APE5212中文资料
1952212资料
Extract from the onlinecatalogMCDNV 1,5/ 7-G1-3,5 RNP26THROrder No.: 1952212The figure shows a 10-position version of the producthttp://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=1952212Headers with engagement nose, 3.5 mm pitch, pin length 2.6 mm, plug-in direction vertical to the PCBhttp://Please note that the data givenhere has been taken from theonline catalog. For comprehensiveinformation and data, please referto the user documentation. TheGeneral Terms and Conditions ofUse apply to Internet downloads. Technical dataDimensions / positionsLength16 mmHeight13.3 mmPitch 3.5 mmDimension a21 mmNumber of positions7Pin dimensions0,8 x 0,8 mm Pin spacing 3.5 mmHole diameter 1.3 mmTechnical dataInsulating material group IIIaRated surge voltage (III/3) 2.5 kVRated surge voltage (III/2) 2.5 kVRated surge voltage (II/2) 2.5 kVRated voltage (III/2)200 VRated voltage (II/2)250 VNominal current I N8 ANominal voltage U N160 V Maximum load current8 A (per position) Insulating material LCP Inflammability class acc. to UL 94V0Certificates / ApprovalsApproval logoCULNominal voltage U N150 VNominal current I N8 AULNominal voltage U N150 VNominal current I N8 A Certification CUL, ULAccessoriesItem Designation DescriptionMarking0805030SK 3,5/2,8:SO Marker card, special printing, self-adhesive, labeled acc. tocustomer requirements, 14 identical marker strips per card, max.25-position labeling per strip, color: White0804109SK 3,81/2,8:FORTL.ZAHLEN Marker card, printed horizontally, self-adhesive, 10-section markerstrip, 14 identical decades marked 1-10, 11-20 etc. up to 91-(99)100, sufficient for 140 terminal blocksPlug/Adapter1734634CP-MSTB Coding profile, is inserted into the slot on the plug or invertedheader, red insulating materialDrawingsDrilling diagramDimensioned drawingAddressPHOENIX CONTACT GmbH & Co. KGFlachsmarktstr. 832825 Blomberg,GermanyPhone +49 5235 3 00Fax +49 5235 3 41200http://www.phoenixcontact.de© 2008 Phoenix ContactTechnical modifications reserved;。
521-9215中文资料
4.45 [.175] 1.02 [.040]
25.4 [1.0] MIN
1.02 [.040] MIN
3.30 [.13]
NEW
3.00 [.118]
1.50 [.059] MAX 6.00 [.236]
.45 [.016 ]
.40 [.016]
MOUNTING CLIP: 515-0006 located on page 4-65
元器件交易网
3mm LED CBI® Circuit Board Indicator .200” High LED Centerline
PART NO.
4.32 [.170] 2.89 [.114] 5.08 [.200] 3.68 [.145] .508 [.020] 2.54 [.100] 6.35 [.250]
Dialight Corporation • 1501 Route 34 South • Farmingdale, NJ 07727 • TEL: (732) 919-3119 • FAX: (732) 751-5778 •
4-57
元器件交易网
Dimensions in mm [inches]
MOUNTING CLIP: 515-0006 located on page 4-65
³
ATTENTION
OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES
4
Blue
ABSOLUTE MAXIMUM RATINGS (TA=25°C) Power Dissipation (mW) Forward Current (mA) Derating (mA/°C) From 55°C Operating Temperature (°C) Storage Temperature (°C) Soldering Temperature
api521标准中文版
API521标准中文版API521是美国石油学会(American Petroleum Institute)发布的一项用于评估石油和天然气工业中管道系统的完整性管理的标准。
该标准规定了管道系统的设计、制造、安装、检验、维修和改造等方面的要求,以确保管道系统的安全、可靠和经济性。
API521标准是国际上广泛认可的管道系统完整性管理标准之一,被广泛应用于石油、天然气、化工和其他相关行业的管道系统管理。
本翻译稿将API521标准的内容翻译成中文,以便更好地满足中国市场的需求。
由于API521标准内容较为复杂,本翻译稿仅供参考,具体内容请以英文原版为准。
一、范围本标准规定了石油和天然气工业中管道系统完整性管理的指南,包括设计、制造、安装、检验、维修和改造等方面。
本标准适用于所有类型和尺寸的管道系统,包括油气长输管道、城市燃气管道、油气田内部管道等。
二、规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
三、术语和定义本标准采用如下术语和定义:管道系统 pipeline system由一根或多根管道组成的系统,用于输送流体介质,如石油、天然气等。
完整性管理 integrity management对管道系统进行全面的检测、评估和控制,以确保其安全、可靠和经济性的一系列管理活动。
四、管道系统的设计1. 设计原则管道系统的设计应遵循安全可靠、经济合理的原则,并符合相关法律法规和标准的要求。
设计时应充分考虑地质、气象、环境等自然条件,以及管道系统的工艺流程、输送介质、运行压力和温度等因素。
2. 材料选择管道系统的材料选择应综合考虑材料的力学性能、耐腐蚀性能、加工工艺性能和经济性等因素。
应根据不同的使用条件选择合适的材料,如碳钢、不锈钢、合金钢等。
OP521DA;OP520DA;中文规格书,Datasheet资料
Silicon Photo Darlington in Miniature 1206 SMD PackageOP520DA, OP521DAFeatures:x x x x xHigh Photo Sensitivity Fast Response Time 1206 Package Size Opaque or Water Clear Flat Lens High Current GainThe OP520DA and OP521DA are NPN silicon photo darlingtons mounted in miniature 1206 SMD packages. Both the OP520DA and OP521DA have a flat lens however, the OP520DA lens are opaque to shield the device from ambient light unlike the lens of the OP521DA. These sensors are packaged in compact 1206 size chip carriers that are compatible with most automated mounting equipment. The OP520DA and OP521DA are mechanically and spectrally matched to the OP250 series infrared LEDs. Since these devices have a flat window lens, they enable a wide acceptance angle. It is packaged in a plastic leadless chip carrier which is compatible for new applications with that need smaller dimension packages for automated mounting and detection equipment with new innovative designs. OP520DA and OP521DA are 100% production tested using infrared light for close correlation with Optek GaAs and GaAlAs emitters. Photo darlington devices are normally used in application where light signals are low and more current gain is needed than in comparison to the standard phototransistors.Descriptions:Applications x x x x Non-Contact Position Sensing Datum detection Machine automation Optical encoders Relative Response vs. Wavelength100%Part Number OP520DA OP521DAOrdering Information Sensor Viewing Angle Photo Darlington Photo Darlington 150°Lead Length N/A80%OP5 2 0 D A, OP5 2 1 D ARelative Response60%40%OP521DAOP520DA20%0% 400 500 600 700 800 900 1000 1100PbRoHSA subsidiary of TT electronics plcWavelength (nm)Optek reserves the right to make changes at any time in order to improve design and to supply the best product possible. OPTEK Technology Inc.