (2分)小王周末骑电单车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书店后继续前往商场,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小王从家到新华书店的路程是多少米?(2)小王在新华书店停留了多少分钟?(3)买到书店,小王从新华书店到商场的汽车速度是多少米/分钟?22. (9分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02 , 12=42-22 , 20=62-42 ,因此4,12,20这三个数都是神秘数.(1) 28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?六、(本大题共12分) (共1题;共12分)23. (12分) (2019七下·宿豫期中) 如图1,将△ABC纸片沿DE折叠,使点C落在四边形ABDE内点C’的位置,(1)①若,则 ________;②若,则 ________;③探索、与之间的数量关系,并说明理由;________(2)直接按照所得结论,填空:①如图中,将△ABC纸片再沿FG、MN折叠,使点A、B分别落在△ABC内点A’、B’的位置,则________;②如图中,将四边形ABCD按照上面方式折叠,则 ________;③若将n边形也按照上面方式折叠,则 ________;(3)如图,将△ABC纸片沿DE折叠,使点落在△ABC边上方点的位置,探索、与之间的数量关系,并说明理由.参考答案一、选择题 (共6题;共17分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共17分)7-1、8-1、9-1、10-1、11-1、12-1、三、(本大题共5小题,每小题6分,共30分) (共5题;共30分)13-1、14-1、14-2、15-1、16-1、17-1、17-2、四、(本大题共3小题,每小题8分,共24分) (共3题;共24分)18-1、19-1、19-2、20-1、20-2、20-3、五、(本大题共2小题,每小题9分,共18分) (共2题;共11分)21-1、21-2、21-3、22-1、22-2、22-3、六、(本大题共12分) (共1题;共12分)23-1、23-2、23-3、。
广东省珠海市七年级下学期数学期末考试试卷
广东省珠海市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单项选择题. (共10题;共20分)1. (2分) (2018八上·昌图月考) 下列说法中:①不带根号的数都是有理数;②-8没有立方根;③平方根等于本身的数是1;④ 有意义的条件是a为正数;其中正确的有()A . 0个B . 1个C . 2个D . 3个2. (2分)下列调查适合作普查的是()A . 对和甲型H7N9的流感患者同一车厢的乘客进行医学检查B . 了解全国手机用户对废手机的处理情况C . 了解全球人类男女比例情况D . 了解怀化市中小学生压岁钱的使用情况3. (2分)在π,﹣,,3.14,,sin30°,0各数中,无理数有()A . 2个B . 3个C . 4个D . 5个4. (2分)(2017·南安模拟) 已知点P(3﹣3a,1﹣2a)在第四象限,则a的取值范围在数轴上表示正确的是()A .B .C .D .5. (2分) (2018七下·龙岩期中) 如图,下列能判定AB∥CD的条件的个数是()⑴∠B+∠BCD=180°;⑵∠1=∠2;⑶∠3=∠4;⑷∠B=∠5.A . 1个B . 2个C . 3个D . 4个6. (2分)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A . 45°B . 40°C . 35°D . 30°7. (2分)若方程组的解是,则方程组的解是()A .B .C .D .8. (2分)一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了()道题.A . 17B . 18C . 19D . 209. (2分) (2017七下·马龙期末) 如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()A .B .C .D .10. (2分)如果一个角的两边分别平行于另一个角的两边,那么这两个角的关系是()A . 相等B . 互补C . 相等或互补D . 以上结论都不对二、填空题 (共8题;共11分)11. (1分) (2016八上·济南开学考) 平方根等于它本身的数是________.12. (2分) (2018七下·龙湖期末) 点M(﹣3,4)到x轴的距离是________;到y轴的距离是________.13. (1分) (2019七下·恩施月考) 如图,若AB∥CD,EF与AB、CD分别相交于点E,F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BE P=________°.14. (1分) (2019八上·沙坪坝月考) 已知方程是关于x,y的二元一次方程,则m=________.15. (1分) (2018八上·天台月考) 在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB上一点,AE=AD,且BF∥CD,AF⊥CE的延长线于F.连接DE交对角线AC于H.下列结论:①△ACD≌ACE;②AC垂直平分ED;③CE=2BF;④CE平分∠ACB.其中结论正确的是________.(填序号)16. (1分)点到直线的距离:直线外一点到这条直线的________的长度.17. (2分)(2020·青海) (-3+8)的相反数是________;的平方根是________.18. (2分)已知,x=3、y=2是方程组的解,则a=________,b=________三、解答题 (共6题;共40分)19. (5分) (2020七下·玄武期末) 解方程组20. (5分) (2020八下·大东期末) 解不等式组:,并把该不等式组中的两个不等式的解集在下图所示的数轴上表示出来.21. (1分) (2020七下·恩施月考) 如图①: ∥ ,图②: ∥ 图③: ∥ ,图④: ∥ …,则第n个图中的=________°(用含n的代数式表示)22. (10分) (2015七下·启东期中) 如图所示,点A的坐标为A(0,a),将点A向右平移b个单位得到点B,其中a,b满足:(3a﹣2b)2+|a+b﹣5|=0.(1)求点B的坐标并求△AOB的面积S△AOB;(2)在x轴上是否存在一点D,使得S△AOB=2S△AOD?若存在,求出D点的坐标;若不存在,说明理由.23. (9分)(2020·临海模拟) 在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了________名同学;(2)条形统计图中,m=________,n=________;(3)扇形统计图中,艺术类读物所在扇形的圆心角是________度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?24. (10分) (2019七下·遂宁期中) 今年6月份,我市某果农收获荔枝30吨,香蕉13吨.现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可将荔枝4吨和香蕉1吨,乙种货车可将荔枝和香蕉各2吨.(1)该果农安排甲、乙两种货车时有几种方案?请你帮助设计出来?(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输1300元,则该果农应选择哪能种方案才能使运输费最少?最少动费是多少?参考答案一、单项选择题. (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共11分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共6题;共40分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、答案:23-4、考点:解析:答案:24-1、答案:24-2、考点:解析:。
广州市海珠区2015-2016学年七年级下期末数学试卷含答案解析
24.(12 分)京东商城销售 A、B 两种型号的电风扇,销售单价分别为 250
元、180 元,如表是近两周的销售利润情况:
销售时段
销售数量
销售利润
A 种型号 B 种型号
第一周
30 台
60 台
3300 元
第二周
பைடு நூலகம்
40 台
100 台
5000 元
(进价、售价均保持不变,利润=销售收入﹣ 进货成本)
(1)求 A、B 两种型号电风扇的每台进价; (2)若京东商城准备用不多于 5 万元的金额采购这两种型号的电风扇共 300 台,求 A 种型号的电风扇最多能采购多少台? 25.(12 分)已知点 A(a,3),点 B(b,6),点 C(5,c),AC⊥x 轴,CB ⊥y 轴,OB 在第二象限的角平分线上:
21.(10 分)如图,若∠EFD=110°,∠FED=35°,ED 平分∠BEF,那么 AB 与 CD 平行吗?请说明你的理由.
