PSE technical_requirements

合集下载

PSE技术要求

PSE技术要求

PSE技术要求本文档旨在规定PSE(Power Sourcing Equipment)技术的要求和标准,以确保设备的稳定性和安全性。

1. PSE技术概述PSE技术是一种供电设备技术,主要用于向其他设备提供电力。

PSE设备可以提供稳定的电力输出,同时保证设备本身以及供电链路的安全。

2. 技术要求2.1 电力输出PSE设备应能够提供符合标准的电力输出。

输出电压应稳定且可调节,以满足被供电设备的需求。

输出电流应在设备能力范围内,并能够根据被供电设备的负载进行调整。

2.2 安全性PSE设备应具备必要的安全保护措施,包括但不限于过载保护、过压保护和短路保护。

设备在出现异常情况时应能够及时断电,以确保供电链路和设备的安全。

2.3 设备通信PSE设备应能够与被供电设备进行通信,以实时监测电力传输情况和设备状态。

通信接口应符合相关标准,并能够支持各种通信协议。

2.4 故障排查和维护PSE设备应具备故障排查的功能,并提供易于维护的设计。

设备故障时应能够提供必要的故障信息和诊断,以方便用户进行维修。

3. 标准参考PSE技术的实施应参考以下标准:- IEEE 802.3af- IEEE 802.3at- IEC -4-x 系列以上标准可以作为PSE技术的参考和指导,以确保设备在设计和实施过程中能够满足相关要求。

4. 结论本文档规定了PSE技术的要求和标准,以确保设备的稳定性和安全性。

PSE设备应能够提供稳定的电力输出,具备必要的安全保护措施以及与被供电设备进行通信和故障排查的能力。

在设计和实施PSE设备时应参考相关标准,以确保设备符合技术要求。

PSE认证及其电磁兼容技术要求

PSE认证及其电磁兼容技术要求


摘 要: 由于 P E认证 在 中 国得虱 了非 常广 泛 韵推 广 , 品出 口珂本韵 生 产企 业 和进 行 日本 标 准检 测 的 实验 S 产
室应 了解 P E认 证及 日本标 准 的相关 要 求 。该 文简 单概述 T S S P E认 证 以及在 中 国的开 展情况 。 井详 细分 析 了
所 示 列 出 了 现 行 P E认 证 的 E S MC标 准 与 CS R 标 准 之 间 的 IP 对应关系 。
( 日本称之 为 ” 适合 性检查 ” 日本 电气用品 的强制 性市场 ) 是
准 入 制 度 , 日本 《 是 电气 用 品 安 全 法 》 规 定 的 一 项 重 要 内容 。 中
CL nu C mbe : N9 rT 8
Do umen Qd A c tC e:
Ar h eI 1 03 t d D: 0 —01 ( O1 ) —0 62 - 07 2 1O5 0 —0 3
1P E认证简介 S
日本 的 电 器 产 品 市 场 很 大 , E本 的 消 费 者 对 电器 产 品 的 l
新 至 H 2版 本 。新 版 标 准 于 2 1 2 0 0年 1 0月 1日正 式 实 施 后 ,
可 申请新 版 J 标准 ( 只适 用于菱 形 P E 特定 电气 用品) P E S, 的 S
m r。旧版 J 准 , 2 1 年 9月 3 前 , 可 以 申请 。 1 ak 标 在 03 0E l 仍 表
认 证 与 实 验 室
P E 认 证 及 其 电磁 兼 容 技 术 要 求 S
PSE r i c to nd E M C c ni a q r m e s Ce tf a i n a i Te h c lRe ui e nt