— 1645 Wallace Drive, Carrollton, Texas 75006 Phone: (800) 341-4747 FAX: (972) 323– 2396 sensors@ /Silicon Photo Darlington in Miniature 1206 SMD PackageOP520DA, OP521DAAbsolute Maximum RatingsTA = 25o C unless otherwise notedStorage Temperature Range Operating Temperature Range Collector-Emitter Voltage Emitter-Collector Voltage Collector Current Power Dissipation Notes: 1. Solder time less than 5 seconds at temperature extreme. 2. De-rate linearly at 2.17 mW/° C above 25° C. Lead Soldering Temperature-40° C to +100° C -25° C to +85° C 260° C(1) 35V 5V 30 mA 100 mW (2)Electrical Characteristics (TA = 25rC unless otherwise noted)SYMBOLIC(ON) VCE(SAT) ICEO V(BR)CEO V(BR)ECOPARAMETEROn-State Collector Current Collector-Emitter Saturation Voltage Collector-Emitter Dark Current Collector-Emitter Breakdown Voltage Emitter-Collector Breakdown Voltage Spectral range of sensitivityMIN10.0TYPMAX1.7 200UNITSmA V nA V VCONDITIONSVCE = 5.0V, Ee = 0.5mW/cm2 (3) IC = 1mA, Ee = 5.0mW/cm2 (3) VCE = 5.0V, Ee = 0 (4) IC = 100µA, Ee = 0 IE = 100µA, Ee = 035 5 OP521DA OP520DA400 700 501100 1100nmVCE = 5.0Vtr, tf 3. 4.Rise and Fall TimesµsIC = 1mA, RL = 1KLight source is an unfiltered GaAs LED with a peak emission wavelength of 935nm and a radiometric intensity level which varies less than 10% over the entire lens surface of the photo darlington being tested. To Calculate typical collector dark current in µA, use the formula ICEO = 10(0.04 TA-3/4) where TA is the ambient temperature in ° C.40Relative Collector Current-IC (mA) vs. Irradiance-Ee (mW/cm2)Normalized at Ee = 1mW/cm2 Conditions: VCE = 5V, = 935nm, TA = 25 °C140% 130%Relative On-State Collector Current vs. Temperature—(TA)Normalized at TA = 25°C . Conditions: VCE = 5V, = 935nm, TA = 25 °C 80°CRelative Collector Current—IC (mA)35 30 25 20 15 10 5Relative Collector Current120% 110% 100% 90% 80% 70%-40°C00.51.01.522.0-250255075100Irradiance- Ee (mW/cm )OPTEK Technology Inc.— 1645 Wallace Drive, Carrollton, Texas 75006 Phone: (800) 341-4747 FAX: (972) 323– 2396 sensors@ Temperature— TA (°C)Issue A 03.08 Page 2 of 4/Silicon Photo Darlington in Miniature 1206 SMD PackageOP520DA, OP521DAOP520DA, OP521DARelative On-State Collector Current vs. Collector-Emitter Voltage301.2 mW/ cm2Collector-Emitter Dark Current vs. Temperature1000Conditions: Ee = 0 mW/cm2 VCE = 10VIC(ON) - On-State Collector Current (mA)25 201.0 mW/ cm2Collector-Emitter Dark Current (nA)1000.8 mW/ cm217.50.6 mW/ cm21015.00.4 mW/ cm212.5 10.00.2 mW/ cm210 0 0.5 1.0 1.5 2.5 3 -25 0 25 50 75 100Collector-Emitter Voltage (V)Temperature—(°C)OPTEK Technology Inc.— 1645 Wallace Drive, Carrollton, Texas 75006 Phone: (800) 341-4747 FAX: (972) 323– 2396 sensors@ Issue A 03.08 Page 3 of 4/Silicon Photo Darlington in Miniature 1206 SMD PackageOP520DA, OP521DAPackage DimensionsSENSOR DIEOP520DA, OP521DA1RECOMMENDED SOLDER PADS [4.60±0.10] .181±.0039 [1.50±0.10] .059±.0039 [1.60±0.10] .063±.00392PIN 1 2FUNCTION Collector Emitter[1.60±0.10] .063±.0039OPTEK Technology Inc.— 1645 Wallace Drive, Carrollton, Texas 75006 Phone: (800) 341-4747 FAX: (972) 323– 2396 sensors@ Issue A 03.08 Page 4 of 4/分销商库存信息:OPTEK-TECHNOLOGY OP521DA OP520DA。
[精华]tlp521中文资料
摘要线性光耦合器是目前国际上正推广应用的一种新型光电隔离器件。
文中介绍其性能特点、产品分类,以及它在单片开关电源中的应用。
关键词光耦合器线性电流传输比通信单片开关电源光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。
近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。
1 光耦合器的类型及性能特点1.1 光耦合器的类型光耦合器有双列直插式、管式、光导纤维式等多种封装形式,其种类达数十种。
光耦合器的分类及内部电路如图1所示。
图中是8种典型产品的型号:(a)通用型(无基极引线);(b)通用型(有基极引线);(c)达林顿型;(d)高速型;(e)光集成电路;(f)光纤型;(g)光敏晶闸管型;(h)光敏场效应管型。
1.2 光耦合器的性能特点光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。
它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
光耦合器的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。
此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。
电流传输比是光耦合器的重要参数,通常用直流电流传输比来表示。
TLP521中文资料 datasheet
TLP521是可控制的光电藕合器件,光电耦合器广泛作用在电脑终端机,可控硅系统设备,测量仪器,影印机,自动售票,家用电器,如风扇,加热器等电路之间的信号传输,使之前端与负载完全隔离,目的在于增加安全性,减小电路干扰,减化电路设计。
东芝TLP521-1,-2和-4组成的砷化镓红外发光二极管耦合到光三极管。
该TLP521-2提供了两个孤立的光耦8引脚塑料封装,而TLP521-4提供了4个孤立的光耦中16引脚塑料DIP封装集电极-发射极电压: 55V(最小值)经常转移的比例: 50 %(最小)隔离电压: 2500 Vrms (最小)图1 TLP521 TLP521-2 TLP521-4 光藕内部结构图及引脚图图2 TLP521-2 光电耦合器引脚排列图Absolute Maximum Ratings 绝对最大额定值(Ta = 25℃)注:使用连续负载很重的情况下(如高温/电流/温度/电压和重大变化等),可能会导致本产品的可靠性下降明显甚至损坏。
Recommended Operating Conditions建议操作条件*1: Ex. rank GB: TLP521−1 (GB)(Note): Application type name for certification test, please use standard product type name, i.e.TLP521−1 (GB): TLP521−1, TLP521−2 (GB): TLP521−2Individual Electrical Characteristic 单独的电气特性参数(Ta = 25℃)Coupled Electrical Characteristic 耦合电气特性参数s(Ta = 25℃)Isolation Characteristic 耦合电气特性参数(Ta = 25℃)Switching Characteristic 开关特性参数(Ta = 25℃)图3 TLP521-1 封装图图4 TLP521-2 封装图图5 TLP521-4 封装图图6 开关时间测试电路特性曲线图:应用电路:图7 打开或关闭12V直流电动机的TTL控制信号输入电路图74HC04 特性:∙缓冲输入∙传输延迟(典型值): 6ns at V CC = 5V, C L = 15pF, T A= 25°C∙扇出(驱动)能力: (在温度范围内)- 标准输出 . . . . . . . . . . . . . . . 10 LSTTL Loads- 总线驱动 . . . . . . . . . . . . . . . 15 LSTTL Loads ∙宽工作温度范围 . . . –55°C to 125°C∙对称的传输延迟和转换时间∙相对于LSTTL逻辑IC,功耗减少很多∙HC Types- 工作电压:2V到6V- 高抗扰度: N IL = 30%, N IH= 30% of V CC at V CC = 5V∙HCT Types- 工作电压:4.5V到5.5V- 兼容直接输入LSTTL逻辑信号, V IL= 0.8V (Max), V IH = 2V (Min)- 兼容CMOS逻辑输入, I l1μA at V OL, V O该74HC04/74HCT04是高速CMOS器件,低功耗肖特基的TTL(LSTTL)电路。
(整理)TLP521中文资料.