22.(12 分)广东省“二孩”政策已经正式开始实施,给我们的生活可能带来一 些变化,广州市某区计生部门抽样调查了部分市民对变化的看法已知
中的 x、y 满足 0<x﹣y <1 ,求k 的取值范围.
(1)写出 A、B、C 三点坐标; (2)求△ABC 的面积; (3)若点 P 为线段 OB 上动点,当△BCP 面积大于 12 小于 16 时,求点 P 横坐 标取值范围.
26.(7 分)如图 1,在△ABC 中,请用平行线的性质证明∠A+∠B+∠C=180°.
27.(7 分)如图,在平面直角坐标系中,AM、DM 分别平分∠BAC,∠ODE,
且∠MDO﹣∠MAC=45° AB y
F
, 交 轴于 :
2015-2016学年广州市海珠区七下期末数学试卷
2015.2016学年广州市海珠区七下期末数学试卷一.选择题(共10小题;共50分) 1 •如图,同位角是(・)3.、的3倍与y 的和不小于2“用不等式可表示为(.)A. 3x + y > 2B ・ 3 (x + 刃 > 2C ・ 3x + y 》26•下列语句中,是假命题的是(•)A.所冇的实数祁口J 用数轴上的点表示B. 等角的补角相等C. 互补的两个角是邻补角 D •垂线段最短7•如图•把一块三角板的直角顶点放在直尺的一边上,如果Z1 = 30° ,那么Z2为(..)A. 60°B. 30°C. 70°D. 50°&如图所示,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程组.正确的是(•)沁页(共11页〉C. 22 和 Z4D. Z1 和 Z42.在实数 %, p 0, p \/64中,无理数有(・ A. 1个B.2个C.3个 )D.4个4•下列问题,不适合用全|侨调査的是(・) A. 了解一批灯管的使用卷命 C.旅客卜•飞机前的安检5•若x>y t 则下列式子中错误的是(•) x yA.x-3>y-3B.- > -B. 学校招聘教师,对应聘人员的面试 D. 了解全班学生的课外读书时间C ・x + 3>y + 3 D. -3x > —3y9•为了佔计池塘里有多少条鱼,先从湖里捕捞100条鱼记上标记,然后放回池塘去.经过一段时间, 待有标记的鱼完全混合后,第二次再捕捞200条鱼,发现有5条鱼有标记,那么你估计池塘里大 约有(..)鱼. A. 1000 条B. 4000 条C. 3000 条D. 2000 条10. 如图,直线h II h ,则下列式子成立的是(・)二填空题(共6小题;共30分)11•如图,Z1 =40° ,如果CD || BE ,那么Z3的度数为 _______________12•—个数的立方根是4,那么这个数的平方根是 __________ ・13. 点P 在第四象限,尸到x 轴的距离为6, P 到y 轴的距离为5,则点P 的坐标为 _____________ . 14. 线段CD 是由线段术〃平移得到的,点4(一 1,4)的对应点为C (4,7),则点〃(一4,一1)的对应点D 的坐标是 ________ .15. 若关于x 的不等式(a-2)x>a-2解集为xvl,化简一 3|= _____________________ . 16. 我们用⑷表示不大于a 的最大整数,例如:[1.5]= 1 , [2,3] = 2 ,若[x] + 3=l ,则x 的取值范围是 ______ ・三.解答题(共11小題;共143分) 17. 计算:(1) 749-7064- ^125 ;(2) 372-|y3-72| .\2x-y = 15.C b = 3x.2x + j = 75, D. <I x = 3y ・A. Z1 +Z2 + Z3 = 180° C. Z2 + Z3-Z1 = 180°B ・ Zl-Z2 + Z3 = 180° D ・Z1 + Z2-Z3= 180°75厘来/>h1&已知(X -2)2 = 9 ,求x 的值.5x + 4 v 2x — 2,_并把解集在数轴上表示出來.2(x- 1) > 3(x + 1).20. 如图,在半面直角坐标系中,"BC 三个顶点的坐标分别为点(一3.4) , 8(-4,1), C(0,-l).将向右平移4个单位长度,再向下平移3个单位长度,得到△ A'B C , 其中点々,B\ C'分别为点力,B 9 C 的对应点.(1) 请在所给坐标系中画出厶A!B f C •并直接写出点川,U 的坐标:(2) 若力〃边上一点P(m.n)经过上述平移后的对应点为P',用含n 的式子农示点B 的坐标(直接写岀结果即可).21. 如图,若/-EFD = 110° ,厶FED = 35。
2015年初一第二学期数学期末试卷(带答案)
2015年初一第二学期数学期末试卷(带答案)距离期末考试还有不到一个月的时间了,在这段时间内突击做一些试题是非常有帮助的,下文整理了2015年初一第二学期数学期末试卷,希望对大家有所帮助!预祝大家取得好成绩! 一、选择题(每题3分,共30分) 1.点P(2,-3)所在象限为( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 2.当a大于b时,下列各式中不正确的是( ) A、a-3大于b-3 B、3-a小于3-b C、 D、 3.点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( ) A、(1,-8) B、(1, -2) C、(-7,-1 ) D、( 0,-1) 4.如右图,下列能判定∥的条件有( )个. (1) (2) ;(3) ;(4) . A.1 B.2 C.3 D.4 5.在直角坐标系中,点P(6-2x,x-5)在第四象限, 则x的取值范围是( ). A、3 6.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( ) A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2) 7.已知五个命题,正确的有( ) (1)有理数与无理数之和是无理数⑵有理数与无理数之积是无理数 (3)无理数与无理数之积是无理数⑷无理数与无理数之积是有理数 (5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。
A. 1个B. 2个C. 3个D.4个 8.为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是( ). A.2000名运动员是总体B.100名运动员是所抽取的一个样本 C.样本容量为100名D.抽取的100名运动员的年龄是样本 9.若是49的算术平方根,则= ( ) A. 7 B. -7 C. 49 D.-49 10. 如右图,,且∠A=25度,∠C=45度,则∠E的度数是( ) A. B. C. D. 二、填空题(每题3分,共24分) 11.点P在第二象限,P到x轴的距离为4,P到y轴距离为3,则点P的坐标为( , ) 12. 的算术平方根是_____. 13.若不等式组解集为x大于2,则的取值范围是. 14. 两根木棒的长分别为和.要选择第三根木棒,将它们钉成一个三角形框架,那幺,第三根木棒长( )的范围是____________. 15. 在自然数范围内,方程x+3y=10的解是____ ___. 16. 下列各数中,有理数为;无理数为 (相邻两个3之间的7逐渐加1个) 17. 小陈从O点出发,前进5米后向右转20度,再前进5米后又向右转20度,,这样一直走下去,他第一次回到出发点O时一共走了_________. 18、为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那幺你估计池塘里有多少条鱼 三、解下列各题(共76分) 19. (每题6分)(1)计算 (2) 解方程组 (3))解不等式组并把不等式组的解集在数轴上表示出来 20 完成下面的解题过程,并在括号内填上依据。
广东省珠海市七年级下学期期末考试数学试题
广东省珠海市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2020·泰安) 如图,四边形是一张平行四边形纸片,其高,底边,,沿虚线将纸片剪成两个全等的梯形,若,则的长为()A .B .C .D .2. (2分)关于x的方程的解是负数,则a的取值范围是()A . a<1B . a<1且a≠0C . a≤1D . a≤1或a≠03. (2分)下列是因式分解的是()A . a2﹣a+1=a(a﹣1)+1B . x2﹣4y 2=(x+4y)(x﹣4y)C . x2y2﹣1=(xy+1)(xy﹣1)D . x2+y2=(x+y)24. (2分)下列语句中,假命题的是()A . 一条直线有且只有一条垂线B . 直角的补角必是直角C . 不相等的两个角一定不是对顶角D . 两直线平行,同旁内角互补5. (2分)下列说法正确的是()A . 相等的角是对顶角B . 同旁内角相等,两直线平行C . 直线外一点到这条直线的垂线段,叫做点到直线的距D . 经过直线外一点,有且只有一条直线与这条直线平行6. (2分) (2018八上·湖州期中) 某商场促销,小鱼将促销信息告诉了妈妈,假设某一商品的定价为,并列出不等式为,那么小鱼告诉妈妈的信息是()A . 买两件等值的商品可减100元,再打三折,最后不到1000元B . 买两件等值的商品可打三折,再减100元,最后不到1000元C . 买两件等值的商品可减100元,再打七折,最后不到1000元D . 买两件等值的商品可打七折,再减100元,最后不到1000元二、填空题 (共10题;共13分)7. (1分)(2018·泰安) 一个铁原子的质量是,将这个数据用科学记数法表示为________ .8. (2分)含有________未知数,未知数的次数是1且不等号两边都是________的不等式,叫做一元一次不等式.9. (2分) (2020八上·桐城期中) 命题“对顶角相等”的逆命题是________ ,这是一个________(填真或假)命题.10. (1分) (2020八下·西安月考) 不等式-2x-1≤6的所有负整数解的和为________。