pse认证标准

pse认证标准

pse认证标准PSE认证标准。

PSE认证是日本电气用品安全法规的认证制度,也是日本国家标准(JIS)的一种认证。

PSE认证标准是为了保障电气用品的安全性和可靠性,防止因使用电气产品而引发的安全事故。

PSE认证标准涉及到各种电气产品,包括家用电器、办公设备、工业设备等,其认证范围广泛。

PSE认证标准主要包括以下几个方面:1. 安全性要求,PSE认证标准对电气产品的安全性提出了严格的要求,包括防火、绝缘、接地、耐压、耐热等方面的要求。

产品必须符合相关的安全标准,确保在正常使用过程中不会对用户造成安全隐患。

2. EMC要求,PSE认证标准也对电磁兼容性提出了要求,产品在使用过程中不能产生过大的电磁干扰,也要对外部电磁干扰具有一定的抵抗能力,以保障产品在电磁环境下的正常工作。

3. 标识要求,通过PSE认证的产品需要在产品上贴上PSE认证标志,以示其已通过认证检验,符合日本相关的安全标准和法规要求。

这也是PSE认证产品与未认证产品的一个重要区别。

4. 检测要求,PSE认证需要经过权威的认证机构进行检测和评定,确保产品符合相关的安全标准和法规要求。

检测包括产品的结构、材料、电路、绝缘、接地、耐压等方面的检测,以及产品在正常使用和异常情况下的安全性评定。

5. 认证周期,PSE认证的周期一般为3年,认证机构会对产品进行定期的监督抽查,以确保产品的质量和安全性始终符合要求。

总的来说,PSE认证标准对电气产品的安全性和可靠性提出了严格的要求,通过PSE认证的产品可以有效地保障用户的安全和权益,也有利于产品在日本市场的销售和推广。

因此,对于希望进入日本市场的电气产品制造商来说,通过PSE认证是非常重要的。

在申请PSE认证时,制造商需要充分了解PSE认证的相关标准和流程,与权威的认证机构进行合作,确保产品能够顺利通过认证,取得PSE认证标志,为产品的进入日本市场打下良好的基础。

PSE认证

PSE认证

PSE认证简介日本新颁布的、取代原电气用品取缔法的《电器及材料安全法规》非常复杂,以手机充电器为例:手机充电器按该法规属于A类产品,A类产品必须由日本政府授权的和METI管理的试验室进行检测。

这样的试验室例如:JQA,LET,UL Apex,非日本国的试验室如UL也是该类产品(按电池充电器和AC适配器)的授权试验室。

中国目前没有日本授权的试验室。

因此,申请PSE认证的企业应首先选择一个日本授权的试验室,获得该实验室出具的检测报告,证明产品符合日本的技术要求。

日本对电池充电器有两套技术要求,客户可以任意选择:第一种是非常传统的日本技术要求第二种是与IEC60950 2nd +A4协调一致的技术要求建议中国客户选择第二种,此种方式下,由于中国和日本都是IECEE-CB成员国,客户可以先在中国CQC获得CB报告,然后向日本上述试验室申请转CB报告。

如果使用方式1,CB报告不能被接受。

如果产品是按满足第二方式设计,即,按符合IEC60950标准进行设计,则初级电路的所有的安全件如电容器、热脱扣器等都要符合国际IEC标准。

如果产品是按满足第一方式设计,即,按符合日本国家标准进行设计,则初级电路的所有的这些安全件都要符合日本国家标准。

需要注意的是,如果选择了方式1,则不接受CB报告。

也不允许将方式1和方式2混合使用。

关于工厂检查在颁发证书之前,将由检测机构对制造厂进行工厂审查。

检测和工厂审查都满足要求后允许在电池充电器上使用PSE标志以及检测机构的标志。

要求对生产的产品进行100%的检测,但是,不同的产品检测项目不同,通常是高压试验和保护接地连续性试验。

对于充电器,证书有效期为3年。

法规要求日本的采购商在购进商品后一个月内必须向日本METI注册申报,并必须将采购商名称或ID标在产品上,以便在今后产品销售过程中进行监督管理。

根据产品材料安全法,进口到日本的产品的安全责任全部由日本进口商承担,因此,进口商必须保存检测报告和验货记录。

小日本PSE 认证

小日本PSE 认证

实验室,获得该实验室出具的检测报告,证明产品符合日
颁发合格证书和
本的技术要求。目前,在中国, CQC 是唯一有授权可以进 行 PSE 认证的发证机构,企业也可以直接向日本的机构
我国 PSE 认证申请流程图
测试合格报告
图 1
提出申请,比如 lQA 。
第二,企业申请 PSE 认证的电气产品,其关键零部
件必须有 PSE 认证,如果没有,则必须进行随机测试。因 此企业需要对产品的关键零部件进行严格把关,熟悉十
品的技术基准省令》。
7) 产品尺寸图、总装图及各部分的尺寸图;
8) 制造商出具的授权证明(适用时) ;
PSE 认证检测是采用《电气用品的技术基准省令》里 的第二项基准,即日本工业标准 (lIS) 。 国外制造商的电气产品在进入日本市场时,既可直 接选择日本 lIS 标准,也可采用 IECEE-CB 体系的 IEC
额定频率、额定时间、驱动方式等。
(9) 电子应用机械器具:额定电压、额定功率、额定
频率、额定时间、电路保护装置、使用场所等。
(10) 其他交流用电气机械器具:额定电压、额定容
脱毛器)、其.他交流用电气机械器具(电击杀虫器、直流电
源、装置)、携带发动机。
量、额定频率、外壳材料、绝缘性填充物、器体开关接点的
在我国, PSE 认证申请可以向 CQC 提出,也可以向
3) 现场检查时核对《工厂检查调查表》的信息。
日本的合格评定机构 lQA 提出 O 流程大致为:申请提出、
5
PSE 证书的要求
按照《电气用品安全法施行规则},证书的记载事项
申请受理、认证模式确定、送样测试、工厂检查(模式二)、
合格评定、 PSE 证书发放。现在同内企业一般直接向 CQC