摘要线性光耦合器是目前国际上正推广应用的一种新型光电隔离器件。
文中介绍其性能特点、产品分类,以及它在单片开关电源中的应用。
关键词光耦合器线性电流传输比通信单片开关电源光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器或光电耦合器,简称光耦。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光器发出光线,受光器接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
普通光耦合器只能传输数字(开关)信号,不适合传输模拟信号。
近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。
1 光耦合器的类型及性能特点1.1 光耦合器的类型光耦合器有双列直插式、管式、光导纤维式等多种封装形式,其种类达数十种。
光耦合器的分类及内部电路如图1所示。
图中是8种典型产品的型号:(a)通用型(无基极引线);(b)通用型(有基极引线);(c)达林顿型;(d)高速型;(e)光集成电路;(f)光纤型;(g)光敏晶闸管型;(h)光敏场效应管型。
1.2 光耦合器的性能特点光耦合器的主要优点是单向传输信号,输入端与输出端完全实现了电气隔离,抗干扰能力强,使用寿命长,传输效率高。
它广泛用于电平转换、信号隔离、级间隔离、开关电路、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
光耦合器的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。
此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。
电流传输比是光耦合器的重要参数,通常用直流电流传输比来表示。
MS5212-BM资料
The MS52XX SMD pressure sensor series is designed for pressure sensor systems with highest demands on resolution and accuracy. The device consists of a silicon micromachined pressure sensor die mounted on a 7.6 x 7.6 mm ceramic carrier protected by a metal cap. The MS52XX can be delivered in a highly sensitive version giving a maximal output voltage or in a highly linear version giving a linear output voltage directly proportional to the applied pressure. Full Scale Pressure 1 bar 12 bar High Sensitivity Version Product Code
MS5201-AN
High Linearity Versions Product Code
MS5201-BN MS5212-BM
Full Scale Span / Linearity
240 mV / ±0.2% FS
Full Scale Span / Linearity
150 mV / ±0.05% FS 150 mV / ±0.05% FS
DA52XXYZ_012
000052xx223 ECN0828
December 19, 2005
TLP521资料
TLP521资料1、TLP521是可控制的光电藕合器件,光电耦合器广泛作用在电脑终端机,可控硅系统设备,测量仪器,影印机,自动售票,家用电器,如风扇,加热器等电路之间的信号传输,使之前端与负载完全隔离,目的在于增加安全性,减小电路干扰,减化电路设计。
东芝TLP521-1,-2和-4组成的砷化镓红外发光二极管耦合到光三极管。
该TLP521-2提供了两个孤立的光耦8引脚塑料封装,而TLP521-4提供了4个孤立的光耦中16引脚塑料DIP封装集电极-发射极电压:55V(最小值)经常转移的比例:50 %(最小)隔离电压:2500 Vrms (最小)图1 TLP521 TLP521-2 TLP521-4 光藕内部结构图及引脚图图2 TLP521-2 光电耦合器引脚排列图注:使用连续负载很重的情况下(如高温/电流/温度/电压和重大变化等),可能会导致本产品的可靠性下降明显甚至损坏。
*1: Ex. rank GB: TLP521 1 (GB)(Note): Application type name for certification test, please use standard product type name, i.e.TLP521 1 (GB): TLP521 1, TLP521 2 (GB): TLP521 2Individual Electrical Characteristic 单独的电气特性参数(Ta = 25℃)voltage 集电极发射极饱和电压集电极-发射极饱和电压(sat)mA ― ― 0.2 ― ― 0.4IC=0.2mA, IF=1mA Rank GBIsolation Characteristic 耦合电气特性参数(Ta = 25℃) ℃ Characteristic 参数Symbol 符号CS RS Test Condition 测试条件Min 最小― ― 2500 ― ―output)电容输入输出) 电容( Capacitance(input to output)电容(输入输出) Isolation resistance 隔离电阻Isolation 隔离电阻VS = 0, f = 1 MHz VS = 500 V, R.H.≤ 60% R.H.≤ AC, 1 Min 最小uteIsolation voltage 隔离电压BVSAC, 1 second, in oil DC, 1 Min 最小ute, in oil25℃ Switching Characteri stic 开关特性参数(Ta = 25℃) Symbol 符号Min 最小― ― RL=100 VCC=10V IC=2mA RL=100 ― Typ 典型2 3 3 Max 最大― ― μ ― s Unit 单位Characteristic 参数Test Condition 测试条件Rise time 上升时间Fall time 下降时间tr tfTurn Turn on time 开启时间ton Turn Turn off time 关断时toff 间Turn Turn on time 开启时间Storage time 存储时间ts―3―tON1.9kΩ RL = 1.9kΩ (Fig.1) VCC = 5V, IF = 16mA―2― sμ―15―图3 TLP521-1 封装图图4 TLP521-2 封装图。
ISOCOM COMPUNENTS TLP521, TLP521-2, TLP521-4 数据手册
DB92546-AAS/A1PARAMETERMIN TYP MAX UNITS TEST CONDITIONInputForward Voltage (V F ) 1.0 1.151.3V I F = 10mA Reverse Voltage (V R ) 5V I R = 10µA Reverse Current (I R )10µA V R = 5V OutputCollector-emitter Breakdown (BV CEO )55V I C = 0.5mA ( Note 2 )Emitter-collector Breakdown (BV ECO ) 6V I E = 100µA Collector-emitter Dark Current (I CEO )100nAV CE = 24V CoupledCurrent Transfer Ratio (CTR) (Note 2)TLP521, TLP521-2, TLP521-450600%5mA I F , 5V V CE CTR selection available BL200600%GB 100600%GB30%1mA I F , 0.4V V CE Collector-emitter Saturation V oltageV CE (SA T)0.4V 8mA I F , 2.4mA I C -GB0.4V 1mA I F , 0.2mA I C Input to Output Isolation V oltage V ISO 5300V RMS See note 1 7500V PK See note 1Input-output Isolation Resistance R ISO 5x1010ΩV IO = 500V (note 1)Rise Time tr 2µs V CC = 10V ,Fall Time tf 3µs I C = 2mA, R L = 100ΩTurn-on Time ton 3µs Turn-off Time toff 3µsNote 1Measured with input leads shorted together and output leads shorted together.Note 2Special Selections are available on request. Please consult the factory.31/7/97ELECTRICAL CHARACTERISTICS ( T A = 25°C Unless otherwise noted )ABSOLUTE MAXIMUM RATINGS (25°C unless otherwise specified)Storage Temperature -55°C to + 125°C Operating Temperature -55°C to + 100°C Lead Soldering Temperature(1/16 inch (1.6mm) from case for 10 secs) 260°C INPUT DIODE Forward Current 50mA Reverse V oltage 5V Power Dissipation70mWOUTPUT TRANSISTOR Collector-emitter V oltage BV CEO 55V Emitter-collector V oltage BV ECO 6V Power Dissipation 150mWPOWER DISSIPATION Total Power Dissipation200mW(derate linearly 2.67mW/°C above 25°C)DB92546-AAS/A131/7/9750-30 0 25 50 75 100 125Ambient temperature T A ( °C )150200Ambient temperature T A ( °C )C o l l e c t o r p o w e r d i s s i p a t i o n P C (m W )603020104050-30 0 25 50 75 100 125Collector Power Dissipation vs. Ambient Temperature Forward Current vs. Ambient Temperature -30 0 25 50 75 100Ambient temperature T A ( °C )Collector-emitter voltage V CE ( V )C o l l e c t o r -e m i t t e r s a t u r a t i o n v o l t a g e V C E (S A T ) (V )Collector-emitter Saturation Voltage vs. Ambient Temperature100510152025 00.040.080.120.160.200.240.28F o r w a r d c u r r e n t I F (m A )Collector Current vs. Low Collector-emitter Voltage0 0.2 0.4 0.6 0.8 1.0C o l l e c t o r c u r r e n t I C (m A )Collector Current vs. Collector-emitter VoltageCollector-emitter voltage V CE ( V )C o l l e c t o r c u r r e n t I C (m A)Current Transfer Ratio vs. Forward Current Forward current I F (mA)C u r r e n t t r a n s f e r r a t i o C T R (%)1 2 5 10 20 50801201602002400 2 4 6 8 100102030405040280320。
521A资料
Absolute Maximum Ratings1Parameter Rating Supply Voltage, V DD-0.3, +3.63VVoltage on any Digital Input or Output3-0.3V to V DD +0.3VInput Current on any pin3±5mA Package Input Current3±20mARelative Humidity (non-operating)5% - 85% RH @ 25°C to 70°CMaximum Junction Temperature, TJmax 150°C Storage Temperature Range-60°C to +150°C IR Reflow Peak Temperature 260°C Lead Soldering Temperature (10 sec.) 300°CHuman Body Model 2000 VMachine Model 250 V ESD5Charged-Device Model >1000 V Notes:1. Absolute maximum ratings are limits beyond which operationmay cause permanent damage to the device. These arestress ratings only; functional operation at or above theselimits is not implied. For guaranteed specifications and testconditions, see the Electrical Characteristics. The guaranteedspecifications apply only for the test conditions listed. Someperformance characteristics may degrade when the device isnot operated under the listed test conditions.2. All voltages are measured with respect to GND, unlessotherwise specified.3. When the input voltage (VIN) at any pin exceeds the powersupplies (VIN< (GND or GNDA) or VIN>V+, except for SSTand analog voltage inputs), the current at that pin should belimited to 5mA. The 20mA maximum package input currentrating limits to number of pins that can safely exceed thepower supplies with an input current of 5mA to four.4. The maximum power dissipation must be de-rated at elevatedtemperatures and is dictated by TJmax, θJA and the ambienttemperature, T A. The maximum allowable power dissipation atany temperature is PD = (TJmax - TA) / θJA. It must also takeinto account self-heating that can adversely affect theaccuracy of internal sensors.5. Human Body Model: 100pF capacitor discharged through a1.5kΩ resistor into each pin. Machine Model: 200pF capacitordischarged directly into each pin. Charged-Device Model isper JESD22-C101C.Electrical Characteristics6(-40°C≤T≤+125°C, V= 3.3V unless otherwise noted. Specifications subject to change without notice)A D DParameter Conditions Min Typ Max