人教版初中数学九年级上册《图形的旋转》3课时教学设计
人教版九年级数学上册 23.1 图形的旋转(3)教案
第 _____ 教 案 __________月_____日
教 学 过 程 设 计
23.1 图形的旋转(3) 知识与目标
方法与策略
学生活动 独立思考后师友交流,四人小组讨论,小组展示讲解
专题训练
独立完成后师友1.教师按小组指导 2.提问学生讨论结果 3.核对答案。
讲解易错点
23.1 图形的旋转(3)
一.探究新知 因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案
方法与策略
学生活动 教师活动(师生互动)
个性化设计 . 1.对学生的回答进行归纳和补充。
2.引入新课。
1.环视学生对小组进行辅导;
2.板书示范(2) 3.归纳总结 4.总结易错点
老师给学生一个机会,学生就会给老师一个惊喜;老师给学生一个引导,学生就会走得更远。
人教版九年级数学上册优秀教学案例:23.1图形的旋转
3.小组讨论:评价学生在团队合作中的表现,培养学生的团队合作精神。
二、教学目标
(一)知识与技能
1.理解旋转的定义及性质,掌握旋转变换的方法。
2.能够运用旋转变换解决实际问题,提高解决问题的能力。
3.培养学生的空间想象能力,提高学生对几何图形的认识和理解。
2.讨论问题:每组选择一个实际问题,运用旋转变换解决,讨论解决问题的方法和过程。
3.讨论成果分享:各小组代表汇报本组讨论成果,分享解决问题的方法,促进学生之间的交流与合作。
(四)总结归纳
1.教师总结:教师对旋转变换的性质及应用进行总结,强调重点和难点,帮助学生形成知识体系。
2.学生归纳:让学生归纳总结本节课所学内容,加深对旋转变换性质的理解和记忆。
3.教师评价:教师对学生的学习过程和成果进行评价,给予肯定和鼓励,激发学生的学习兴趣和自信心。
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用情景创设、问题导向、小组合作和反思与评价等教学策略,激发学生的学习兴趣,培养学生的思维能力、团队合作精神和解决问题的能力。同时,我将以学生为主体,关注每一个学生的成长,尊重学生的个性差异,激发学生的潜能,让每个学生都能在学习中感受到快乐和成就感。通过科学合理的教学策略,引导学生积极参与课堂活动,提高学生的学习效果,为学生的可持续发展奠定基础。
3.结合实际例子,让学生感受数学与生活的紧密联系;
4.采用小组合作、讨论交流的方式,培Βιβλιοθήκη 学生的团队合作精神。教学过程:
1.导入新课:以生活中常见的旋转现象为例,如旋转门、风车等,引导学生思考旋转的定义及性质;
2.自主学习:让学生通过阅读教材,了解旋转的基本性质;
人教版九年级上册数学《图形的旋转》教案及作业设计(含答案)
人教版九年级上册数学《图形的旋转》教案及作业设计(含答案)教育专区初中教育数人教版九年级上册数学《图形的旋转》教案及作业设计(含答案)23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=O B′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD是边长为1的正方形,且DE=,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到. △ABF与△ADE是完全重合的,所以它是直角三角形.解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的∴B是D的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=∴AE==∵对应点到旋转中心的距离相等且F是E的对应点∴AF=(4)∵∠EAF=90°(与旋转角相等)且AF=AE∴△EAF是等腰直角三角形.三、巩固练习教材P64 练习1、2.四、应用拓展例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD、四边形AKLM是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.六、布置作业1.教材P66 复习巩固4 综合运用5、6.2.作业设计.作业设计一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50° B.210° C.50°或210° D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是,它们之间的关系是,•其中BD=.3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F, ∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是.