日本PSE认证标准

日本PSE认证标准

日本PSE认证标准PSE认证是日本产品安全标准的认证制度,旨在确保产品在使用过程中不会对用户造成安全隐患。

PSE认证标准涵盖了多个领域,包括电气安全、电磁兼容性、环境适应性等。

在日本市场上,获得PSE认证是进入市场的必要条件之一,因此对于出口到日本的产品来说,了解PSE认证标准是至关重要的。

首先,PSE认证标准对电气安全方面有着严格的要求。

产品在进行PSE认证时,需要符合日本国家标准JIS C 1010的要求,包括对绝缘、接地、耐电压等方面的测试。

此外,对于家用电器等产品,还需要符合JIS C 9615的要求,确保产品在正常使用过程中不会对用户造成电击、火灾等安全风险。

其次,PSE认证标准还涉及到电磁兼容性方面的要求。

产品在进行PSE认证时,需要符合JIS C 61000系列标准的要求,确保在电磁环境下不会对其他设备造成干扰,同时也能够抵御外部电磁干扰。

这对于电子产品来说尤为重要,因为电子产品在工作过程中会产生电磁辐射,如果不符合PSE认证标准,就有可能对周围的其他设备产生干扰。

另外,PSE认证标准还要求产品具有良好的环境适应性。

产品在进行PSE认证时,需要符合JIS C 60068系列标准的要求,确保产品能够在不同的环境条件下正常工作,包括温度、湿度、震动等方面的测试。

这对于户外产品来说尤为重要,因为户外环境的变化较大,如果产品不能适应不同的环境条件,就会影响产品的可靠性和稳定性。

总的来说,PSE认证标准涵盖了电气安全、电磁兼容性、环境适应性等多个方面,对于出口到日本的产品来说,了解并符合PSE 认证标准是非常重要的。

只有通过了PSE认证的产品,才能够进入日本市场,否则将无法获得销售许可。

因此,对于出口到日本的企业来说,务必要重视PSE认证标准,确保产品能够顺利进入日本市场。

电热器具pse认证规则

电热器具pse认证规则

电热器具pse认证规则
PSE认证是指日本电气产品安全认证制度(Product Safety Electrical Appliance & Material)的缩写,是日本关于电气产品的强制性认证制度之一。

以下是PSE认证的规则:
1. 适用范围:PSE认证适用于希望销售在日本市场上使用的电气产品和材料,如电热器具、手机充电器、电线电缆等。

2. 认证种类:PSE认证分为PSE Mark和PSE RL认证两种。

PSE Mark适用于各种电气产品,PSE RL认证适用于电线电缆等材料。

3. 认证要求:PSE认证要求产品符合日本电气安全法规定的安全性能标准,如电气安全规范(DENAN)和电磁兼容性规范(EMC)等。

4. 认证流程:申请PSE认证需要通过日本认可机构(JAB)或注册认证机构(CAB)进行,包括产品测试、技术文件评审和实地检查等环节。

5. 认证标志:通过PSE认证的产品可以使用PSE Mark,该标志在产品上标示安全通过PSE认证的符号。

6. 有效期限:PSE认证的有效期限为5年,过期后需要重新进行认证。

需要注意的是,具体的PSE认证规则可能会根据产品类型和认证机构的要求而有所不同,详细的认证要求可以咨询具体的认证机构或相关的专业机构。

PSE技术手册

PSE技术手册

PSE技术手册
简介
本技术手册旨在提供有关PSE(Power Sourcing Equipment,电源设备)的详细信息,以便用户能够更好地理解和使用这一技术。