UnitsSupply Voltage V DD 3.03.33.6VSST SignalMeets SST Specification Version 1.0for 1.5V interface-40°C≤T A≤+125°C ±3°CLocal Sensor Accuracy7, 840°C≤T A≤70°C ±2 °C Local Sensor Resolution 0.125 °C0°C≤T A≤70°C, -40°C≤T D ≤+125°C ±3 °CRemote Diode Sensor Accuracy7, 8, 90°C≤T A≤70°C,50°C≤T D ≤70°C±1 °CRemote Diode Sensor Resolution 0.125 °CTemperature Monitor Cycle Time10t C0.2SecNotes:6. These specifications are guaranteed only for the test conditions listed.7. Accuracy (expressed in °C) = Difference between the aSC7521A reported temperature and the device temperature.8. The aSC7521A can be read at any time without interrupting the temperature conversion process.9. Calibration of the remote diode sensor input is set to meet the accuracy limits with a CPU thermal diode that has a non-ideality factor of1.009 with a series resistance of 4.52Ω.10. Total monitoring cycle time for all temperature and analog input voltage measurements is 0.2 second.SST SensorsThe SST temperature sensor provides a means for an analog signal to travel over a single-wire digital bus enabling remote temperature sensing in areas previously not monitored in the PC. The temperature sensor supports an internal temperature sensor and external thermal diodes.This section outlines general requirements for Simple Serial Transport (SST) sensors intended for use in PC desktop applications that conform to SST Version 1.0 specification. The aSC7521A reports external temperature sensed by a remote diode-connected transistor and an internal temperature measurement.AddressingThe aSC7521A complies with the address range set aside for fixed-address, discoverable devices as defined in the SST Specification Version 1.0. Simple Temperature sensors use fixed addresses in the range of 0x48 to 0x50. The aSC7521A may be programmed to any of these addresses via the address select pins AD0 and AD1.Frame Check Sequence (FCS)Each message requires a frame check sequence byte to ensure reliable data exchange between host and client. The message originator and client both make an FCS calculation. One FCS byte must be returned from the message target to the originator after all bytes including the header and the data block are written. If data is read from the target, a second FCS byte must follow the data block read.The FCS byte is the result of an 8-bit cyclic redundancy check (CRC) of the each data block preceding the FCS up to the most recent, earlier FCS byte. The first FCS in the message does not include the two address timing negotiation ‘0’ bits that precede the address byte or the message timing negotiation bit after the address byte. The first FCS does include the address byte in its computation. The FCS is initialized at 0x00 and is calculated in a way that conforms to a CRC-8 represented by the CRC polynomial, C(x) = x8 + x2 + x + 1.Bus VoltageAll SST sensor devices used for PC applications must be capable of operating the SST interface portion of the sensor device at 1.5 volts as defined in 1.5 Volt Static (DC) Characteristics section of the SST Version 1.0 specification. Bus TimingAll SST sensor devices must be able to negotiate timing and operate at a maximum bus transfer rate of 2-Mbps. If the bus address timing is negotiated at a lower rate due to the performance limitations of other devices on the bus, the sensor device will operate at that lower rate. Device Power-on TimingFollowing a power-on reset, such as a system transitioning from S3-S5 to S0, the aSC7521A will be able to participate in the address and message timing negotiation and respond to required SST bus commands such as respond to a GetDIB() command within 10ms of the device’s V DD rail reaching 90%. The aSC7521A has an internal power on reset and will be fully functional within 50ms of power on.The aSC7521A does not employ any device power management.Voltage and Temperature Sensor DataLittle Endian FormatThe bit level transfer is defined in the SST specification. The 2-byte data values are returned in little Endian format, in other words, the LSB is sent first followed by MSB.For multi-function devices that allow access to multiple sensors, the data is returned LSB followed by the MSB for the first sensor, LSB followed by the MSB for the second sensor, and so on. The specific order is explicitly specified in the command description.Atomic ReadingsThe aSC7521A ensures that every value returned is derived from a single analog to digital conversion and is not skewed (e.g. the MSB and the LSB come from two different conversions).Conversion TimeThe maximum refresh time for all temperature values is200ms. The aSC7521A provides the logic to ensure all readings meet the conversion time requirements. Temperature DataData Precision, Accuracy and ResolutionThe temperature data meets the following minimum requirements:•Operational Range: -40°C to +125°C•Internal Sensor Accuracy:o+/- 3°C over operational rangeo+/- 2°C over 40°C to 70°C•Remote Sensor Accuracy (when TA is from 0°C to 70°C):o+/- 3°C over operational rangeo+/- 1°C over 50°C to 70°C• Resolution:0.125°CTemperature Data FormatThe data format is capable of reporting temperature values in the range of +/-512°C. The temperature sensor data is returned as a 2’s complement 16-bit binary value. It represents the number of 1/64°C increments in the actual reading. This allows temperatures to be represented with approximately a 0.016°C resolution.Values that would represent temperatures below -273.15°C (0 K or absolute zero) are reserved and are not be returned except as specifically noted.For the aSC7521A the required resolution is 0.125°C. Bits [2:0] will be defined but they are beyond the required resolution. The sign bit will indicate a negative temperature except when reporting an error condition (see Sensor Error Condition). Temperature 2’s complement representation 80°C 0001 0100 0000 0000 79.875°C 0001 0011 1111 1000 1°C 0000 0000 0100 0000 0°C 0000 0000 0000 0000-1°C 1111 1111 1100 0000-5°C 1111 1110 1100 0000 Table 1. Temperature RepresentationSign Integer Temperature 0°C to 512°CFractionalTemperatureLSB 0.125°CAlways Zero15 14 13 12 11 10 9 8 7 6 ● 5 4 3 2 1 0Figure 2. Temperature ReadingA to D Converter Resolution and MappingThe mapping of the A-D converter bit values is a two’s complement representation with the binary point between bits 5 and 6 of the 16-bit data word. Bit 15 is the sign, bits 14 through 6 are integer temperature in degrees, bits 5 down to 3 are the fractional part with 0.125°C as the LSB. The lowest 3 bits are set to zero.Temperature InputsThe simple temperature sensor has an internal thermal sensor plus an external sensor using a remote diode. Both temperature readings are internally corrected for lead resistance and non-ideality for the thermal diode of a Pentium™ 4, 65nM process (1.009 non-ideality, 4.35Ω lead resistance). The range of measurement currents falls within the Intel recommended range of 10μA and 170μA to minimize the impact of Beta variation in the CPU substrate thermal diode. Note that Pentium 4, 90 nM process is 1.011 non-ideality and series resistance of 3.33Ω.If a diode connected discrete transistor is used instead of a CPU diode, a correction must be applied to the reading to compensate for the difference in non-ideality. A 2N3904 NPN transistor has a non-ideality (η) factor of approximately 1.04. To correct the value reported to the actual temperature use the following formula:T ACTUAL = T REPORTED x ηTransistor / 1.009 It is recommended that the actual transistor type and manufacturers chosen for the remote sensor be characterized for non-ideality as part of system qualification. Sensor Error ConditionThe aSC7521A has the capability to detect and report open or shorted external diode inputs per Sensor Error Condition. When an error or failure condition is detected, the sensor device must return a large negative value in response to either the GetIntTemp() or GetExtTemp() command. In this manner software is provided with a means to determine whether or not the sensor is working normally and that the data returned is good.The aSC7521A will write one of the values from the table below to appropriate memory locations for GetIntTemp() and/or GetExtTemp().The aSC7521A uses the OEM defined values of 0x8102 (open) and 0x8103 (short) rather than the generic errors defined for codes 0x8000 to 0x8003.Error Code Description0x8000 to 0x80FF Reserved0x8102 Remote Diode Open0x8103 Remote Diode Short0x8100-0x81FF ReservedTable 2. Error CodesSST InterfaceMulti Client ModeSensors operate in multi-client mode for read bit timing. Reference the SST Specification Version 1.0 for details.SST Device CommandsGetDIB() Command (0xF7)Read the Device Identifier Block (DIB). The read length of the command is either 8 or 16 bytes. 