2015七年级(下)期末数学试卷附答案
七年级(下)期末数学试卷一、精心选一选,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.下列各数中,是无理数的是()A.B.3.14 C.D.2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为()A.1 B.2 C.3 D.43.点(﹣2015,2015)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣5.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.2x>2y D.﹣6.要反映某种股票的涨跌情况,最好选择()A.条形统计图B.折线统计图C.扇形统计图D.列表7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B. C.D.8.下列命题错误的有()①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°二、耐心填空,准确无误(每小题3分,共计18分)11.已知实数x、y满足+|y+3|=0,则x+y的值为.12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.13.如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y=.14.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.15.若方程组只有四个整数解,则实数a的取值范围.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2015的坐标是.三、用心做一做,显现你的能力.(本大题共8个小题,共72分)17.3××﹣||1)解方程组(2)解不等式组.1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.20.解不等式(2x+1)(3x﹣2)>0时,根据有理数乘法法则“两数相乘,同号得正”有①,或②,解不等式①,得x>;解不等式②,得x<,则不等式(2x+1)(3x﹣2)>0的解集为x>或x<,请参照例题,解不等式<0.21.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.22.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案与试题解析一、精心选一选,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)(请将正确的填在后面的答题栏内)1.下列各数中,是无理数的是()A.B.3.14 C.D.考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:A、=2是有理数,故A错误;B、3.14是有理数,故B错误;C、=2是有理数,故C错误;D、=2是无理数,故D正确;故选:D.点评:本题考查了无理数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.如图,直线AB∥CD,与直线EF分别交于M,N,则图中与∠END相等的角(∠END除外)的个数为()A.1 B.2 C.3 D.4考点:平行线的性质.分析:先根据平行线的性质得出∠END=∠EMD,再由对顶角相等得出∠END=∠CNF,∠EMB=∠AMN,由此可得出结论.解答:解:∵直线AB∥CD,∴∠END=∠EMD.∵∠END=∠CNF,∠EMB=∠AMN,∴∠END=∠CNF=∠EMB=∠AMN.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.点(﹣2015,2015)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:首先根据2015>0,﹣2015<0,可得点的横坐标小于0,纵坐标大于0,然后根据每个象限的点的横坐标、纵坐标的正负,可得点在第二象限,据此解答即可.解答:解:∵2015>0,﹣2015<0,∴点的横坐标小于0,纵坐标大于0,∴点在第二象限,故选:B.点评:此题主要考查了点的坐标,以及象限的特征和判断,解答此题的关键是要明确:建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限,坐标轴上的点不属于任何一个象限,要明确每个象限的点的横坐标、纵坐标的正负.4.已知是二元一次方程4x+ay=7的一组解,则a的值为()A.﹣5 B.5 C.D.﹣考点:二元一次方程的解.专题:计算题.分析:把x与y的值代入方程计算即可求出a的值.解答:解:把代入方程得:8﹣3a=7,解得:a=.故选C.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.2x>2y D.﹣考点:不等式的性质.分析:A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:首先根据不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,判断出﹣x<﹣y;然后根据不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,可得3﹣x<3﹣y,据此判断即可.C:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.解答:解:∵x>y,∴x﹣3>y﹣3,∴选项A正确;∵x>y,∴﹣x<﹣y,∴3﹣x<3﹣y,∴选项B错误;∵x>y,∴2x>2y,∴选项C正确;∵x>y,∴﹣,∴选项D正确.故选:B.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.6.要反映某种股票的涨跌情况,最好选择()A.条形统计图B.折线统计图C.扇形统计图D.列表考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:要反映某种股票的涨跌情况,最好选择折线统计图,故选:B.点评:本题考查的是统计图的选择,利用扇形统计图、折线统计图、条形统计图各自的特点来判断是解题关键.7.把不等式组的解集表示在数轴上,下列选项正确的是()A.B. C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题的关键是先解不等式组,然后再在数轴上表示.解答:解:由(1)得x>﹣1,由(2)得x≤1,所以﹣1<x≤1.故选B.点评:本题考查一元一次不等式组的解集及在数轴上的表示方法.8.下列命题错误的有()①实数与数轴上的点一一对应;②无限小数就是无理数;③直线外一点到这条直线的垂线段叫做点到直线的距离;④两条直线被第三条直线所截,同旁内角互补.A.1个B.2个C.3个D.4个考点:命题与定理.分析:根据数轴上的点与实数的关系对①进行判断;根据无理数的定义对②进行判断;根据点到直线的距离的定义对③进行判断;根据平行线的性质对④进行判断.解答:解:实数与数轴上的点一一对应,所以①为真命题;无限不循环小数是无理数,所以②为假命题;直线外一点到这条直线的垂线段的长叫做点到直线的距离,所以③为假命题;两条平行直线被第三条直线所截,同旁内角互补,所以④为假命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a考点:实数.分析:A、根据平方运算的特点即可判定;B、根据平方根的性质即可判定;C、根据绝对值的性质即可判定;D、根据实数的绝对值的性质进行即可判定.解答:解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.点评:本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.10.如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°考点:平行线的性质.分析:过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,然后表示出∠C整理即可得解.解答:解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选C.点评:本题考查了平行线的性质,此类题目难点在于过拐点作平行线.二、耐心填空,准确无误(每小题3分,共计18分)11.已知实数x、y满足+|y+3|=0,则x+y的值为﹣2.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成10组.考点:频数(率)分布表.分析:求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.解答:解:143﹣50=93,93÷10=9.3,所以应该分成10组.