PSE是什么?
PSE是一种用于提供电力的设备,通常用于供电给其他设备,如IP电话、摄像头等。

PSE通过将电力传输到连接的设备上,为其提供所需的电源。

PSE的类型
PSE有两种主要类型:有线和无线。

有线PSE使用电线进行电力传输,而无线PSE则通过无线信号进行传输。

PSE的功能
PSE的主要功能是将电力传输到连接的设备上,以满足其电源需求。

此外,PSE还可以监控设备的电源消耗,并根据需要自动调整电力输出。

PSE的安装和配置
安装和配置PSE需要遵循特定的步骤和指南。

首先,确保PSE 符合适用的电气和安全标准。

然后,将PSE与所需的设备连接,并根据要求进行配置。

PSE的优点和应用
PSE具有以下优点:
- 提供方便的电源供应
- 可根据需要进行电力调整
- 支持各种设备
应用领域包括但不限于:
- 电信行业
- 家庭网络
- 工业自动化
总结
PSE是一项重要的技术,用于为各种设备提供电源。

本技术手册提供了有关PSE的详细信息和配置指南,以帮助用户更好地理解和使用这一技术。

如需进一步了解PSE,请参阅PSE技术指南或咨询相关专业人士。

感谢阅读本技术手册。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Revision of the Ministerial Ordinance for Determining Technical Standards for Electrical Appliances(Lithium Ion Secondary Batteries)Attached Table 9 Lithium ion secondary batteries1. Basic design(1) Insulation and wiringa) The insulation resistance between the positive terminal and a metal surface (excluding electrical contact surfaces and electrical parts having the same potential as the electrode potential of the battery) exposed to outside the battery, and which, as mounted on the equipment, may be touched by a human, shall be 5 MΩ or more at 500 VDC.b) Internal wiring and its insulation shall sufficiently withstand anticipated maximum current, maximum voltage, and maximum temperature.c) Equipment having connection terminals shall be wired to maintain an appropriate clearance and creepage distance between terminals.(2) Inner pressure reduction mechanisma) Battery cases and cells shall be designed with a gas release mechanism, or shall be designed to reduce excessive internal pressure when the equipment reaches a value or rate set so as to protect against explosion or fire.b) If support material is used to fix cells within the battery case, the type of support material and method of fixing cells shall not inhibit pressure relief, and the battery shall not induce overheating during normal use of the battery.(3) Temperature or and current managementThe battery shall be designed so that abnormal temperature-rise conditions are prevented. Provided that this does not apply if a current limiter is installed outside the battery to control abnormal temperature-rise during charging and discharging within a safety level.(4) Terminal contactsa) The battery shall be marked positive (+) or negative (-) for terminals on its external surface or be designed with no fear of misconnection.b) Batteries having a terminal contact plate shall be sized and shaped to ensure the flow of maximum current anticipated.c) Batteries having a terminal contact plate shall be designed so that the surface of the terminal contact plate will be a conductive material with good mechanical strength and corrosion resistance. Moreover, the terminal contact plate shall be arranged to minimize the risk of short circuits. .(5) Assembly of cells into a batteryBatteries made of series connected cell blocks shall be designed so that cells are assembled to make the cell blocks the same capacity, and cell polarity reversal is prevented. Provided that this does not apply to the battery controlled by itself or the equipment as cell polarity reversal is prevented.2. Intended useIn the tests mentioned below, the number and test ambient temperature of cells or batteries to be tested shall be as per Annex Table 1-1. Provided that these tests can be handled by using an equivalent or severer test method. Moreover, if the battery structure has been partially modified and the test results before the change can be used instead, no further tests are required on that particular part.(1) Continuous charging at constant voltageCells charged under the conditions specified in Annex Table 1-2 (hereafter called "the charged cells") shall not fire, explode, or leak after being charged at constant voltage for 28 days.(2) VibrationCells and batteries charged under the conditions specified in Annex Table 1-2 (hereafter called "the charged cells or batteries") shall not fire, explode, or leak when tested under the following test conditions:a) A simple harmonic motion with an amplitude of 0.76 mm and a total maximum excursion of 1.52 mm shall be applied to the charged cells.b) The frequency shall be increased at a rate of 1 Hz/minute from 10 Hz and reduced at a rate of 1 Hz/minute after it reaches 55 Hz, and then it shall be ensured that the frequency has reached 10 Hz.c) The entire range of frequency (10 Hz to 55 Hz) shall be tested for 90 ± 5 minutes in each of the three mutually perpendicular directions of vibration (X, Y, and Z axes).d) The vibration shall be applied in each of mutually perpendicular direction (X, Y, an Z axes) in the sequence specified below according to conditions a) to c) Provided that the order of steps 2 to 4 can be changed.Step 1: Ensure that the measured voltages of charged cells or batteries are the voltages after charging.From steps 2 to 4: Apply vibration as specified in Table 1.Step 5: Leave the charged cells or batteries for one hour, and then conduct a visual inspection.Table 1 Conditions for vibration testingStep Direction ofvibration Range offrequencyVibration time(min)Storage time(h)Visualinspection1----Conduct inspection before the test.2 X-axisdirection10Hz~55Hz90±5--3Y-axisdirection10Hz~55Hz90±5--4Z-axisdirection10Hz~55Hz90±5--5---1Conduct inspection after the test.