三、综合提高题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,•将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,•则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上, AG ⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案一、1.C 2.A 3.D二、1.相等 2.△ACE 图形全等 CE 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=.3.重合:证明:∵EG⊥AF∴∠2+∠3=90°∵∠3+∠1+90°=180°∵∠1+∠3=90°∴∠1=∠2同理∠E=∠F,∵四边形ABCD是正方形,∴AB=BC ∴△ABF≌△BCE,∴BF=CE,∴OE=OF,∵OA=OB ∴△OBE绕O点旋转90°便可和△OAF重合.。
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案,主要讲述了图形的旋转性质及其在实际问题中的应用。
本节课内容是学生在学习了图形的平移、翻转的基础上,进一步探究图形的旋转特点,培养学生的空间想象能力和动手操作能力。
二. 学情分析九年级的学生已具备一定的图形变换基础,对于图形的平移、翻转有一定的了解。
但学生在理解和应用图形旋转方面可能存在一定的困难,因此,在教学过程中,教师需要注重引导学生通过实际操作来掌握图形旋转的性质,提高学生的空间想象能力。
三. 教学目标1.理解图形旋转的性质,掌握图形旋转的基本方法。
2.能够运用图形旋转解决实际问题,提高学生的应用能力。
3.培养学生的空间想象能力和动手操作能力。
四. 教学重难点1.图形旋转的性质及其在实际问题中的应用。
2.学生空间想象能力的培养。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过自主探究、合作交流的方式,掌握图形旋转的性质。
同时,运用多媒体技术辅助教学,提高学生的空间想象能力。
六. 教学准备1.多媒体课件。
2.图形旋转的实际问题案例。
3.练习题。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转现象,激发学生的学习兴趣。
同时,提问:“你们认为图形旋转有哪些性质呢?”2.呈现(10分钟)教师通过多媒体课件,展示图形旋转的性质,如旋转变换不改变图形的形状和大小,对应点、对应线段、对应角相等等。
同时,引导学生观察图形旋转前后的变化,总结旋转的规律。
3.操练(10分钟)教师提出一些实际问题,让学生运用图形旋转的性质进行解决。
如:“一个正方形绕着其一个顶点旋转90度后,求得旋转后的正方形面积。
”学生在教师的指导下,进行动手操作,巩固图形旋转的应用。
4.巩固(10分钟)教师给出一些关于图形旋转的练习题,让学生独立完成。
人教版九年级数学上册《图形的旋转》教学设计
钟摆旋转,追赶着时间的极限
地球旋转,带来日夜的交替
、、、、、、
您可曾感到
旋转与我们息息相关
美丽的旋转
让我们的生活一片灿烂
在本次活动中,教师应关注:(1)学生能否抓住三种图形变换的本质共性,即它们都是全等变换。
(2)学生对三种图形变换特征的理解。
让学生通过反思已学过的有关图形变换的知识,深入理解旋转变换的本质特征。同时,为以后进行图案设计活动作知识准备。
以上的这些现象有哪些共同的特点呢?
你能类比平移的定义,得出旋转的定义吗?
导入新课:
同学们都见过风车吧,小小的风车在风的吹动下不停地转动。能够转动的物体还有很多,(展示课件)。这节课,就让我们一起走进旋转的世界。(板书课题)
教师演示旋转的图片课件,提出问题:上面情景中的现象,有什么共同的特点呢?
学生观察、思考、回答问题。
学生以小组为单位进行实验与观察。
教师选择个别小组的成果进行展示,与学生交流,得出旋转的性质。
在活动二中,关注学生通过观察后发现的图中所存在的线段、角的相等关系,并对其中正确的发现给与肯定,鼓励学生通过实验进行论证。同时还应明确指出问题中涉及的是旋转变换的本质特征,应重点掌握。
通过设置数学观察,让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生观察、分析、比较、抽象、概括的思维能力。
活动三是所学知识的应用过程。通过让学生解决蕴含所学知识的实际问题和数学问题将新知识内化到学生已有的认知结构中。
教
学
过课你有什么收获?
你还有什么困惑吗?
布置作业
教师引导学生对比已学过的平移、轴对称、旋转变换进行知识梳理。
学生进行对比、分析、归纳、小结。
新人教版九年级上册数学《23.1图形的旋转》教案
d.探索旋转对称图形的特点及其性质;
e.学会使用旋转变换工具,如量角器、圆规等。
3.教学目标:
a.理解并掌握旋转的定义及性质;
b.能够运用旋转解决实际问题;
c.培养学生的空间想象能力和动手操作能力。
二、核心素养目标
新人教版九年级上册数学《23.1图形的旋转》核心素养目标:
3.逻辑思维:运用旋转性质进行问题分析,培养学生的逻辑推理能力,使其能够准确、有序地解决问题。