故答案为:10.点评:本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.13.如图,已知AB∥CD∥EF,∠x=80°,∠z=25°,则∠y=125°.考点:平行线的性质.分析:先根据AB∥CD,∠x=80°,∠z=25°得出∠CEF的度数,再由CD∥EF即可得出∠y的度数.解答:解:∵AB∥CD,∠x=80°,∠z=25°,∴∠z+∠CEF=∠x=80°,∴∠CEF=80°﹣25°=55°.∵CD∥EF,∴∠y=180°﹣55°=125°.故答案为:125°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.14.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是20元和2元.考点:二元一次方程组的应用.分析:通过理解图形可知本题存在两个等量关系,即每件T恤价格×2+每瓶矿泉水的价格×2=44,每件T恤价格+每瓶矿泉水的价格×3=26.根据这两个等量关系可列出方程组.解答:解:设每件T恤价格和每瓶矿泉水的价格分别为x元,y元,则,解得.故每件T恤和每瓶矿泉水的价格分别是20元和2元.故答案为:20,2.点评:考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.若方程组只有四个整数解,则实数a的取值范围﹣3<a≤﹣2.考点:一元一次不等式组的整数解.分析:首先解不等式组,根据不等式组只有四个整数解,即可确定a的范围.解答:解:,解①得:x≥a,解②得:x<2.则不等式组的解集是:a≤x<2,则不等式组的整数解是:1,0,﹣1,﹣2.则﹣3<a≤﹣2.故答案是:﹣3<a≤﹣2.点评:本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2015的坐标是(504,504).考点:规律型:点的坐标.分析:观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.解答:解:2015÷4=503…3,∴顶点A2015与顶点A3所在的象限相同,其坐标为:横坐标是503+1=504,纵坐标是503+1=504,∴A2015(504,504).故答案为:(504,504).点评:本题主要考查对正方形的性质,坐标与图形性质及点的坐标等知识点的理解和掌握,能根据已知找出规律是解此题的关键.三、用心做一做,显现你的能力.(本大题共8个小题,共72分)17.3××﹣||考点:实数的运算.分析:本题涉及绝对值、二次根式化简、三次根式化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3×(2﹣)×﹣(2﹣)=4﹣2﹣2+=2﹣.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、三次根式、绝对值等考点的运算.1)解方程组(2)解不等式组.考点:解二元一次方程组;解一元一次不等式组.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:(1),①+②得:3x=6,即x=2,把x=2代入①得:y=2,则方程组的解为;(2),由①得:x>1,由②得:x≤2,则不等式组的解集为1<x≤2.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.1)如图,若∠1=∠2,则AB∥CD,试判断命题的真假:假(填“真”或“假”).(2)若上述命题为真命题,请说明理由,若上述命题为假命题,请你再添加一条件,使该命题成为真命题,并说明理由.考点:命题与定理;平行线的判定与性质.分析:(1)利用平行线的判定方法进而判断即可;(2)利用平行线的判定方法求出即可.解答:解:(1)若∠1=∠2,则AB∥CD,是假命题;故答案为:假;(2)加条件:BE∥FD,∴∠EBD=∠FDN,又∵∠1=∠2,∴∠ABD=∠CDN,∴AB∥CD.点评:此题主要考查了命题与定理以及平行线的判定,正确把握平行线的判定方法是解题关键.20.解不等式(2x+1)(3x﹣2)>0时,根据有理数乘法法则“两数相乘,同号得正”有①,或②,解不等式①,得x>;解不等式②,得x<,则不等式(2x+1)(3x﹣2)>0的解集为x>或x<,请参照例题,解不等式<0.考点:解一元一次不等式组.专题:阅读型.分析:根据题中的解题方法可把原不等式化为①,或②,然后分别解两个不等式组,再得到原不等式的解集.解答:解:根据题意得①,或②,解不等式①,得﹣<x<;解不等式②无解,所以原不等式的解集为﹣<x<.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.21.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(﹣5,2),C(﹣2,﹣2).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.考点:作图-平移变换.分析:(1)根据直角坐标系的特点写出各点的坐标;(2)根据题意可得,△ABC向左平移3个单位,向下平移1个单位得到△A1B1C1,作出△ABC;(3)用△ABC所在的矩形的面积减去三个小三角形的面积即可.解答:解;(1)由图可得,B(﹣5,2),C(﹣2,﹣2);(2)所作图形如图所示:△ABC向左平移3个单位,向下平移1个单位得到△A1B1C1;(3)S△ABC=5×4﹣×1×2﹣×3×4﹣×3×5=20﹣1﹣6﹣7.5=5.5.故答案为;﹣5,2,﹣2,﹣2.点评:本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有100人,并补全条形统计图;(2)在扇形统计图中,m=30,n=10,表示区域C的圆心角为144度;(3)全校学生中喜欢篮球的人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用B组频数除以其所占的百分比即可求得样本容量;(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;解答:解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100﹣30﹣20﹣10=40人,条形统计图为:(2)∵A组有30人,D组有10人,共有100人,∴A组所占的百分比为:30%,D组所占的百分比为10%,∴m=30,n=10;表示区域C的圆心角为×360°=144°;(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.点评:本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.23.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.考点:一元一次不等式组的应用;二元一次方程组的应用.专题:方案型;图表型.分析:(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.解答:解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.点评:解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.24.如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CB⊥x轴,且满足(a+b)2+=0.(1)求三角形ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.考点:坐标与图形性质;解二元一次方程组;平行线的性质;三角形的面积.分析:(1)根据非负数的性质得到a=﹣b,a﹣b+4=0,解得a=﹣2,b=2,则A(﹣2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.解答:解:(1)∵(a+b)2≥0,≥0,∴a=﹣b,a﹣b+4=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2)∴三角形ABC的面积=×4×2=4;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(﹣2,0)、C(2,2)代入得,解得,∴直线AC的解析式为y=x+1,∴G点坐标为(0,1),∴S△PAC=S△APG+S△CPG=|t﹣1|•2+|t﹣1|•2=4,解得t=3或﹣1,∴P点坐标为(0,3)或(0,﹣1).点评:本题考查了平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.也考查了非负数的性质.。
珠海市七年级下册末数学试卷及答案