(3) Battery enclosure test at high ambient temperatureA battery charged under conditions specified in Annex Table 1-2 (hereafter called "the charged battery") shall be left in an air circulating oven at 70 ± 2°C for seven hours. Then the battery shall be removed from the air circulating oven and the temperature of the battery case shall be returned back to 20 ± 5°C. At that time, said case shall not undergo deformation that exposes the internal contents.(4) Temperature cyclingCharged cells or batteries shall not fire, explode, or leak when tested under the following test conditions:a) The charged cells or batteries shall be left in a thermostatic oven.b) The inner temperature of the thermostatic oven, the time it is to be left as is, and the test procedure shall be as follows:Step 1:Leave the charged cells or batteries at 75 ± 2°C for four hours.Step 2: Change the temperature to 20 ± 5°C within 30 minutes and left the equipment for at least two hours.Step 3: Change the temperature to – (minus) 20 ± 2°C within 30 minutes and the equipment shall be left for four hours.Step 4: Change the temperature to 20 ± 5°C within 30 minutes and left the equipment for at least two hours.Step 5: Steps 1 to 4 repeat another four times.Step 6: Store the charged cells at 20 ± 5°C for seven days, and then conduct a visual inspection.3. Reasonably foreseeable misuseIn tests specified below, the number and test ambient temperature of cells or batteries to be tested shall be as per Annex Table 1-1. Provided that these tests can be conducted by using an equivalent or severer test method. Moreover, if the battery structure has been partially modified and the test results before the change can be used instead, no further tests are required on that particular part.(1) External short circuitShall conform to a) and b) below.a) The charged cell shall be left at an ambient temperature of 55 ± 5°C. With the positive and negative terminals short-circuited via connection to a total external resistance of 80 ± 20 mΩ, the battery shall be left for 24 hours or until the difference between the surface temperature of the charged cell and the ambient temperature becomes not more than 20%of the maximum difference (whichever is the sooner), and the battery shall not fire or explode.b) The charged battery shall be left at an ambient temperature of 20 ± 5°C. With the positive and negative terminals short-circuited via connection to a total external resistance of 80 ± 20 mΩ, the battery shall be left for 24 hours or until the difference between the temperature of the battery container and the ambient temperature becomes not more than 20% of the maximum difference (whichever is the sooner ; if the battery incorporates a protective device or protective circuit and the current has stopped, then for one hour after the current stopped), and the battery shall not fire or explode.(2) Free fallWhen the charged cell or battery is dropped three times from a level of 1,000 mm onto a concrete floor in a random direction, the battery shall not fire or explode. Provided that this does not apply to charged batteries weighing more than 7 kg.(3) Mechanical shock (crash hazard)Charged cells and batteries shall not fire, explode, or leak when tested under the following test conditions:a) The charged cell or battery shall be secured to on an impact testing machine by means of a rigid mount. Then shock of the equal magnitude shall be applied to the battery in each of three mutually perpendicular directions (X, Y, and Z axes).b) The shock applied to the charged cell or battery shall be accelerated so that the minimum average acceleration will be 735 m/s2 during the first 3 ms. The peak acceleration shall be between 1,228 m/s2 and 1,716 m/s2.(4) Thermal abuseThe charged cell at 20 ± 5°C shall be placed in a gravity or circulating air-convention oven. The oven temperature shall then be increased to 130 ± 2°C at a rate of 5 ± 2°C/min., left for 10 minutes, and then the battery shall not fire or explode.(5) Crushing of cellsThe charged cells shall not fire or explode when tested under the following test conditions: a) A charged cell shall be placed between two flat surfaces and a force of 13 ± 1 kN shall be applied by a crushing apparatus.b) The force shall be released when any of the following occurs: (1) the maximum force is applied, (2) an abrupt voltage drop of one-third of the original voltage has been obtained, or(3) there is 10% deformation of the battery height.c) Force shall be applied to charged cells so that the longitudinal axis of the cells becomes parallel with the flat surface of the crushing apparatus For charged cells that are prismatic (hereafter called "the prismatic cells"), a similar test shall be performed by rotating a cell 90°around its longitudinal axis and it shall be ensured that force is applied to both the wide and narrow sides of the prismatic cells. At that time, one sample shall receive force in a single direction.