8 bytes is the minimum number of bytes populated by a fixed address discoverable client.Write Data Length: 0x01Read Data Length: 0x08/0x10Command Code: 0xF7Note: Un-shaded table entries are created by the host. Shaded entries are the response bytes from the aSC7521A to the host.# Bits # BitsHost Sending aSC7521A SendingHex Value Hex Value8 8 8 8 8Target Address Write Length Read Length GetDIB Cmd FCS0x48 0x01 0x10 0xF7 0xDC8 8 8 8 8DIB Byte 1 … DIB Byte 15 DIB Byte 16 FCS(data) (data) (data) (data) (data dependent)Figure 3. GetDIB() Command (16-byte read length)8 8 8 8 8Target Address Write Length Read Length GetDIB Cmd FCS0x48 0x01 0x08 0xF7 0x238 8 8 8 8DIB Byte 1 … DIB Byte 7 DIB Byte 8 FCS (data) (data) (data) (data) (data dependent)Figure 4. GetDIB() Command (8-byte read length)Ping() CommandThe Ping() command provides a safe means for software to verify that a device is responding at a particular address.Write Data Length: 0x00Read Data Length: 0x00Command Code: none8 8 8 8Target Address Write Length Read Length FCS0x48 0x00 0x00 0xD7Figure 5. Example of Ping()ResetDevice() CommandThe ResetDevice() command is used to reset all device functions to their power-on reset values. It is used by the system to recover from serious hardware or bus errors.Write Data Length: 0x01Read Data Length: 0x00Command Code: 0xF68 8 8 8 8Target Address Write Length Read Length ResetDeviceCommandFCS0x48 0x01 0x00 0xF6 0x8C Figure 6. ResetDevice() format targeting a non-default address8 8 8 8Target Address Write Length Read Length ResetDevice Command0x00 0x01 0x00 0xF6Figure 7. ResetDevice() format targeting the default addressSensor Command SummaryGetIntTemp()Returns the temperature of the device’s internal thermal sensor.Write Data Length: 0x01Read Data Length: 0x02Command Code: 0x00Example bus transaction for a thermal sensor device located at address 0x48 returning a value of 60°C:8 8 8 8Target Address Write Length Read Length Command0x48 0x01 0x02 0x008 8 8 8FCS LSB MSB FCS0x6A0x000x0F0x2DFigure 8. Get Internal Temperature Command ExampleGetExtTemp()Returns the temperature of the external thermal diode.Write Data Length: 0x01Read Data Length: 0x02Command Code: 0x01GetAllTemps()Returns a 4-byte block of data containing both the Internal and External temperatures in the following order Internal then External temperatures.Write Data Length: 0x01Read Data Length: 0x04Command Code: 0x00Optional SST Device CommandsThe optional SST commands Alert(), Suspend() are not supported in the aSC7521A.Vendor Specific ExtensionsThe vendor specific command codes are in the range from 0xE0 and 0xE7. Reading and writing to specific internal registers is provided for custom tuning of sensor response characteristics.WriteReg()Writes to the sensor’s internal registers.Write Data Length: 2+N (command + address + Number of bytes to write)Read Data Length: 0x00Command Code: 0xE0Example bus transaction to write to a sensor located at address 0x48. This example writes 2 consecutive locations (0x20 and 0x21) to values 0x25 and 0x28.8 8 8 8Target Address Write Length Read Length Command0x48 0x04 0x00 0xE08 8 8 8RAM Addr Write Data Write Data FCS0x20 0x25 0x28 0x1BFigure 9. Example Register WriteReadReg()Reads from the sensor’s internal registers.Write Data Length: 0x02 (command + address)Read Data Length: N (Number of bytes to read)Command Code: 0xE1Example bus transaction to read a sensor located at address 0x48. This example reads 2 consecutive locations (0x20 and 0x21).8 8 8 8Target Address Write Length Read Length Command0x48 0x02 0x02 0xE18 8 8 8RAM Addr FCS Read Data Read Data FCS0x20 0x9D 0x25 0x28 0x37Figure 10. Example Register ReadVenCmdEnable()Vendor Command Enable enables the Vendor Specified Extensions.Write Data Length: 0x01Read Data Length: 0x00Command Code: 0xE28 8 8 8 8Target Address Write Length Read Length Command FCS0x48 0x01 0x00 0xE2 0xE0Figure 11. Vendor Command EnableVenCmdDisable()Vendor Command Disable disables the Vendor Specified Extensions.Write Data Length: 0x01Read Data Length: 0x00Command Code: 0xE38 8 8 8 8Target Address Write Length Read Length Command FCS0x48 0x01 0x00 0xE3 0xE7Figure 12. Vendor Command DisableReserved or Unsupported CommandsAttempts to access the sensor using a reserved or unsupported command will not result in the device or bus failure. The sensor will return a modified FCS when any of the following commands are received. To modify the FCS the sensor will invert all of the bits in the correct FCS (1’s complement). A modified FCS is also called an Abort FCS.The sensor will return an Abort FCS (modified FCS) for a reserved and unsupported command code (commands codes between0xE4 to 0xF5 and 0xF8 to 0xFF).The sensor will return an Abort FCS (modified FCS) for reserved commands (command codes 0x02 to 0xDF.The sensor will return an Abort FCS (modified FCS) for unused vendor specific test and manufacturing command codes (command codes 0xE8 to 0xEF). If any of these types of commands exist, they will be disabled during normal operation.Malformed CommandsA malformed command is one which is valid but has an incorrect write or read length for the given command.If a get temperature command with a write length not equal to 1 is sent, then the aSC7521A will send an Abort FCS and wait for a new command. An Abort FCS will be formed by creating a 1’s complement of the the good FCS.If a get temperature command and the read length is not equal to 2 or 4 then te aSC7521A will send an Abort FCS and wait for a stop on the SST bus. See the Command Summary section for the expected Write and Read lengths of the legal commands.There will be no checking for malformed WriteReg() and ReadReg() commands (Vendor Specific Extensions).Command SummaryHex CmdCommand NameReceived BytesWr LenRd LenBytes Sent by Client- Ping()3(target,wr,rd) 0 0 FCS 0x00 GetIntTemp()4(target,wr,rd,cmd) 1 2 FCS/2/FCS 0x01 GetExtTemp()4(target,wr,rd,cmd) 1 2 FCS/2/FCS 0x00 GetAllTemps()4(target,wr,rd,cmd) 1 4 FCS/4/FCS 0x02-0xDF Unsupported Abort FCS 0xE0 WriteReg()4(target,wr,rd,cmd) 3+ 0 FCS 0xE1 ReadReg()4(target,wr,rd,cmd) 2 1+ FCS/1+/FCS 0xE2 VenCmdEnable()4(target,wr,rd,cmd) 1 0 FCS 0xE3 VenCmdDisable()4(target,wr,rd,cmd) 1 0 FCS 0xE4-0xF5 Unsupported Abort FCS 0xF6 ResetDevice()4(target,wr,rd,cmd) 1 0 FCS 0xF6 ResetDevice()4(target,wr,rd,cmd) 1 0 None if default address (0x00) 0xF7 GetDIB()4(target,wr,rd,cmd) 1 8 FCS/8/FCS 0xF7 GetDIB()4(target,wr,rd,cmd) 1 16 FCS/16/FCS 0xF8-0xFF Unsupported Abort FCSTable 3. Command SummaryDevice Identifier Block (DIB)The Device Identifier Block describes the identity and functions of a client device on the SST bus. Sixteen bytes are allocated for this function as shown in Figure 13. Device