一、填空题1.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________. 答案:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”;②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.2.如图,直线//MN PQ ,MN 与直线AB ,AC 分别交于D ,E ,PQ 与直线AB ,AC 分别交于F ,G ,若75C ∠=︒,26BGF ∠=︒,则AEN ∠=_________度.答案:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵,∴CH ∥PQ ,∴,∵,∴,∵CH ∥MN ,∴,∴故答案为:131.解析:131【分析】过点C 作CH ∥MN ,根据平行线的性质求出∠NEC 即可.【详解】解:过点C 作CH ∥MN ,∵//MN PQ ,∴CH ∥PQ ,∴26HCB BGF ∠=∠=︒,∵75ACB ∠=︒,∴49ACH ∠=︒,∵CH ∥MN ,∴49CEN ACH ∠=∠=︒,∴131180CEN AEN ∠︒∠==︒-故答案为:131.【点睛】本题考查了平行线的性质与判定,解题关键是恰当作平行线,根据平行线的性质进行推理计算.3.如图所示,已知A1(1,0),A2(1,﹣1)、A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,按一定规律排列,则点A2021的坐标是________.答案:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.【详解】解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2021÷4=505…1;∴A2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.4.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变换成△OA 3B 3,……,则B 2021的横坐标为______.答案:【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.5.如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点.观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外第15个正方形(实线)的四条边上的整点共有________个.答案:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点.【详解】解:①第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点.根据正方形是中心对称图形,则四条边共有4⨯1=4个整点,②第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点.根据正方形是中心对称图形,则四条边共有4⨯2=8个整点,③第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点.根据正方形是中心对称图形,则四条边共有4⨯3=12个整点,④第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点.根据正方形是中心对称图形,则四条边共有4⨯4=16个整点,⑤第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点.根据正方形是中心对称图形,则四条边共有4⨯5=20个整点,...以此类推,第15个正方形,四条边上的整点共有4⨯15=60个.故答案为:60.【点睛】本题主要考查了坐标与图形的性质,图形中的数字的变化规律.准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键.6.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右、向上、向右、向下…的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n ,则A 2021的坐标是___________.答案:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标.【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A 2021的坐标.【详解】解:A 1(1,0),A 2(1,1),A 3(2,1),A 4(2,0),A 5(3,0),A 6(3,1),…, 2021÷4=505•••1,所以A 2021的坐标为(505×2+1,0),则A 2021的坐标是(1011,0).故答案为:(1011,0).【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.7.请先在草稿纸上计算下列四个式子的值:313312+333123++33331234+++333312326++++=__________.答案:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】+3++=1+2+3+nn∴3+=35126++=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.8.观察下列各式:_____.答案:n.【分析】根据已知等式,可以得出规律,猜想出第n个等式,写出推导过程即可.【详解】解:=n.故答案为:n.【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关解析: 【分析】根据已知等式,可以得出规律,猜想出第n 个等式,写出推导过程即可.【详解】故答案为: 【点睛】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键. 9.观察等式:2111==,21342+==,213593++==,21357164+++==,……猜想13572019++++⋅⋅⋅+=______.答案:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从解析:【分析】观察给出的等式得到:从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…根据规律即可猜想从1开始的连续n 个奇数的和,据此可解.【详解】解:∵从1开始的连续2个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52…;∴从1开始的连续n 个奇数的和:1+3+5+7+…+(2n-1)=n 2;∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【点睛】此题主要考查学生对规律型题的掌握,关键是要对给出的等式进行仔细观察分析,发现规律,根据规律解题.10.如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A 、B ,则点A 表示的数为______.答案:.【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A 的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数. 【详解】∵正方形的面积为3,∴正方形的边长为解析:13【分析】利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数.【详解】∵正方形的面积为3,∴3,∴A点距离031∴点A表示的数为13【点睛】本题考查实数与数轴,解决本题时需注意圆的半径即是点A到1的距离,而求A点表示的数时,需求出A点到原点的距离即A点的绝对值,再根据绝对值的性质和数轴上点的特征求解.11.对于数x,符号[x]表示不大于x的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[347x-]=2的整数解为_____.答案:6,7,8【解析】【分析】根据已知可得,解不等式组,并求整数解可得. 【详解】因为,,所以,依题意得,所以,,解得,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题解析:6,7,8【解析】 【分析】根据已知可得34237x -≤,解不等式组,并求整数解可得. 【详解】因为,3427x -⎡⎤=⎢⎥⎣⎦, 所以,依题意得34237x -≤, 所以,34273437x x -⎧≤⎪⎪⎨-⎪⎪⎩, 解得1683x ≤, 所以,x 的正数值为6,7,8.故答案为:6,7,8.【点睛】此题属于特殊定义运算题,解题关键在于正确理解题意,列出不等式组,求出解集,并确定整数解.12.定义一种新运算a b ※,其规则是:当a b >时,2a b a b =-※,当a b =时,a b a b =+※,当a b <时,2a b b a =-※,若()21x -=※,则x =____________. 答案:或﹣5【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有,解得:,成立;当x=﹣2时,则有,解得:x=3,矛盾,舍去;当x <﹣2时,则有,解得:x=﹣5,成立解析:12-或﹣5 【分析】根据新定义运算法则,分情况讨论求解即可.【详解】解:当x >﹣2时,则有()22(2)1x x -=--=※,解得:12x =-,成立;当x =﹣2时,则有()2(2)1x x -=+-=※,解得:x =3,矛盾,舍去;当x <﹣2时,则有()22(2)1x x -=⨯--=※,解得:x =﹣5,成立,综上,x =12-或﹣5, 故答案为:12-或﹣5.