(6) Low pressureA charged cell shall be placed in a vacuum chamber, the chamber shall be closed, and then the chamber shall be gradually reduced to a pressure equal to or less than 11.6 kPa. After being kept in that pressure of the value in the vacuum chamber for six hours, the cell shall not fire, explode, or leak.(7) OverchargeThe cell discharged under the conditions specified in Annex Table 1-2 (including cells equipped with a protective device for use in equipment or batteries; hereafter called "the discharged cells") shall be provided. Then by using a power supply of not less than 10V, the battery shall be energized until it reaches 250% of the rated capacity or the test voltage with the designed charging current, and the battery shall not fire or explode.(8) Forced dischargeWhen polarity reversely charged at 1 ItA for 90 minutes, the discharged cell shall not fire or explode.(9) Cell protection against a high charging rateThe discharged cells shall not fire or explode when charged at a current three times the designed charging current, thereby fully charging it, or when a protective device used in the equipment or battery cuts off the charge current.(10)Forced internal short circuit of cellsThe winding core of a charged cell (except for those whose electrolyte is not liquid) shall not fire when tested according to the test procedure specified below. Note that each test shall use a new sample.Step 1: At an ambient temperature of 20 ± 5°C and the dew point of -25°C or below, the sample charged cell shall be dismantled and the winding core shall be removed from the charged cell enclosure. Then a small L-shaped piece of metallic nickel (0.2-mm high by 0.1-mm wide, with each side 1-mm long) shall be inserted between the positive active material and negative active material as laid out in Table 2. If uncoated current collector of positive electrode is faced an active material coated negative electrode, said position shall be tested as well. Provided that, if inserting a small piece of metallic nickel as laid out in Table 2 makes the test difficult, then it is permissible to use a pressing jig as shown in Table 2, laid out so that pressure can be applied with the winding core in contact with the center of the inserted part of the small piece of metallic nickel.Step 2: After inserting the small piece, the winding core shall be reassembled to its original form, and sealed into a bag without permeability of electrolyte vapors. The time period between dismantling of the charged cell and closing of the bag shall be within 30 minutes.Step 3: The closed bag containing the winding core shall be stored for 45 ± 15 minutes at each the highest test temperature and the lowest test temperature specified in Annex Table 1-2. Then the winding core shall be taken out from the bag.Step 4: Immediately after taking out the winding core from the bag, a pressing jig as shown in Table 2 shall touch on the winding core, where said small piece of metallic nickel is inserted, and the pressing jig shall be lowered at a rate of 0.1mm/second at the highest and the lowest test temperatures specified in Annex Table 1-2.Step 5: The lowering of the pressing jig shall be stopped when a voltage drop of over 50 mV is obtained or the pressure reaches 800 N (whichever occurs earlier). Provided that, for prismatic cells, the lowering of the pressing jig shall be stopped when the pressure reaches 400 N.Step 6: The test shall be conducted from steps 1 to 5 until five samples prove to have undergone a voltage drop. Provided that there is a maximum number of ten test samples.Table 1 2 Position of insertion in forced internal short circuit test and usage of pressing jigPosition of the insertion : between the positive active material and negative active material An L-shaped angle shall be placed in the windup direction 20 mm from the edge coated with positive active material on the external circumference of the electrode and between the positive active substance in the middle of the widthwise direction on one hand, and the separator on the other. If some aluminum foil is exposed from the part coated with positive active material , the exposed part of aluminum foil shall be removed at the boundary. For prismatic cells, however, the L-shaped angle shall be placed in the windup direction at the center of the plane between the positive active material or negative active material at the external circumference on one hand, and the separator on the other.Position of the insertion : between the uncoated current collector of positive electrode and the active material coated negative electrode If there is a plane where