Identifier Block is returned by the aSC7521A with a GetDIB() command. The aSC7521A returned values are shown with the description of each field below.8 8 16 16 8Vendor ID Device ID Device Capabilities Version/Revision LSB MSB LSB MSBDevice Interface8 8 8 16 24 8FunctionInterfaceDeviceInterface ExtensionReserved ReservedVendor Specific ID Client Device Address Figure 13. Device Identifier BlockDevice Capabilities Field (1-byte)MSB 6 5 4 3 2 1 LSBAddress Type ReservedWake Capable Alert Support Suspend SupportSlowDevice 110 0 0 0 0 0Figure 14. Device Capabilities FieldVersion / Revision Field (1-byte)MSB 65 4321LSBPre-release SST Version Minor Revision1 0010000 (default) for V1.0 Pre-production 00010000 for V1.0 ProductionFigure 15. Version / Revision FieldVendor ID Field (2-bytes)Andigilog Vendor ID is 16 bits = 0x19C9 (This field is stored in the format LS Byte, MS Byte = 0xC919). Vendor IDs can be foundat: /membership/vid_searchDevice ID Field (2-bytes)This field uniquely identifies the device from a specific vendor. Place the least significant byte as the first byte and the most significant byte as the second byte.Part Number Value (MS,LS) Stored Value (LS,MS) aSC7521A 0x7521 0x2175Device Interface Field (1-byte)The vendor sets to ‘1’, bit positions in this field in the event the device supports higher layer protocols that are industry specific using Table 4.Value = 0x02Bit Protocol Meaning 7 - Reserved for future use , must be set = ‘0’ 6 - Reserved for future use , must be set = ‘0’ 5 IPMI Device supports additional access and capabilities per the IPMI specification. 4 ASF Device supports additional access and capabilities per the ASF specification. 3 Serial-ATA Device supports additional access and capabilities per the serial-ATA specification.2 PCI-ExpressDevice supports additional access and capabilities per the PCI Expressspecification.1 SSTDevice supports additional access and capabilities per the SST FunctionalDescriptor Specification (to be published at a future date).0 OEMDevice supports vendor-specific additional access and capabilities per the VendorID and Device ID.Table 4. Device Interface FieldFunction Interface Field (1-byte)This field provides a mechanism for a device to pass higher-layer SST device-specific information.Value = 0x00Device Interface Extension Field (1-byte)This field is used to provide additional information about the device to the upper layers of software.Value = 0x00Reserved Field (3-bytes)Value = 0x00 0x00 0x00Vendor Specific ID Field (1-byte)This field is set by the vendor in a way that uniquely identifies this device apart from all others with an otherwise common DIB content.Value = 0x00 – For Fixed address devices this field may be set to zero.Client Device Address (1-byte)SST Client Device Address is set according to the connection of pins ADD0 and ADD1. Float is defined as an unconnected pin.ADD0 ADD1 AddressGround Ground 0x48Float Ground 0x49V DD Ground 0x4AGround Float 0x4BFloat Float 0x4CV DD Float 0x4DGround V DD0x4EFloat V DD0x4FV DD V DD0x50sensor is very close to the circuit board temperature and typically between the board and ambient.In order to measure PC board temperature in an area of interest, such as the area around the CPU where voltage regulator components generate significant heat, a remote diode-connected transistor should be used. A surface-mount SOT-23 or SOT-223 is recommended. The small size is advantageous in minimizing response time because of its low thermal mass, but at the same time it has low surface area and a high thermal resistance to ambient air. A compromise must be achieved between minimizing thermal mass and increasing the surface area to lower the junction-to-ambient thermal resistance.In order to sense temperature of air-flows near board-mounted heat sources, such as memory modules, the sensor should be mounted above the PC board. A TO-92 packaged transistor is recommended.The power consumption of the aSC7521A is relatively low and should have little self-heating effect on the local sensor reading. At the highest measurement rate the dissipation is less than 2mW, resulting in only a few tenths of a degree rise.Notes:Andigilog, Inc.8380 S. Kyrene Rd., Suite 101 Tempe, Arizona 85284Tel: (480) 940-6200Data Sheet ClassificationsPreliminary SpecificationThis classification is shown on the heading of each page of a specification for products that are either underdevelopment (design and qualification), or in the formative planning stages. Andigilog reserves the right to change ordiscontinue these products without notice.New Release SpecificationThis classification is shown on the heading of the first page only of a specification for products that are either underthe later stages of development (characterization and qualification), or in the early weeks of release to production.Andigilog reserves the right to change the specification and information for these products without notice.Fully Released SpecificationFully released datasheets do not contain any classification in the first page header. These documents containspecification on products that are in full production. Andigilog will not change any guaranteed limits without writtennotice to the customers. Obsolete datasheets that were written prior to January 1, 2001 without any headerclassification information should be considered as obsolete and non-active specifications, or in the best case asPreliminary Specifications.Pentium™ is a trademark of Intel CorporationLIFE SUPPORT POLICYANDIGILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES ORSYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF ANDIGILOG,INC. As used herein:1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b)support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in thelabeling, can be reasonably expected to result in a significant injury to the user.2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expectedto cause the failure of the life support device or system, or to affect its safety or effectiveness.Andigilog, Inc.8380 S. Kyrene Rd., Suite 101Tempe, Arizona 85284Tel: (480) 940-6200。
5212中文资料
Bulletin Page Revision Date
tested 5 cycles of -55°C / 30 minutes and +125°C / 30 minutes Hermetical No bubbles appear in Flourinert (FC-43) at 125°C ±5°C for 5 minutes Solvent Resistance Marking will withstand immersion in
Input Characteristics
Minimum Nominal Maximum
≥ 70% Vdd
-
-
-
-
≤ 30% Vdd
-
-
10
-
-
150
-
-
10
Parameter
Load
Voltage
High (Voh) Low (Vol)
Current
High (loh) Low (lol)
Duty Cycle at 50% of Vcc
Test Circuit
OSCILLOSCOPE
POWER SUPPLY
OSC
PROBE
INPUT FOR E/D
FREQ COUNTER
Output Waveform
SYMMETRY
Pin Connections 1: Enable/Disable 2: Ground 3: Output 4: Vcc
5812中文资料