【点睛】本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键.13.如图,半径为1的圆与数轴的一个公共点与原点重合,若圆在数轴上做无滑动的来回滚动,规定圆向右滚动的周数记为正数,向左滚动周数记为负数,依次滚动的情况如下(单位:周):﹣3,﹣1,+2,﹣1,+3,+2,则圆与数轴的公共点到原点的距离最远时,该点所表示的数是_______.答案:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4解析:﹣8π.【分析】根据每次滚动后,所对应数的绝对值进行解答即可.【详解】解:半径为1圆的周长为2π,滚动第1次,所对应的周数为0﹣3=﹣3(周),滚动第2次,所对应的周数为0﹣3﹣1=﹣4(周),滚动第3次,所对应的周数为0﹣3﹣1+2=﹣2(周),滚动第4次,所对应的周数为0﹣3﹣1+2﹣1=﹣3(周),滚动第5次,所对应的周数为0﹣3﹣1+2﹣1+3=0(周),滚动第6次,所对应的周数为0﹣3﹣1+2﹣1+3+2=2(周),所以圆与数轴的公共点到原点的距离最远是﹣4周,即该点所表示的数是﹣8π, 故答案为:﹣8π.【点睛】题目主要考察数轴上的点及圆的滚动周长问题,确定相应滚动周数是解题关键. 14.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.答案:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n +1到5n +5次运动横坐标分别为:4n +1,4n +2,4n +2,4n +4,4n +4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n +1到5n +5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.15.若202120212a b -+=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.答案:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵,且,均为整数,又∵,,∴可分为以下几种情况:①,,解得:,;②,,解得:或,;③,解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.答案:(﹣5,13)【解析】【分析】设纵坐标为n的点有个(n为正整数),观察图形每行点的个数即可得出=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐解析:(﹣5,13)【解析】【分析】设纵坐标为n的点有n a个(n为正整数),观察图形每行点的个数即可得出n a=n,再根据求和公式求出第90个点的纵坐标以及这一行的序数,再根据纵坐标是奇数的从右至左计数,纵坐标是偶数的从左至右计数,即可求解.【详解】解:设纵坐标为n的点有n a个(n为正整数),观察图形可得,1a=1,2a=2,3a=3,…,∴n a=n,∵1+2+3+…+13=91,∴第90个点的纵坐标为13,又13为奇数,(13-1)÷2=6,∴第91个点的坐标为(-6,13),则第90个点的坐标为(﹣5,13).故答案为:(﹣5,13).【点睛】本题考查了规律探索问题,观察图形得到点的坐标的变化规律是解题关键.+ 17.已知M是满足不等式27-<N52M Na的平方根为__________.答案:±3【分析】先通过估算确定M、N的值,再求M+N的平方根.【详解】∴,∵,∴,∵,∴,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2,∵,∴,N=7解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵< ∴221, ∵∴23<,∵a <∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵∴78<,N=7,M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.18.在平面直角坐标系xOy 中,对于点P(x ,y),如果点Q(x ,'y )的纵坐标满足()()x y x y y y x x y -≥⎧=⎨-<'⎩当时当时,那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标_______;如果点P(x ,y)的关联点Q 坐标为(-2,3),则点P 的坐标为________. 答案:(3,2); (-2,1)或(-2,-5).根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(解析:(3,2);(-2,1)或(-2,-5).【分析】根据关联点的定义,可得答案.【详解】解:∵3<5,根据关联点的定义,∴y′=5-3=2,点(3,5)的“关联点”的坐标(3,2);∵点P(x,y)的关联点Q坐标为(-2,3),∴y′=y-x=3或x-y=3,即y-(-2)=3或(-2)-y=3,解得:y=1或y=-5,∴点P的坐标为(-2,1)或(-2,-5).故答案为:(3,2);(-2,1)或(-2,-5).【点睛】本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.19.一副直角三角只如图①所示叠成,含45︒角的三角尺ADE固定不动,将含30角的三角尺ABC绕顶点A顺时针转动,使BC与三角形ADE的一边平行,如图②,当∠=︒时,//15BADBC DE,则()∠︒<∠<︒其他所有符合条件的度数为BAD BAD90360________.答案:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB解析:105°、195°、240°和285°【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图,当BC∥AE时,∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当BC∥DE时,延长BA,交DE于F,则∠AFE=∠B=60°,∴∠DAF=∠AFE-∠D=60°-45°=15°,∴∠DAB=15°+180°=195°;如图,当BC∥AD时,∠CAD=∠C=30°,∴∠BAD=360°-30°-90°=240°;如图,当BC∥AE时,∠CAE=∠C=30°,∴∠CAD=45°-30°=15°,锐角∠DAB=90°-∠CAD=75°,∴旋转角∠DAB=360°-75°=285°,故答案为:105°、195°、240°和285°.【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.20.一副三角尺按如图所示叠放在一起,其中点,B D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有 _________次出现三角形ACD的一边与三角形AOB的某一边平行.答案:【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.21.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.答案:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.22.小明将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起,当∠ACE<180°且点E在直线AC的上方时,他发现若∠ACE=_____,则三角板BCE有一条边与斜边AD平行.答案:或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.23.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=52∠DAE,则∠ACD的度数是_____.答案:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°. 【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD解析:27°.【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-12∠FAD=45°-12(90°-∠AFD)=12∠AFD,因为MN∥PQ,所以∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,所以∠ACD=12∠AFD=12(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,所以∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-25∠BCA=45°-18°=27°.故∠ACD的度数是:27°.【点睛】本题利用平行线、垂直、角平分线综合考查了角度的求解.24.如图,两直线AB、CD平行,则12345∠+∠+∠+∠+∠=__________.