the exposed portion of aluminum foil at the external circumference opposes the negative active material, anL-shaped angle shall be placed in the windup direction 1 mm from the edge coated with positive active material at the external circumference of the electrode and between the exposed aluminum foil in the middle of the widthwise direction on one hand, and the separator on the other. However, for cylindrical cells containing some portion of exposed aluminum foil, a 10-mm exposed portion of aluminum foil shall be left at the boundary and the rest shall be removed.Pressing jig A 10-mm square pillar shall be covered with nitrile rubber 2-mmthick on the contact surface. For prismatic cells, a piece of acrylicresin of 5 mm by 5 mm and 2-mm thick shall be attached on thecontact surface.(11) Function of the overcharge protection of batteriesWhen tested at an ambient temperature of 20 ± 5°C by using any method specified below, the cell block in the battery shall not exceed the upper limited charging voltage specified in Annex Table 1-2.a) For batteries made of a one cell block, the voltage applied to the cell block during charging shall be measured.b) For batteries consisting of a series of two pieces or more of cell blocks, it shall be charged while measuring the voltage of each cell block and at the same time, one cell block shall forcibly be discharged and the voltages of the other cell blocks shall gradually be measured.c) For batteries consisting of a series of connection of two pieces or more of cell blocks, a voltage exceeding the upper limited charging voltage specified in Annex Table 1-2 shall be applied to the cell block while measuring the voltage of each cell block. When the charging stops, the voltage shall be measured.(12) Free fall of applianceThe charged batteries shall not undergo short-circuiting when tested under the conditions specified below.At an ambient temperature of 20 ± 5°C, according to the appliance specified in the left field of Table 3, the charged battery shall be installed in appliance to be used, and shall be dropped once onto a concrete floor or iron plate in a direction considered to most likely affect the battery in a negative manner Otherwise, an equivalent load shall be applied to said battery. However, this does not apply to portable appliance including battery weighing more than 7 kg or desktop appliance (excluding for appliance that may be carried around) weighing more than 5 kg including battery.Table 3 Heights in free fall testingEquipment tested Height in drop testingPortable appliance weighing not more than 7 kg and desktop appliance weighing not more than 5 kg within the scope of JIS C 6950 (2006) (excluding such appliance that may be portable)Drop height specified in JIS C 6950 (2006), 4.2.6Portable appliance weighing not more than 7 kg within the scope of JIS C 6065 (2007) Drop height specified in JIS C 6050 (2006), 12.1.4Portable appliance 1000mmPortable appliance and desktop applianceother than mentioned above (excluding for such appliance that may be carried portable ) Desktop appliance (excluding suchappliance that may be portable)750mm4. LabelingLabeling shall be provided as specified in Annex Table 2.Remarks: The codes used in this table shall have the following meanings: V: voltMΩ: megohmmm: millimeterHz: Hertzmin: minuteh: hour°C: degree of temperature%: percentmΩ: milliohmkg: kilogramms: millisecondm/s2: meter per square secondkN: kiloneutonA: amperemV: millivoltAnnex table 1 Test conditions for lithium ion secondary cells and batteries Table 1 Test item, charge temperature, test temperature, and quantity tested Cell BatteryTest itemCharge temperature TesttemperatureQuantitytestedChargetemperatureTesttemperatureQuantity testedContinuous low-rate charging 20±5 ℃ Highesttesttemperature5- - -Vibration 20±5 ℃ 20±5 ℃ 5 20±5 ℃ 20±5 ℃ 5 Batteryenclosure testat high ambient temperature - - -20±5 ℃ 70±2 ℃ 3Temperature cycling 20±5 ℃-5 20±5 ℃ - 5Highest testtemperature55±5 ℃ 5Highest testtemperature20±5 ℃ 5External short circuitLowest test temperature 55±5 ℃ 5Lowest testtemperature20±5 ℃ 5Free fall 20±5 ℃ 20±5 ℃ 3 20±5 ℃ 20±5 ℃ 3 Mechanicalshock (crashhazard)20±5 ℃ 20±5 ℃ 5 20±5 ℃ 20±5 ℃ 5Highest test temperature 130±2 ℃ 5- - -Thermal abuseLowest testtemperature130±2 ℃ 5- - -Crushing of cells Highest testtemperatureHighesttesttemperature5Providedthat, forprismaticcells, fiveare to betested forwide sidesand fivefor narrowsides.- - -Lowest testtemperatureLowest testtemperature5Providedthat, forprismaticcells, fiveare to betested forwide sidesand fivefor narrowsides.