4.数学应用:将旋转知识应用于解决实际问题,提高学生的数学应用能力和创新意识,增强其对数学学科的实际运用价值认识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,ቤተ መጻሕፍቲ ባይዱ天我们将要学习的是《图形的旋转》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体旋转的情况?”(如旋转门、风车等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形旋转的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解图形旋转的基本概念。图形旋转是指在平面上,将一个图形绕着某一点按一定角度进行旋转。它是几何变换中的一种,具有重要的实际应用价值。
2.案例分析:接下来,我们来看一个具体的案例。通过分析旋转门的工作原理,了解图形旋转在实际中的应用,以及它如何帮助我们解决问题。
1.培养学生的空间观念:通过观察、操作、探索,使学生理解旋转的内涵,感知旋转在现实生活中的应用,发展空间想象力;
2.提高学生的几何直观能力:借助旋转变换,培养学生对几何图形的观察、分析、判断及推理能力;
3.增强学生的逻辑思维能力:运用旋转性质解决问题,锻炼学生逻辑思维,提高解决问题的能力;
人教版九年级上册23.1图形的旋转23.1图形的旋转三课时教学设计
人教版九年级上册23.1图形的旋转三课时教学设计一、教学目标1.知识目标•理解图形的旋转概念;•掌握旋转图形的基本方法;•了解正方形、矩形、三角形、菱形、梯形的旋转特征。
2.技能目标•能够利用旋转对图形进行对称构造;•能够独立完成相关练习。
3.情感目标•培养学生较强的空间想象能力;•培养学生耐心、细致的认真态度;•激发学生学习数学的兴趣。
二、教学重点与难点1.教学重点•知识的讲解和运用;•旋转对称的认识和应用。
2.教学难点•对于不易想象的图形的旋转,如何引导学生理解。
三、教学过程设计1.第一课时1.1 教学内容•旋转的概念•图形的旋转方法1.2 教学方法•演示法•讲授法•互动法1.3 教学步骤Step 1:引入通过展示大自然中的旋转现象,引导学生对旋转的认识。
Step 2:知识讲解•讲解旋转的概念和基本方法;•举例对不同图形进行旋转。
Step 3:学生练习让学生在本课时练习中对不同图形进行旋转,并进行相互评价。
2.第二课时2.1 教学内容•旋转对称图形的构造•正方形、矩形、三角形、菱形、梯形的旋转特征2.2 教学方法•演示法•讲授法•练习法2.3 教学步骤Step 1:知识讲解•讲解对称图形的构造和性质;•介绍正方形、矩形、三角形、菱形、梯形的旋转特征。
Step 2:互动探究让学生在教师的引导下,自行解决一些旋转对称图形的构造问题。
Step 3:课堂练习让学生进行相关的课堂练习,提高他们的应用能力。
3.第三课时3.1 教学内容•整体练习•巩固训练3.2 教学方法•练习法•讲授法•演示法3.3 教学步骤Step 1:知识复习通过课前布置的作业,对知识进行回顾。
Step 2:整体练习针对学生的薄弱点,进行整体练习。
Step 3:巩固训练利用同步练习和测试,对同学们学习的成果进行巩固。
四、课后反思通过三节课的教学,学生对图形的旋转有了更深刻的认识和掌握,同时也通过反复的练习,掌握了旋转对称的构造方法,培养了学生的空间想象和数学思维能力。
人教版九年级数学上册《图形的旋转》教学设计
23.1 图形的旋转一、教材的地位与作用承前:图形的旋转是继平移、轴对称之后的又一种图形基本变换,是初中数学中的图形变换的一个重要组成部分。
启后:同时“图形的旋转”是一个重要的基础知识,隐含着重要的变换思想,通过本节课的学习,学生对图形变换的认识会更完整。
它不仅为本章后续学习中心对称图形做好准备,而且也为今后学习“圆”的知识做好铺垫。
二、教学目标1.通过对生活中旋转现象的观察,了解旋转变换也是图形的一种基本变换,理解图形旋转的有关概念;理解图形的旋转变换是由旋转中心、旋转角和旋转方向所决定的,探索和发现旋转图形的基本性质;2.通过对图形的旋转及其性质的探究学习,发展学生直观想象能力,以及分析、归纳、抽象概括的思维能力;3.在经历了实验探究、知识应用等数学活动,体验具体、灵活的数学学习过程,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养学生合作学习的意识和研究探索的精神。
三、重点与难点重点:归纳图形旋转的有关概念及性质。
难点:旋转概念的形成过程与性质的探究过程。
四、教法与学法1.教法依据学生认知规律,遵循“学生为主体,教师为主导,数学活动为主线”的指导思想,采用以实验观察法为主,直观演示法为辅的教学方法。
2.学法在教学过程中,要充分调动学生的积极性和主动性,为学生提供自主学习的时间和空间,让学生在“观察——操作——交流——归纳——应用”的实践探索中,亲身感受知识的形成过程,引导学生自己发现问题、提出问题、解决问题、拓展问题。
3. 课前延伸教师精心收集生活中有关旋转的图片,并用几何画板制作多媒体课件;学生在课前准备好三角形硬纸板、彩笔,圆规等。
五.教学过程(一)创设情景,引入新知用课件演示生活中有关旋转,平移,轴对称的例子。