答案:【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F点,G点,H点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角,解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F点,G点,H点作2L,3L,4L平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键.25.如图,已知AB∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC与∠AEC之间的数量关系是_____________________________答案:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【详解】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.26.如图,已知直线l 1∥l 2,∠A =125°,∠B =85°,且∠1比∠2大4°,那么∠1=______.答案:【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l1∥l2,∠A =125°,∠B =85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.27.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有______.(填序号)答案:①②③【分析】根据平行线的性质和∠ABO=40°,由两直线平行,同旁内角互补,可计算出∠BOC的度数,再根据角平分线的性质,可计算出∠BOC的度数,根据角平分线的性质可得出∠BOE的度数,可判断解析:①②③【分析】根据平行线的性质和∠ABO=40°,由两直线平行,同旁内角互补,可计算出∠BOC的度数,再根据角平分线的性质,可计算出∠BOC的度数,根据角平分线的性质可得出∠BOE 的度数,可判断①是否正确.根据OF⊥OE,由∠BOE的度数计算出∠BOF的度数,根据两直线平行,内错角相等的性质,得到∠BOD的度数,可计算出∠3的度数,可得出结论②是否正确,由②中的结论可判断③是否正确.根据平行线的性质,可得到∠OPB=90°,可计算出∠POB的度数,可得出④结论是否正确.【详解】解:∵AB∥CD,∠ABO=40°,∴∠BOC=180°﹣∠ABO=180°﹣40°=140°,∵OE平分∠BOC,∴∠B0E=12∠BOC=11402︒⨯=70°,故结论①正确;∵OF⊥OE,∠B0E=70°,∴∠BOF=90°﹣70°=20°,∵AB∥CD,∠ABO=40°,∴∠BOD=∠ABO=40°,∴∠FOD=∠BOD﹣∠BOF=20°,∴∠BOF=∠DOF,∴OF平分∠BOD,故结论②正确;由②的结论可得,∴∠1=∠2=20°,故结论③正确;∵OP ⊥CD ,∴∠OPB =90°,∴∠POB =90°﹣∠ABO =50°,∵2∠3=2×20°=40°,∴∠POB ≠2∠3,故结论④错误.故答案为:①②③.【点睛】本题考查了平行线的性质、角平分线性质的应用,合理应用平行线的性质是解决本题关键.28.如图,已知40ABC ∠=︒,点D 为ABC ∠内部的一点,以D 为顶点,作EDF ∠,使得//DE BC ,//DF AB ,则EDF ∠的度数为___________.答案:或【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵,,∴,∵,∴;②如图,∵,,∴,∵,∴,∴;综上所述解析:40︒或140︒【分析】由题意可分两种情况分别画出图形,然后根据平行线的性质进行求解即可.【详解】解:由题意得:①如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴40DFC EDF ∠=∠=︒;②如图,∵//DF AB ,40ABC ∠=︒,∴40DFC ABC ∠=∠=︒,∵//DE BC ,∴180DFC EDF ∠+∠=︒,∴140EDF ∠=︒;综上所述:EDF ∠的度数为40︒或140︒;故答案为40︒或140︒.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键,注意分类讨论. 29.如图,将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处,若30AEH ∠=︒,则EFC ∠等于______︒.答案:105°【分析】根据折叠得出∠DEF=∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF+∠EFC=180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上解析:105°【分析】根据折叠得出∠DEF =∠HEF ,求出∠DEF 的度数,根据平行线的性质得出∠DEF +∠EFC =180°,代入求出即可.【详解】解:∵将长方形ABCD 沿EF 折叠,点D 落在AB 边上的H 点处,点C 落在点G 处, ∴∠DEF =∠HEF ,∵∠AEH =30°, ∴1180752DEF HEF AEH ∠=∠=︒-∠=︒(), ∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠DEF +∠EFC =180°,∴∠EFC =180°-75°=105°,故答案为:105°.【点睛】本题考查了平行线的性质,折叠的性质等知识点,能求出∠DEF =∠HEF 和∠DEF +∠EFC =180°是解此题的关键.30.220a b a --=,则2+a b 的值是__________;答案:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】∵,∴,∴,∴.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可. 解析:10【分析】根据二次根式的性质和绝对值的性质求出a ,b 计算即可;【详解】 ∵20b a -=,∴2020a b a -=⎧⎨-=⎩, ∴24a b =⎧⎨=⎩, ∴22810a b +=+=.故答案是10.【点睛】本题主要考查了代数式求值,结合二次根式的性质和绝对值的性质计算即可. 31.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.答案:95【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95.故答案为95.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知解析:95【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩,即这个两位数为95. 故答案为95.【点睛】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年广东省珠海市七年级(下)期末数学试卷一、选择题1.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.已知a<b,则下列式子正确的是()A.a+5>b+5 B.3a>3b C.﹣5a>﹣5b D.>3.下列说法正确的是()A.3是9的算术平方根 B.1的平方根是1C.16的平方根是﹣4 D.27的立方根是﹣34.如图,能够判定AB∥CD的是()A.∠2=∠4 B.∠B=∠D C.∠1=∠3 D.∠B+∠BAC=180°5.下列调查工作需采用普查方式的是()A.对珠江某段水域的水质情况的调查B.对一批奶粉质量的调查C.对全国中学生近视情况的调查D.对某班学生使用手机情况的调查6.如图,两条平行线a,b被直线c所截,若∠1=70°,则∠2等于()A.20°B.70°C.110° D.120°二、填空题7.计算:+=.8.如图,把直角三角形的直角顶点放在两条平行线a,b上,已知∠1=40°,则∠2=.9.下列五个命题中,是真命题的是(填序号).①相等的角是对顶角;②同位角相等;③垂线段最短;④垂直于同一条直线的两条直线互相平行;⑤邻补角是互补的角.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回●这个数,●=.11.已知关于x的不等式2x﹣m>﹣3的解为x>﹣2,则m的值是.12.已知:A、B、C是某平行四边形的其中三个顶点,A(1,0),B(2,2),C (5,0),则最后一个顶点D的坐标为.三、解答题13.解方程组.14.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度得△A1B1C1,解答下列各题.(每个小方格的边长为1个单位长度)(1)画出△A1B1C1;(2)写出A1,B1,C1的坐标.15.解不等式组,并判断是否为该不等式组的解.16.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.17.某学校为了做好学生的交通安全宣传工作,特别对在校学生上学所乘交通工具做了随机调查,并将调查结果统计后绘制成如图所示的不完整的统计图.(1)这次被调查的学生共有人;扇形图中“骑自行车”部分的圆心角为;(2)把条形统计图补充完整;(3)通过对调查数据的分析,该校共有学生1500人,请你估计该校大约有多少人骑自行车上学.18.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?19.