5812中⽂资料FEATURESI High-Speed Source Drivers I 60 V Source Outputs I To 3.3 MHz Data Input Rate I Low Output-Saturation Voltages ILow-Power CMOS Logic and Latches BiMOS II 20-BIT SERIAL-INPUT, LATCHEDSOURCE DRIVERS WITH ACTIVE-DMOS PULL-DOWNSThe UCN5812AF/EPF combine a 20-bit CMOS shift register, data latches, and control circuitry with high-voltage bipolar source drivers and active DMOS pull-downs for reduced supply current requirements. Although designed primarily for vacuum-fluorescent displays, the high-voltage, high-current outputs also allow them to be used in other peripheral power driver applications. They are improved versions of the original UCN5812A/EP.The CMOS shift register and latches allow direct interfacing with microprocessor-based systems. With a 5 V supply, they will operate to at least 3.3 MHz. At 12 V, higher speeds are possible. Especially useful for inter-digit blanking, the BLANKING input disables the output source drives and turns on the DMOS sink drivers. Use with TTL may require the use of appropriate pull-up resistors to ensure an input logic high.A CMOS serial data output enables cascade connections in applications requiring additional drive lines. Similar devices are available as theUCN5810AF/LWF (10 bits), UCN5811A (12 bits), and UCN5818AF/EPF (32 bits).The output source drivers are high-voltage pnp-npn Darlingtons with a minimum breakdown of 60 V and are capable of sourcing up to 40 mA. The DMOS active pull-downs are capable of sinking up to 15 mA.The UCN5812AF is supplied in a 28-pin dual in-line plastic package with 0.600" (15.24 mm) row spacing. For surface mounting, the UCN5812EPF is furnished in 28-lead plastic chip carrier (quad pack) with 0.050"(1.22 mm)centers. Copper lead-frames, reduced supply current requirements and lower output saturation voltages, allow continuous operation, with all outputs sourcing 25 mA, of the UCN5812AF over the operating temperature range,and the UCN5812EPF up to +75°C. All devices are also available for opera-tion between -40°C and +85°C. To order, change the prefix from ‘UCN’ to ‘UCQ’. Always order by complete part number, e.g.,UCN5812AF .Data Sheet26182.26BI Active DMOS Pull-Downs I Reduced Supply Current Requirements I Improved Replacement for TL5812 5812-F5812-F20-BIT SERIAL-INPUT,LATCHED SOURCE DRIVERSWITH ACTIVE-DMOS PULL-DOWNS115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000UCN5812AF TYPICAL OUTPUT DRIVERTYPICAL INPUT CIRCUITDwg. No. A-14,219NBIPOLARSERIAL-PARALLEL SHIFT REGISTERLATCHESLOAD SUPPLY OUT 2OUT 7OUT 8Dwg. PP-029-7OUT 19OUT 18OUT 13SERIAL DATA OUTBLANKING LOGIC SUPPLY STROBE GROUNDCLOCKOUT 9OUT 10OUT 12OUT 11SERIAL DATA IN OUT 6OUT 1OUT 4OUT 3OUT 20OUT 5OUT 17OUT 16OUT 15OUT14Dwg. EP-010-5INCopyright ? 1988, 2000 Allegro MicroSystems, Inc.5812-F20-BIT SERIAL-INPUT, LATCHED SOURCE DRIVERS WITH ACTIVE-DMOS PULL-DOWNS/doc/8c777ff1aef8941ea76e057c.html Limits @ V DD = 5 V Limits @ V DD = 12 VCharacteristic Symbol Test Conditions Mln.Typ.Max.Min.Typ.Max.Units Output Leakage Current I CEX V OUT = 0 V, T A = +70°C—-5.0-15—-5.0-15µA Output Voltage V OUT(1)I OUT = -25 mA, V BB = 60 V5858.5—5858.5—VV OUT(0)I OUT = 1 mA— 2.0 3.0———VI OUT = 2 mA———— 2.0 3.5V Output Pull-Down Current I OUT(0)V OUT = 5 V to V BB 2.0 3.5————mAV OUT = 20 V to V BB———8.013—mA Input Voltage V IN(1) 3.5— 5.310.5—12.3VV IN(0)-0.3—+0.8-0.3—+0.8V Input Current I IN(1)V IN = V DD—0.050.5—0.1 1.0µAI IN(0)V IN = 0.8 V—-0.05-0.5—-0.1-1.0µA Serial Data V OUT(1)I OUT = -200 µA 4.5 4.7—11.711.8—VV OUT(0)I OUT = 200 µA—200250—100200mV Maximum Clock Frequency f clk 3.3*—————MHz Supply Current IDD(1)All Outputs High—100300—200500µAI DD(0)All Outputs Low—100300—200500µAI BB(1)Outputs High, No Load— 1.5 4.0— 1.5 4.0mAI BB(0)Outputs Low—10100—10100µA Blanking to Output Delay t PHL C L = 30 pF, 50% to 50%—2000——1000—nst PLH C L = 30 pF, 50% to 50%—1000——850—ns Output Fall Time t f C L = 30 pF, 90% to 10%—1450——650—ns Output Rise Time t r C L = 30 pF, 10% to 90%—650——700—nsNegative current is defined as coming out of (sourcing) the specified device pin.* Operation at a clock frequency greater than the specified minimum value is possible but not warranteed.ELECTRICAL CHARACTERISTICS at T A = +25°C, V BB = 60 V (unless otherwise noted).5812-F20-BIT SERIAL-INPUT,LATCHED SOURCE DRIVERSWITH ACTIVE-DMOS PULL-DOWNS115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000TRUTH TABLEL = Low Logic LevelH = High Logic Level X = IrrelevantP = Present State R = Previous StateDwg. No. 12,649ASerial Data present at the input is transferred to the shift register on the logic “0” to logic “1”transition of the CLOCK input pulse. On succeed-ing CLOCK pulses, the registers shift datainformation towards the SERIAL DATA OUT-PUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform.Information present at any register is trans-ferred to the respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to acceptnew data as long as the STROBE is held high.Applications where the latches are bypassed (STROBE tied high) will require that the BLANKING input be high during serial data entry.When the BLANKING input is high, the output source drivers are disabled (OFF); the DMOS sink drivers are ON, the information stored in the latches is not affected by theBLANKING input. With the BLANKING input low, the outputs are controlled by the state of their respective latches. CLOCK DATA IN STROBE BLANKINGOUT TIMING REQUIREMENTS(T A = +25°C,V DD = 5 V, Logic Levels are V DD and Ground)A.Minimum Data Active Time Before Clock Pulse(Data Set-Up Time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 ns B.Minimum Data Active Time After Clock Pulse(Data Hold Time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 ns C.Minimum Data Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 ns D.Minimum Clock Pulse Width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 ns E.Minimum Time Between Clock Activation and Strobe. . . . . . . . . . . 300 ns F.Minimum Strobe Pulse Width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ns G.Typical Time Between Strobe Activation andOutput Transistion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 ns Timing is representative of a 3.3 MHz clock. Higher speeds may be attainable with increased supply voltage; operation at high temperatures will reduce the specified maximum clock frequency.5812-F20-BIT SERIAL-INPUT,LATCHED SOURCE DRIVERS WITH ACTIVE-DMOS PULL-DOWNS/doc/8c777ff1aef8941ea76e057c.htmlUCN5812AFDimensions in Inches (controlling dimensions)NOTES:1.Exact body and lead configuration at vendor ’s option within limits shown.2.Lead spacing tolerance is non-cumulative.3.Lead thickness is measured at seating plane or below.4.Supplied in standard sticks/tubes of 12 devices.Dimensions in Millimeters (for reference only)123Dwg. MA-003-28 mm144123Dwg. MA-003-28 in1445812-F20-BIT SERIAL-INPUT,LATCHED SOURCE DRIVERSWITH ACTIVE-DMOS PULL-DOWNS115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000UCN5812EPFDimensions in Inches (controlling dimensions)NOTES:1.Exact body and lead configuration at vendor ’s option within limits shown.2.Lead spacing tolerance is non-cumulative.3.Supplied in standard sticks/tubes of 38 devices or add “TR ” to part number for tape and reel.Dwg. MA-005-28A mm5Dwg. MA-005-28A inDimensions in Millimeters (for reference only)5812-F20-BIT SERIAL-INPUT, LATCHED SOURCE DRIVERS WITH ACTIVE-DMOS PULL-DOWNS/doc/8c777ff1aef8941ea76e057c.htmlThe products described here are manufactured under one or more U.S. patents or U.S. patents pending.Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsi-bility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. 5812-F20-BIT SERIAL-INPUT,LATCHED SOURCE DRIVERSWITH ACTIVE-DMOS PULL-DOWNS115 Northeast Cutoff, Box 15036Worcester, Massachusetts 01615-0036 (508) 853-5000POWERINTERFACE DRIVERSFunctionOutput Ratings*Part Number ?SERIAL-INPUT LATCHED DRIVERS8-Bit (saturated drivers)-120 mA 50 V?58958-Bit 350 mA 50 V 58218-Bit 350 mA 80 V 58228-Bit 350 mA 50 V?58418-Bit 350 mA 80 V?58428-Bit (constant-current LED driver)75 mA 17 V 62758-Bit (DMOS drivers)250 mA 50 V 65958-Bit (DMOS drivers)350 mA 50 V?6A5958-Bit (DMOS drivers)100 mA 50 V 6B59510-Bit (active pull-downs)-25 mA 60 V 5810-F and 6809/1012-Bit (active pull-downs)-25 mA 60 V 5811 and 681116-Bit (constant-current LED driver)75 mA 17 V 627620-Bit (active pull-downs)-25 mA 60 V 5812-F and 681232-Bit (active pull-downs)-25 mA 60 V 5818-F and 681832-Bit100 mA 30 V 583332-Bit (saturated drivers)100 mA 40 V 5832PARALLEL-INPUT LATCHED DRIVERS4-Bit350 mA 50 V?58008-Bit -25 mA 60 V 58158-Bit350 mA 50 V?58018-Bit (DMOS drivers)100 mA 50 V 6B2738-Bit (DMOS drivers)250 mA 50 V 6273SPECIAL-PURPOSE DEVICESUnipolar Stepper Motor Translator/Driver 1.25 A 50 V?5804Addressable 8-Bit Decoder/DMOS Driver 250 mA 50 V6259Addressable 8-Bit Decoder/DMOS Driver 350 mA 50 V?6A259Addressable 8-Bit Decoder/DMOS Driver 100 mA 50 V 6B259Addressable 28-Line Decoder/Driver 450 mA30 V6817*Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltagelimits.Negative current is defined as coming out of (sourcing) the output.Complete part number includes additional characters to indicate operating temperature range and package style. Internal transient-suppression diodes included for inductive-load protection.。