(1) 由平面图形平移而产生的奇妙图案;(2) 京剧脸谱;(3) 时钟上的秒针在不停的转动(4)行驶的火车;(5) 蝴蝶标本;(6)转动的齿轮;(7)剪纸;(8)扳手(9)传送带仔细观察这些图形,提出问题:这些情景中的一些现象,让学生辨别。
人教版九年级数学上册《图形的旋转》教案
《图形的旋转》教案教学目标通过观察具体实例认识旋转,经历探索,发现旋转的性质.教学重点探索归纳图形旋转的特征,并能根据这些特征作出旋转后的几何图形.教学难点对图形进行旋转变换.教学过程一、创设情境,导入新课.[师]同学们都见过电风扇吧,电风扇在接通电源后就不停地转动.像这样,能够转动的物体有很多,下面就请同学们欣赏老师带来的一组图片并回答问题:以上这些现象有什么共同特点?钟表的指针、飞机的螺旋桨、风车的叶片.(学生观察、思考、回答问题,共同特点是物体绕定点转动)二、师生互动,探求新知.(一)旋转的概念.[师]同学们观察得很仔细,我们把这样的转动叫做旋转,这节课我们共同来探讨——图形的旋转(板书课题)[师]在数学中,如何定义旋转呢?哪位同学能用自己的语言把风车叶片转动的过程描述出来吗?(学生思考、讨论,教师巡视,引导学生归纳出旋转的概念)旋转的概念:在平面内,把一个图形绕着一个定点沿某个方向转动一个角度的图形变换叫做旋转.这个定点叫旋转中心,转动的角叫旋转角.(二)旋转的基本性质[师]通过刚才的欣赏,我们发现了旋转的共同特点.那经过旋转变换后的图形与原图形有什么关系呢?让我们一起动手实践来探索这个问题吧!(学生分小组进行数学实验,教师参与到学生当中交流、讨论,并鼓励学生能否找到其余线段,角的相等关系)[生]……[师]刚才很多同学都说出了自己的想法,我想不管结果怎样,我和同学们都非常感谢你们,因为我认为:当你把自己的想法暴露给大家的时候,无论是对的还是错的,你对班级的贡献是一样的.[师]刚才我们通过实践探究得出的三个结论,就是旋转的基本性质.三、自主探究,合作交流.1.请你判断.下列一组图形变换属于旋转变换的是( )(学生讨论、交流,老师点评,并适时的对学生进行爱国主义思想教育)2.请你思考右图可以看做是一个菱形通过次旋转得到的.旋转中心是,旋转角的度数是 .[发散、拓展思维]上图还可以看做是由图形通过次旋转得到的,旋转角的度数是 .还可以由图形通过次旋转得到的,旋转角的度数是 .还可以由图形通过次旋转得到的,旋转角的度数是 .也可以由图形通过次旋转得到的,旋转角的度数是 .四、应用新知,体验成功.(一)按要求作出简单平面图形经旋转变换后的图形.例:如图,在方格纸上作出“小旗子”绕0点按顺时针方向旋转90°后的图案,并简述理由.(学生讨论,老师点评,指出关键是确定O、A、B、C四个点的对应点,即它们旋转后的位置).[师]这面旗子是结构简单的平面图形,在方格纸上大家能画出它绕定点旋转后的图形,那么在没有方格纸的情况下,能否画出简单平面图形旋转后的图形呢?(学生独立思考、分析、解答问题.教师应重点关注:①学生在画出图形后,能否准确地运用旋转的基本性质表达出作图的理论依据;②学生中作图的不同方法.)(二)欣赏旋转在现实生活中的应用[师]通过刚才的学习,我们对旋转有了更深刻的理解,下面就让我们一道去寻找它在现实生活中的应用吧!水车、压水井、电风扇、汽车的方向盘、风力发电机.[师]通过我们的寻找,旋转在我们身边无处不在.无论在农村,还是城市;无论是在古代,还是当今社会,旋转为我们的生活以及经济建设发挥了巨大的作用!五、课堂小结,深化目标.[师]通过今天的学习,你有什么收获?有何感想?在学生自行归纳总结的基础上,教师从以下几个方面进行点拔:①知道了旋转的概念.②明白了旋转的基本性质.③学会了按要求作出简单平面图形旋转后的图形.④肯定学生在课堂中合作交流意识和良好的反思习惯,在今后的学习中要继续发扬.。
初中数学教学课例《图形的旋转》教学设计及总结反思
行探索。
知识与技能
通过具体实例认识图形的旋转,理解“对应点到旋
转中心的距离相等”以及“旋转前、后的图形全等”的
基本性质。
过程与方法
教学目标
经历对具有旋转特征的图形进行观察、分析、动手
操作和画图等过程,按要求作出简单平面图形旋转后的
图形。
情感、态度与价值观
学生在经历了实际探究、知识应用及内化等数学活
动中,体验数学的具体、生动、灵活,调动学生学习的
么?
(三)归纳总结:
1.一般地,可以根据定义得出旋转的以下性质:
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转
角。
(3)旋转前、后的图形全等。
2.画已知图形旋转后的图形时,首先要确定一些对
应点的位置,这主要由旋转角度及对应点到旋转中心的
距离相等等条件确定,也可以利用一些特殊图形的性
数学的主动性。
培养学生初步的审美能力,增强对图形的欣赏意
识。
九年级学生好动手,好动脑,有积极探究的热情。 学生学习能
在学习本节课之前,学生已学了轴对犯称、平移这两种 力分析
图形的基本变换,有了一定的变换思想。
按照学生认知规律,遵循以“学生为主体,教师为
主导,数学活动为主线”的指导思想,采用以实验观察
教学过程
2.一般地,可以根据定义得出旋转的以下性质: (1)对应点到旋转中心的距离.