- - - Low pressure 20±5 ℃ - 3- - -- Highesttesttemperature5- - -Overcharge- Lowest testtemperature5- - -- Highesttesttemperature 5- - -Forceddischarge- Lowest testtemperature5- - -- Highesttesttemperature 5- - -Cell protectionagainst a highcharging rate- Lowest testtemperature5- - -Highest test temperature Highesttesttemperature5- - -Forced internal short circuit of cellsLowest test temperature Lowest testtemperature5- - -Function ofthe overchargeprotection ofbatteries- - - - 20±5 ℃ 1Free fall ofappliance- - - 20±5 ℃ 20±5 ℃ 3 Table 2 Charge procedure for testingCharge procedure When a test is to be conducted on a cell or battery charged ata charge temperature of 20 ± 5°C, the cell or the battery shallbe charged to a fully charged state by using the designedmethod at an ambient temperature of 20 ± 5°C. Other testson cells shall be conducted by using cells which, unlessotherwise specified, are stabilized for a period of one to fourhours at the highest and the lowest test temperaturesspecified below, and then tested at the upper limitedcharging voltage and the maximum charging current untilthe current reaches 0.05 ItA when controlled forconstant-voltage charging. Tests on batteries shall beconducted by using charged batteries at an ambienttemperature at the highest and the lowest test temperaturesspecified below until the batteries reach the design fullycharged state of the batteries or equipment. Provided that,prior to charging, cells and batteries shall be used afterhaving been discharged to a designed final voltage, at anambient temperature of 20 ± 5°C and at a constant current of0.2 ItA.Upper limited chargingvoltage4.25VMaximum chargingcurrentDesigned valueHighest test temperature 45℃Lowest test temperature10℃Remarks1. ItA shall be expressed in the following formula [see IEC 61434 (1996)]: ItA = C5Ah/1 h.2. Supporting documents complying with the procedure specified in JIS C 8714 (2007), Supplement B shall be stored.3. If an upper limited charging voltage having a value other than listed in Table 2 is newly used, one shall store supporting documents regarding voltage changes complying with the procedure specified in JIS C 8714 (2007), Supplement B, and use said value as the upper limited charging voltage.4. When a highest or a lowest test temperature having a value other than listed in Table 2 is newly used, supporting documents regarding temperature changes shall be stored complying with said procedure and said value can be stored as the highest or lowest test temperature according to JIS C 8714 (2007), Supplement B, "Procedure of the decision of new charging condition and the adoption of new model."Annex table 2 Method of labeling electrical appliancesMethod of labelingElectrical applianceItem to be indicated Method of labelingLithium ion secondary batteries 1. Rated voltage(batteries)2. Rated capacity(batteries)A method shall be used to providelabeling on a surface where it caneasily be seen but not easily faded.This may be omitted if such surfacelabeling proves difficult, and anothermethod can be utilized to providelabeling that will not easily fade on thesurface where it is easy to see.Supplementary rules[Date of enforcement]Article 1 This ministerial ordinance will come into effect on the date of enforcement (November 20, 2008) of the Law for Revising Part of the Electrical Appliance and Material Safety Law (Law No. 116 of 2007).[Transitory measures]Article 2 Regulations (11) and (12) of Attached Table 9-3 of the Ministerial Ordinance for Determining Technical Standards for Electrical Appliances revised according to said ministerial ordinance will not be applied for three years after the date this ministerial ordinance came into effect.2. For three years after the date of enforcement of this ministerial ordinance, Annex Tables 1-1 and 1-2 of Attached Table 9 of the Ministerial Ordinance for Determining Technical Standards for Electrical Appliances revised according to said ministerial ordinance may be applied under the test conditions specified in Attached Tables 1 and 2 in the Supplementary Rules. Provided that, this shall not apply to (1), (4), or (5) of Attached Table 9-3 regarding Lithium Ion Secondary Cells and Batteries for Portable Electronic Applications and Others.Attached Table 1 in the Supplementary RulesCell BatteryTest itemCharge temperatur e TesttemperatureQuantitytestedChargetemperatureTesttemperatureQuantitytestedContinuous low-rate charging 20±5 ℃ 20±5 ℃5---External shortcircuit20±5 ℃ 55±5 ℃520±5 ℃ 20±5 ℃5Thermal abuse20±5 ℃130±2 ℃5---Crushing of cells20±5 ℃20±5 ℃5Providedthat, forprismaticcells, fiveare to betested forwide sidesand fivefornarrowsides.- --Overcharge-20±5 ℃5---Forced discharge-20±5 ℃5---Cell protectionagainst a high-20±5 ℃5---charging rateAttached Table 2 in the Supplementary RulesCharge procedure For the purpose of this standard, unless otherwise specified, testsshall be conducted by using cells and batteries charged to a fullycharged state by using a designed method at an ambient temperatureof 20 ± 5°C. Provided that, prior to charging, cells and batteriesshall be used after having been discharged to a designed finalvoltage, at an ambient temperature of 20 ± 5°C and at a constantcurrent of 0.2 ItA.Note: 1. ItA shall be expressed in the following formula [see IEC61434 (1996)]: ItA = C5Ah/1 h.。

相关文档
最新文档