521+ 产品技术说明书
(V3.3)SDI5212_5215_5216_Datasheet
V3.0 V3.2 V3.3
2014.07 2015.08 2016.01
Copyright © 2013 Solidic, Inc. All rights reserved
2
芯易德科技(深圳)有限公司
SOLIDIC SDI5212/5215/5216 数据手册 1-概述 .................................................................................................................................... 5
9-(SRA)8 位 ADC ............................................................................................................ 19
9.1 相关特殊寄存器..............................................................................................................................19 9.2 (SAR)8 位 ADC 参考程序........................................................................................................... 19
2-引脚 .................................................................................................................................... 6 3- 特殊功能寄存器...............................................................................................................8 4-存储器 ................................................................................................................................9
cs5212用法 -回复
cs5212用法-回复CS5212用法: 一步一步回答CS5212是一种非常流行的集成电路,被广泛用于各种电子设备的开发和制造中。
本文将一步一步回答关于CS5212的用法的问题,并介绍其在电子设备中的应用。
第一步,理解CS5212的基本功能和特性。
CS5212是一种多功能集成电路,具有数字信号处理、模拟信号处理和电源管理等功能。
它提供了多个模拟和数字输入输出端口,可以用于接收和处理各种信号。
此外,CS5212还具有低功耗和高可靠性的特点,使其成为许多电子设备的首选。
第二步,确定CS5212的电气连接方式。
CS5212通常通过焊接或插入方式与电路板连接。
在连接时,需要将CS5212的引脚与电路板上的对应引脚相连。
为了确保连接的安全性和稳定性,可以使用焊接接头或插座连接器。
在进行电气连接之前,务必仔细阅读CS5212的数据手册,了解其引脚排布和电气特性。
第三步,进行CS5212的编程和配置。
CS5212可以通过两种方式进行编程和配置:软件编程和硬件配置。
软件编程是通过将特定的指令和参数加载到CS5212中的内部存储器中来实现的。
硬件配置是通过连接外部开关、旋钮或其他控制元件来实现的。
在进行编程和配置之前,需要了解CS5212的编程接口和协议,并使用相应的软件工具或硬件工具进行操作。
第四步,测试和调试CS5212的功能。
在完成电气连接和编程配置之后,需要进行功能测试和调试,以确保CS5212正常工作。
可以使用示波器、信号发生器和其他测试仪器对CS5212的输入和输出进行检查,并根据需求进行调整和优化。
如果发现功能异常或性能问题,需要仔细检查电路连接、编程配置和测试环境,进行逐步排查和修复。
第五步,应用CS5212到具体的电子设备中。
CS5212可以应用于各种电子设备,例如智能手机、平板电脑、数码相机和音频设备等。
在将CS5212应用到具体设备中之前,需要根据设备的要求进行系统设计和硬件布局。
同时,还需要编写和调试相应的软件代码,以与CS5212进行数据交换和控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A PLUS MAKE YOUR PRODUCTION A-PLUSAPExx12 SeriesDATA SHEETA PLUS INTEGRATED CIRCUITS INC.Address:3 F-10, No. 32, Sec. 1, Chenggung Rd., Taipei, Taiwan 115, R.O.C.(115)台北市南港區成功路㆒段32號3樓之10. TEL: 886-2-2782-9266FAX: 886-2-2782-9255WEBSITE : http: // Sales E-mail:sales@Technology E-mail: service@1.0 General DescriptionThe APExx12 series are very low cost voice and melody synthesizer with 4-bits CPU. They have various features including 4-bits ALU, ROM, RAM, I/O ports, timers, clock generator, voice and melody synthesizer, and PWM (Direct drive) or D/A current outputs, etc. The audio synthesizer contains one voice-channel and two melody-channels. Furthermore, they consist of 27 instructions in these devices.With CMOS technology and halt function can minimize power dissipation. Their architectures are similar to RISC, with two stages of instruction pipeline. They allow all instructions to be executed in a single cycle, except for program branches and data table read instructions (which need two instruction cycles).2.0 Features(1) Single power supply can operate from 2.4V to 5.5V at 4MHz or 8MHz.(2) Program ROM: 16k x 10 bits(3) 1 set of 16-bits DPR can access up to 64k x 10 bits melody data memory space, and 1 set of 18-bitsVPR can access up to 256k x 10 bits voice data memory space.Product Voice Duration (sec) Voice Pointer (VPR) ROM Size (10-bit)APE0612 6 14-bits 20kAPE1012 10 15-bits 32kAPE1512 15 16-bits 48kAPE2012 20 16-bits 64kAPE3112 31 17-bits 96kAPE4112 41 17-bits 128kAPE5212 52 18-bits 160kAPE6312 63 18-bits 192kAPE7312 73 18-bits 224kAPE8412 84 18-bits 256k(4) Data Registers:a). 128 x 4-bit data RAM (00-7Fh)b). Unbanked special function registers (SFR) range: 00h-2Fh(5) I/O Ports:a). PRA: 4-bits I/O Port A (10h) can be programmed to input/output individually. (Register control)b). PRB: 4-bits I/O Port B (13h) can be configured to input/output individually. (Mask option)c). PRD: 4-bits I/O Port D (15h) can be programmed to input/output individually. (Register control)(6) On-chip clock generator: Resistive Clock Drive (RM)(7) Timer: 1-set Voice Interrupt (Timer0: a 9-bits auto-reload timer/counter).(8) Stack: 2-level subroutine nesting.(9) Built-in 4 Level Volume Control can be programmed.(10) Built-in 8 Level DAC current output can be configured. (Mask option)(11) Built-in IR Carry Output: Port B[1] can be configured as IR pin by 38k / 56kHz. (Mask option)(12) External Reset: Port B[3] can be configured as reset pin. (Mask opton)(13) HALT and Release from HALT function to reduce power consumption(14) Watch Dog Timer (WDT)(15) Instruction: 1-cycle instruction except for table read and program branches which are 2-cycles(16) Number of instruction: 27(17) DAC: 1 channel voice and dual tone melody synthesizer (One 9-bits Cout or 8-bits PWM output). FIGURE 1 : ROM Map of APExx12 Series3.0 Pin DescriptionPad NamePin Attr.DescriptionPWM2/Cout OPWM2 output, or Current Output of Audio.PWM1 O PWM1 output. Vdd1~2 Power Power supply during operation. PRA0~3 PRD0~3 I/OI/O port can be programmed to input/output individually.Input type with weak pull-low or fix-input-floating capability. Buffer Output type.PRB0, PRB2I/OI/O port can be configured to input/output individually.Input type with weak pull-low or fix-input-floating capability. Buffer Output type.PRB1 / IR I/OI/O port can be configured to input/output individually.Input type with weak pull-low or fix-input-floating capability. Buffer Output type.Mask option selected as an IR Carrier Output with 38k / 56kHzPRB3 / Reset I/OI/O port can be configured to input/output individually.Input type with weak pull-low or fix-input-floating capability. Buffer Output type.Mask option selected as an external RESET pin with weak pull-low capability.OSC I RM mode Oscillator input GND1~3 PowerGround Potential4.0 DC CharacteristicsSymbolParameter Vdd Min. Typ. Max. Unit ConditionVddOperating voltage2.4 3 5.5 V depending on Freq.3 1Isb Standby 4.5 1 uA4MHz, RM, in HALT Mode3 2IopSupplycurrent Operating 4.5 7 mA 4MHz, RM, IO Floating 3 3 Iih Input current(Internal pull low) 4.5 10uAInput ports with weakpull-low3 -3Ioh Output-high current4.5 -103 7Iol Output-low current4.5 19 mA4MHz, RM (IO ports) 3 0.8 ~ 4.8 Cout DAC output current(8-level option) 4.5 0.9 ~ 6.5mA4MHz, RM (Full scale) dF/F Frequency stability -5 5 %Fosc(3v- 2.4v) Fosc (3v)dF/F Fosc lot variation -10 10 %Vdd=3V, Rosc=180k, 4MHzFIGURE 2 : Frequency vs. Rosc (at 3V)Resistor (Rosc ohms)110k200k300k430k Frequency (MHz)14.84 8.25 5.543.925.0 Application Circuit6.0 Bonding DiagramPad # Pad NameX Y Pad # Pad Name X Y1 PWM1 57 865 11 PRB1 725 872 Vdd2 58670 12 PRB2 835 873 PWM2/ Cout 58 386 13 PRB3 945 874 GND3 58 235 14 Vdd1 1055 87 5 GND2 65 87 15 GND1 1059 2416 PRA0 175 87 16 OSC 1059 351 7 PRA1 285 87 17 PRD0 1059 4618 PRA2 395 87 18 PRD1 1059 571 9 PRA3 505 87 19 PRD2 1059 681 10PRB0 615 8720 PRD3 1059 791Chip Size :APE0612 : 1230 um x 1530 um, APE1012 : 1230 um x 1530 um APE1512 : 1230 um x 1758 um, APE2012 : 1230 um x 1758 um APE3112 : 1230 um x 2210 um, APE4112 : 1230 um x 2210 um APE5212 : 1230 um x 3116 um, APE6312 : 1230 um x 3116 um APE7312 : 1230 um x 3116 um, APE8412 : 1230 um x 3116 um(0,0)XY。