(2)对应点与旋转中心所连线段的夹角等于.
(3)旋转前、后的图形.
(二)自主探究
例 1.如图所示,AC 是正方形 ABCD 的对角线,△ABC
经过旋转后到达△AEF 的位置,则旋转中心是哪点?旋
转方向是什么?旋转角度是多少?点 B 的对应点是什
人教版九年级数学上册23.1 图形的旋转教案
..第二十三章 旋转23.1 图形的旋转课题23.1图形的旋转授课人知识技能数学思考认识旋转,理解旋转的三要素:旋转中心、旋转方向、旋转角;并能识别 在旋转过程中旋转图形的对应点、对应线段和对应角;正确理解运用旋转 的性质.在发现、探究的过程中完成对旋转这一图形变化从直观到抽象、从感性认 识到理性认识的转变,体会类比和分类思想,发展学生直观想象能力,观教学 目标察、分析、抽象概括的思维能力;在了解图形旋转的特征,并进一步应用所掌握的这些特征进行旋转变化的问题解决情感态度学习过程中,让学生从数学的角度认识现实生活中的现象,增强数学的应 用意识;经历对生活中旋转图形的观察、讨论、实践操作,充分感知数学美,培养 学习数学的兴趣和热爱生活的情感;通过小组合作交流活动,培养合作学 习的意识和研究探索的精神;教学 重点教学难点旋转的概念和性质,以及能够利用旋转的性质绘制旋转后的几何图形旋转概念的形成过程和性质的探究过程,能根据旋转图形的性质解决实际问题授课 类型教具新授课课 时 第一课时多媒体教 学 活 动教学 步骤师生活动(展示问题)1.我们学习过的图形的运动方式有哪些?它们各自具备怎样的性质?2.在日常生活中,你还见过哪些运动方式?举例说明. 师生活动:回顾教师引导学生回忆知识,学生进行解答,教师做好点评; 教师提示:1.平移,对折等;变换前的图形和变换后的图形全等,都存在对应角和对应边 等等;2.旋转,如车轮,钟表等;设计意图在学生已有 生活经验的 基础上提出 新的问题, 能为学生营 造一个主 动、思考、 探索的氛 围,提高学 习兴趣.,.. ,活动 一: 创设 情境 导入 新课活动 二:实践 探究 交流 新知【课堂引入】问题:同学们,你听说过这样一句话吗,叫做“一寸光阴一寸金”后半句是什 么?这句话的意思是说时间是非常宝贵的,我们利用钟表来看时间,钟表上秒 针的每一次滴答都提醒着我们时间的流逝 .在屏幕上,就是一个钟面(展示钟 面),在这个钟面上,大家看到了什么现象? 师生活动:学生自主发言,交流多种想法,教师做好鼓励性评价和知识延伸1.认识旋转:活动一:教师提出问题:(1)生活中,你见过哪些旋转的现象呢? (2)课件出示生活中的旋转现象.(3)以上几种旋转,它们有什么共同点?(4)它们哪里转动了?比如:荡秋千哪转动了?挡车杆呢?(5)如果我们把荡秋千的踏板看作是一个点、汽车的刮水器看作一条线段、风 车的风叶看作是个四边形或三角形.那么它们的转动又会是怎么样子呢?师生活动:学生自主回答问题,相互交流、讨论,形成对知识的认识和理解 活动二:归纳总结,形成概念.在平面内,把一个图形绕着一个定点,沿一定的方向转动一个角度,像这样的 图形变换称为旋转.2.理解旋转的三要素:(课件展示)利用多媒体演示三角形绕着某点进行旋转,同时变换旋转的方向 和角度.问题:请学生用自己的语言说出图形变化的情况(教师注意学生回答侧重旋转 中心、旋转角、旋转方向)师生活动:学生进行回答,教师引号、强调,回答此题的模式是以点××为中 心,顺时针(或逆时针)旋转××度.教师归纳:旋转的三要素为旋转中心、旋转角、旋转方向. 3.探究旋转的性质: (课件展示)如图,△ AOB 按顺时针方向旋转 45°后得到△ A′OB′在这个过程中,你有什 么发现?并回答问题. 回答问题:①三角形在转动的过程中其形状、 大小、位置哪些在 变哪些没变? ②找出旋转角;③找出它们的对应点、对应线段和对应角.师生活动:学生根据问题自主进行解答,然后小组内讨 论,师生共同交流确定答案. 教师总结:旋转的性质①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角; ③旋转前、后的图形全等.创设情境, 利用学生常 见的实例导 入,打破了 数学枯燥无 味,激发学 生学习兴 趣.1. 从 生 活 中的旋转出 发,让学生 感受数学就 在身边,同 时提出问题 让学生根据 已有知识去 探索和发现 这些图形的 共同规律, 培养他们积 极动脑的习 惯.2. 通过欣赏 美丽图案, 体验由旋转 而成美丽图 案的过程, 再次调动起 学生的学习 兴趣.3. 理 解 旋 转的基本涵 义后,引导 学生用学到 的知识去解 决有关的问 题,从而得 到旋转的性 质,让学生 及时运用、 巩固所学知 识....,【应用举例】 (课件展示)例 1:如下图,E 是正方形 ABCD 中 CD 边上任一点,以点 A 为中心,把△ ADE 顺时针旋转 90°,在给出图形中画出旋转 后的图形,并完成下列填空.(1)因为点 A 是对称中心,所以它的对应点是______;(2)正方形 ABCD 中,AD=AB ,∠DAB=90°,所以旋转后 点 D 与点______重合.师生活动:学生按要求自主进行解答问题,教师做好指导、点拨 教师关注:学生能否根据旋转的性质确定出△ADE 三个顶点的对应点,即它们 旋转后的位置.教师演示解答过程:因为点 A 是旋转中心,所以它的对应点是它本身,正方形 ABCD 中,AD=AB ,∠DAB=90°,所以旋转后点 D 与点 B 重合,设点 E 的对应点是点 E′,因为旋转后的图形与旋转前的 图形全等,所以∠ABE′=∠ADE=90°,BE′=DE ,因此在 CB 的延长线上取点 E′,使 BE′=DE △,则 ABE′为旋转后的图形. 活动 【拓展提升】在学生初步 掌握了旋转 有关知识的 基础上,让 学生学着运 用学过的知 识解决相关 问题,将新 知识内化入 学生已有的 知识结构 中,增加学 生学习的信 心.三: (课件展示)开放 例 2:如图,正方形 ABCD 和正方形 CDEF 有公共边 训练 CD ,请设计方案,使正方形 ABCD 旋转后能与正方形 体现 CDEF 重合,你能写出几种方案?