(1)比较下列两个算式的结果的大小(在横线上选填“>”、“=”或“<”)①22+322×2×3;②()2+()22××;③(﹣2)2+(﹣3)22×(﹣2)×(﹣3);④(﹣)2+(﹣)22×(﹣)×(﹣);⑤32+322×3×3…(2)观察并归纳(1)中的规律,用含a,b的一个关系式把你的猜想表示出来;(3)若已知ab=10,且a,b都是正数,则a2+b2的值不小于多少?20.如图,在△ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以3cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以cm/s 的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF +S△ACE<S△ABC.2014-2015学年广东省珠海市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(﹣2,3)在第二象限.故选:B.2.已知a<b,则下列式子正确的是()A.a+5>b+5 B.3a>3b C.﹣5a>﹣5b D.>【解答】解:A、不等式两边都加5,不等号的方向不变,错误;B、不等式两边都乘3,不等号的方向不变,错误;C、不等式两边都乘﹣5,不等号的方向改变,正确;D、不等式两边都除以3,不等号的方向不变,错误;故选:C.3.下列说法正确的是()A.3是9的算术平方根 B.1的平方根是1C.16的平方根是﹣4 D.27的立方根是﹣3【解答】解:3是9的算术平方根,故选项A正确,1的平方根是±1,故选项B错误,16的平方根是±4,故选项C错误,27的立方根是3,故选项D错误,故选:A.4.如图,能够判定AB∥CD的是()A.∠2=∠4 B.∠B=∠D C.∠1=∠3 D.∠B+∠BAC=180°【解答】解:根据∠2=∠4,可得AD∥BC;根据∠B=∠D,不能得到AB∥CD;根据∠1=∠3,可得AB∥CD;根据∠B+∠BAC=180°,不能得到AB∥CD;故选:C.5.下列调查工作需采用普查方式的是()A.对珠江某段水域的水质情况的调查B.对一批奶粉质量的调查C.对全国中学生近视情况的调查D.对某班学生使用手机情况的调查【解答】解:A、对珠江某段水域的水质情况的调查无法普查,故A不符合题意;B、对一批奶粉质量的调查调查具有破坏性适合抽样调查,故B不符合题意;C、对全国中学生近视情况的调查调查范围广适合抽样调查,故C不符合题意;D、对某班学生使用手机情况的调查适合普查,故D符合题意;故选:D.6.如图,两条平行线a,b被直线c所截,若∠1=70°,则∠2等于()A.20°B.70°C.110° D.120°【解答】解:∵∠1=70°,∠3与∠1是对顶角,∴∠3=∠1=70°;又∵直线a∥b,∴∠2+∠3=180°,即∠2=180°﹣∠3=180°﹣70°=110°.故选:C.二、填空题7.计算:+=1.【解答】解:原式=﹣2+3=1,故答案为:18.如图,把直角三角形的直角顶点放在两条平行线a,b上,已知∠1=40°,则∠2=50°.【解答】解:如图,∵a∥b,∴∠3=∠1=40°,∴∠2=180°﹣∠3﹣90°=180°﹣40°﹣90°=50°.故答案为:50°.9.下列五个命题中,是真命题的是③⑤(填序号).①相等的角是对顶角;②同位角相等;③垂线段最短;④垂直于同一条直线的两条直线互相平行;⑤邻补角是互补的角.【解答】解:①相等的角不一定是对顶角,①是假命题;②同位角不一定相等,②是假命题;③垂线段最短,③是真命题;④在同一平面内,垂直于同一条直线的两条直线互相平行,④是假命题;⑤邻补角是互补的角,⑤是真命题,故答案为:③⑤.10.小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回●这个数,●=8.【解答】解:把x=5代入方程组得:,解得:y=﹣2,则●这个数为10﹣2=8,故答案为:811.已知关于x的不等式2x﹣m>﹣3的解为x>﹣2,则m的值是﹣1.【解答】解:不等式变形得:2x>m﹣3,解得:x>,∵x>﹣2,∴=﹣2,解得:m=﹣1.故答案为:﹣1.12.已知:A、B、C是某平行四边形的其中三个顶点,A(1,0),B(2,2),C (5,0),则最后一个顶点D的坐标为(6,2),(5,﹣2),(﹣2,2).【解答】解:如图所示:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(6,2),(5,﹣2),(﹣2,2).故答案为:(6,2),(5,﹣2),(﹣2,2).三、解答题13.解方程组.【解答】解:两式相减,得3n=15,解得n=5,把n=5代入m﹣n=1,解得m=6,原方程组的解为.14.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度得△A1B1C1,解答下列各题.(每个小方格的边长为1个单位长度)(1)画出△A1B1C1;(2)写出A1,B1,C1的坐标.【解答】解:(1)如图所示:(2)A1(0,5),B1(﹣1,1),C1(5,1).15.解不等式组,并判断是否为该不等式组的解.【解答】解:,由①得x>﹣3,由②得x≤1,∴原不等式组的解集是﹣3<x≤1.∵>1,∴不是该不等式组的解.16.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.17.某学校为了做好学生的交通安全宣传工作,特别对在校学生上学所乘交通工具做了随机调查,并将调查结果统计后绘制成如图所示的不完整的统计图.(1)这次被调查的学生共有500人;扇形图中“骑自行车”部分的圆心角为144°;(2)把条形统计图补充完整;(3)通过对调查数据的分析,该校共有学生1500人,请你估计该校大约有多少人骑自行车上学.【解答】解:(1)由题意可得,本次被调查的学生共有:150÷30%=500(人),扇形图中“骑自行车”部分的圆心角为:360°×=144°,故答案为:500,144°;(2)步行的有:500﹣150﹣50﹣200=100(人),补充完整的条形统计图如右图所示;(3)由题意可得,该校大约骑自行车上学的有:1500×=600(人),答:该校大约有600人骑自行车上学.18.某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?【解答】解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾.由题意得:0.5x+0.8(6000﹣x)=3600,解方程,可得:x=4000,∴乙种鱼苗:6000﹣x=2000,答:甲种鱼苗买4000尾,乙种鱼苗买2000尾;(2)设购买鱼苗的总费用为w,甲种鱼苗买了a尾,则购买乙种鱼苗(6000﹣a)尾.则w=0.5a+0.8(6000﹣a)=﹣0.3a+4800,由题意,有a+(6000﹣a)≥×6000,解得:a≤2400,在w=﹣0.3a+4800中,∵﹣0.3<0,∴w随a的增大而减少,∴当a取得最大值时,w便是最小,即当a=2400时,w=4080.最小答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.19.(1)比较下列两个算式的结果的大小(在横线上选填“>”、“=”或“<”)①22+32>2×2×3;②()2+()2>2××;③(﹣2)2+(﹣3)2>2×(﹣2)×(﹣3);④(﹣)2+(﹣)2>2×(﹣)×(﹣);⑤32+32=2×3×3…(2)观察并归纳(1)中的规律,用含a,b的一个关系式把你的猜想表示出来;(3)若已知ab=10,且a,b都是正数,则a2+b2的值不小于多少?【解答】解:(1)①∵22+32=13,2×2×3=12,∴22+22>2×2×3;②∵()2+()2=,2××=,∴()2+()2>2××,③∵(﹣2)2+(﹣3)2=4+9=13,2×(﹣2)×(﹣3)=12,∴(﹣2)2+(﹣3)2>2×(﹣2)×(﹣3);④∵(﹣)2+(﹣)2=,2×(﹣)×(﹣)=,∴(﹣)2+(﹣)2>2×(﹣)×(﹣);⑤∵32+32=18,2×3×3=18,∴(32+32=2×3×3;(2)观察(1)中的计算可发现规律:a2+b2≥2ab;(3)∵a2+b2的最小值是2ab,∴a2+b2的值不小于2ab=20.故答案为:①>,②>,③>,④>,⑤=.20.如图,在△ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以3cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以cm/s 的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF +S△ACE<S△ABC.【解答】解:当点F运动时间为ts时,AE=3(t+1)cm,BF=tcm.(1)∵∠BAF<∠BAC,∴BF<BC,即t<6,解得:t<,∴当0<t<时,∠BAF<∠BAC.(2)∵BF=tcm,BC=6cm,∴CF=|BF﹣BC|=|t﹣6|cm.∵AE=CF,即3(t+1)=|t﹣6|,解得:t1=,t2=6,∴当t=或6时,AE=CF.(3)∵S△ABF +S△ACF=S△ABC,S△ABF+S△ACE<S△ABC,∴S△ACE <S△ACF(点F在点线段BC上).∵AG∥BC,∴△AFC和△AEC的高相等,∴AE<CF,即3(t+1)<6﹣t,解得:t<,∴当0<t<时,S△ABF +S△ACE<S△ABC.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。