应用师生活动:学生独立解答,再合作交流,然后展示成果 教师巡视,观察学生解决问题的过程与方法,并及时引导和帮助学困生【达标测评】1. 如图,点 A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点 O 按逆时针 方向旋转到△COD 的位置,则旋转的角度为( )A. 30°B. 45°C. 90° D .135°2. 如图,将 △Rt ABC (其中∠B =35°,∠C =90°)绕点 A 按顺时针方向旋转 针对本课时到 △AB 1C 1 的位置,使得点 C 、A 、B 1 在同一条直线上,那么旋转角等于A.55°B. 70°C.125° D .145°3. 在等边△ABC 中,D 是边AC 上一点,连接△BD ,将 BCD 绕点 B 逆时针旋转60° 得到 △BAE ,连接ED ,若BC=5,BD=4.则下列结论错误的是()A .AE ∥BCB .∠ADE=∠BDCC △. BDE 是等边三角形D △. ADE 的周长是 9的主要问题,从多个 角度、分层 次进行检 测,达到学 有所成、了解课堂学习效果的目 的.4.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=_________.学生进行当堂检测,完成后,教师进行批阅,点评、讲解.小结环节的1.课堂总结:设置能够让(1)谈一谈你在本节课中有哪些收获?哪些进步?学生养成自(2)学习本节课后,还存在哪些困惑?主归纳课堂教师总结知识点:旋转的定义、三要素;旋转的性质;旋转作图的注意事项;重点的习2.布置作业:惯,提高学教材第62页,习题第3、4、9题.生的学习能力.【板书设计】提纲挈领,重点突出活动四:课堂总结反思【教学反思】反思教学过①[授课流程反思]程和教师表A.□B.创设情景□C.探究新知□D.课堂训练□E.课堂总结□现,进一步在创设情境和探究新知环节中,从观察生活中的旋转现象出发,发现归纳旋转提升操作流的定义及其性质,让学生的思维逐步深入思考,培养直观感受和严谨的思维习程和自身素惯、归纳总结的能力.质.②[讲授效果反思]A.□重点B.难点□C.易错点□D.□ E.□教学重点值得注意:(1)旋转的性质是解答问题和作图的基础和依据;(2)旋转角的认识对于认识旋转的帮助;(3)作图时注意旋转的三要素,缺一不可.③[师生互动反思]教学过程中,由于采用多媒体教学,展示图片和动画,学生学习积极性高,发言踊跃,课堂气氛活跃.④[练习反思]好题题号检测第3、4题.错题题号。
人教版九年级上册23.1图形的旋转教学设计
人教版九年级上册23.1图形的旋转教学设计1. 教学目标•了解图形的旋转概念与性质。
•掌握图形顺时针、逆时针旋转的方法与规律。
•认识旋转成像及其特点。
2. 教学准备•课件、PPT或黑板。
•图形卡片或手绘图形。
•透明纸、透镜等教具。
3. 教学过程3.1 导入(5分钟)通过展示一些有趣的旋转图片或引入一个旋转问题,引起学生兴趣。
例如,一只青蛙在往哪个方向跳跃?3.2 概念讲解(20分钟)引入向量的旋转概念,解释顺时针旋转与逆时针旋转的概念。
然后,简要介绍一形的旋转,如旋转角度、旋转方向和旋转中心等概念。
通过实际动手操作,使学生可以更好地理解旋转相应的规律和方法。
3.3 讲解重点/难点(30分钟)教师从以下几个方面进行讲解:3.3.1 旋转方法•顺时针/逆时针旋转:将旋转方向作为参照系,右侧的方向为顺时针,左侧的方向为逆时针。
•旋转角度:旋转所转过角度,角度单位为度。
•旋转中心:旋转点会围绕旋转中心旋转,可以是任意一点。
选择不同的旋转中心将会产生不同的旋转结果。
•旋转轴:旋转围绕的轴线,可以是直线,也可以是平面上的任意一条轴线。
3.3.2 旋转规律•相邻两个旋转是可嵌套的,旋转结果将会叠加。
•旋转角度为360度时,图形仍处于原来的位置不变。
•同一条旋转轴旋转不同的角度,结果一定是相似的。
3.4 案例演示与练习(30分钟)引导学生用透明纸实现图形的旋转,让学生自由选择旋转中心、旋转轴和旋转角度,从而掌握图形旋转的方法和规律,或者通过分组为学生分发手绘图形进行实际操作,达到学习旋转成像的目的。
3.5 总结与归纳(15分钟)对本节课学习内容进行总结,并且通过相应的习题练习锻炼学生的思维能力。
4. 课堂作业完成教师分配的习题并对整个过程进行总结。
5. 教学反思本节课的主要内容是图形的旋转,着重从旋转概念、方法、规律以及旋转成像四个方面进行讲解,先通过引入开篇引起学生兴趣;再通过实际动手操作来使学生更好地理解旋转相应的规律和方法;然后对本节课学习内容进行总结,并且通过相应的习题练习锻炼学生的思维能力。
人教九年级数学上23.1图形的旋转教案
一、基本说明1、教学内容所属模块:初中数学2、年级:九年级上册3、所用教材出版单位:人民教育出版社4、所属的章节:第二十三章旋转(23.1图形的旋转)5、类型:课堂教学设计6学时数:45分钟7、课型:新授课二、教学设计23.1图形的旋转第一课时教学设计课后反思美国数学教育家波利亚指出:“学习任何东西,最好的途径是自己去发现。
” 为了有效地学习,学生应在教师设计的情境中,尽量多地自己去发现学习的知识、方法,所以本节课的设计我采用了以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则,使学生在问题的探究过程中,真正作到“乐学”。
首先我播放了一组生活中熟悉的体现运动变化的画面,激发学生的学习求知欲,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活、思考问题的能力。
其次旋转概念的形成过程及旋转性质得到的过程是本节的重点,所以本节突出概念形成过程和性质探究过程的教学。
通过列举学生生活中熟悉的例子,从生活问题中抽象出数学本质,例题和练习的安排是按照由易到难、由简到繁的学习心理和认知规律过程设计的,便于学生循序渐进地掌握知识。
问题的选取都很贴近生活,使学生们有熟悉感、亲切感,能够积极参与数学活动,进一步提高学生学习数学的兴趣,同时注重引导学生从运动、变化的角度看问题,向学生渗透辩证唯物主义观点。
在教学过程中,采用动手实践、强调自主学习,注重交流合作,营造良好的课堂氛围,激活学生的思维,让学生在参与过程中解决问题,充分体现了新课标的精神。
旋转概念的形成过程及旋转性质得到的过程是本节的重点,在找旋转角的练习中应重点强调多一些练习。
同时,对个别后进生、边缘生的关注还不够,下一步要注意。
九年级数学上册 23.1 图形的旋转教案 (新版)新人教版
23.1 图形的旋转一、教学目标1.掌握旋转的有关概念及基本性质.2.能够根据旋转的基本性质解决实际问题和进行简单作图.二、课时安排1课时三、教学重点掌握旋转的有关概念及基本性质.四、教学难点能够根据旋转的基本性质解决实际问题和进行简单作图.五、教学过程(一)导入新课问题:观察下列动画,说一说,生活中的这些现象有什么共同特点?(二)讲授新课1.观察实例得出旋转概念.我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.(1)请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?学生口答,教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.(2)再看自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?思考:这些现象有什么共同特点?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳:像这样,把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,点O 叫做旋转中心,转动的角叫做旋转角.如果图形上的点P 经过旋转变为点P ′,那么这两个点叫做这个旋转的对应点. 2.通过类比试验探究旋转的性质探究:如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞O 作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案(△ABC ),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△A ′B ′C ′ )移开硬纸板.△A 'B 'C '是由△ABC 绕点O 旋转得到的.线段OA 与OA ′有什么关系?∠AOA ′与 ∠BOB ′有什么关系?△ABC 与△A ′B ′C ′的形状和大小有什么关系?教师让学生思考这些问题.必要时,可引导学生从以下问题中进行思考: (1)轴对称的性质中对应点之间有怎样的位置关系和数量关系?旋转呢?(2)旋转是一个图形围绕旋转中心旋转一定的角度,此时,图形上的点发生旋转了吗?它是如何旋转的?哪个角表示了旋转的角度?归纳:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角. 旋转前、后的图形全等. (三)重难点精讲例1 如图,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.解:∵点A 是旋转中心,∴它的对应点是 .正方形ABCD 中,AD =AB ,∠DAB = ,所以旋转后 重合. 设点E 的对应点为E ′.∵△ADE △ABE ′∴∠ABE ′= = ,BE ′= ,因此 . 想一想:CDE还有其他方法确定点E 的对应点E ′吗?答:延长CB ,以点A 为圆心,AE 的长为半径画弧,交CB 的延长线于E',连接AE ',则△ABE'为旋转后的图形.旋转作图的基本步骤:(1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论. (四)归纳小结 图形旋转的性质: ①旋转前、后的图形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.四、应用拓展例3.两个边长为1的正方形,如图所示,•让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,•另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?•说明理由.分析:设任转一角度,如图中的虚线部分,•要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.解:面积不变.理由:设任转一角度,如图所示.在Rt△ODD′和Rt△OEE′中∠ODD′=∠OEE′=90°∠DOD′=∠EOE′=90°-∠BOEOD=OD∴△ODD′≌△OEE′∴S△ODD`=S△OEE`∴S四边形OE`BD`=S正方形OEBD=1 4五、归纳小结(学生总结,老师点评)本节课要掌握:1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.六、布置作业1.教材P66 复习巩固1、2、3.2.《同步练习》一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个 B.7个 C.8个 D.9个2.从5点15分到5点20分,分针旋转的度数为().A.20° B.26° C.30° D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70° B.80° C.60° D.50°(1) (2) (3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP•是________三角形.三、综合提高题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(4) (5) (6) (7)如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=12 AB.(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•使△ABE移到△ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系.2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转旋转中心旋转角 2.A 45° 3.点A 60°等边三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.(2)BE=•DF,BE⊥DF2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等? 3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB 为一边作∠BCE ,使得∠BCE=∠ACD (3)在射线CE 上截取CB ′=CB 则B ′即为所求的B 的对应点. (4)连结DB ′则△DB ′C 就是△ABC 绕C 点旋转后的图形. 例2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点? (2)旋转了多少度? (3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形. 解:(1)旋转中心是A 点. (2)∵△ABF 是由△ADE 旋转而成的 ∴B 是D 的对应点 ∴∠DAB=90°就是旋转角 (3)∵AD=1,DE=14 ∴AE=2211()4=17 ∵对应点到旋转中心的距离相等且F 是E 的对应点 ∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形. 三、巩固练习 教材P64 练习1、2. 四、应用拓展例3.如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的 ∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.六、布置作业1.教材P66 复习巩固4 综合运用5、6.2.作业设计.作业设计一、选择题1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于() A.50° B.210° C.50°或210° D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.三、综合提高题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,•将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,•则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,•AG•⊥EB,交EB 的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A 3.D二、1.相等 2.△ACE 图形全等 CE 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=12 .3.重合:证明:∵EG⊥AF∴∠2+∠3=90°∵∠3+∠1+90°=180°∵∠1+∠3=90°∴∠1=∠2同理∠E=∠F,∵四边形ABCD是正方形,∴AB=BC ∴△ABF≌△BCE,∴BF=CE,∴OE=OF,∵OA=OB∴△OBE绕O点旋转90°便可和△OAF重合.23.1 图形的旋转(3)第三课时教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案.教具、学具准备小黑板教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.四、应用拓展例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′;(4)所作出的图案就是所求的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业1.教材P67 综合运用7、8、9.2.选作课时作业设计.第三课时作业设计一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( •)A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围成的,如图23-•33是看到的万花筒的一个图案,图中所有三角形均是等边三角形,其中的菱形AEFG可以看成把菱形ABCD以A为中心()A.顺时针旋转60°得到的 B.顺时针旋转120°得到的C.逆时针旋转60°得到的 D.逆时针旋转120°得到的3.下面的图形23-34,绕着一个点旋转120°后,能与原来的位置重合的是()A.(1),(4) B.(1),(3) C.(1),(2) D.(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、综合提高题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,•将该图案绕原点O 顺时针依次旋转90°、180°、270°,并画出图形,•你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72° 2.旋转 3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴PP′.。