2016年江苏省泰州市泰兴市黄桥东区域七年级下学期数学期末试卷与解析答案
江苏省泰州市七年级下学期期末考试数学试题
江苏省泰州市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019八上·深圳期末) 下列实数中,最大的是()A . -2B . 0C .D .2. (2分) (2016八上·苏州期中) 如果一个数的平方根等于它的立方根,则这个数是()A . 0B . 1C . ﹣1D . ±13. (2分) (2017七下·自贡期末) 在下列所给的坐标的点中,在第二象限的是()A .B .C .D .4. (2分) (2019七下·大连期中) 如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为().A . x<4B . x<2C . 2<x<4D . x>25. (2分)王老师对本班40名学生的血型作了统计,列出如下统计表,则本班A型血的人数是().A . 16人B . 14人C . 4人D . 6人6. (2分)在如图,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:∵∠1=∠2(已知),∴AC∥DF(A.同位角相等,两直线平行),∴∠3=∠5(B.内错角相等,两直线平行).又∵∠3=∠4(已知)∴∠5=∠4(C.等量代换),∴BC∥EF(D.内错角相等,两直线平行).上述过程中判定依据错误的是()A . AB . BC . CD . D7. (2分)下列计算中正确的是()A . a2+a3=2a5B . a2•a3=a5C . a2•a3=a6D . a2+a3=a58. (2分)如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A . 70°B . 80°C . 90°D . 100°9. (2分) (2015八下·罗平期中) 若a,b为实数,且|a+1|+ =0,则(ab)2014的值是()A . 0B . 1C . ﹣1D . ±110. (2分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE 的度数为()A . 50°B . 100°C . 45°D . 30°11. (2分)不等式1﹣2x<5的负整数解集是()A . -1B . -2C . ﹣1,﹣2D . ﹣1,﹣2,012. (2分)若是下列某二元一次方程组的解,则这个方程组为()A .B .C .D .二、填空题 (共6题;共7分)13. (1分)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3 ,按此规定, =________14. (1分)已知x、y满足方程组,则y﹣x的值是________.15. (2分) (2016八上·沈丘期末) 调查50个学生时,发现身高为164至168cm的学生有12人,这部分学生占50个学生的百分比为________,该部分对应的扇形的圆心角是________.16. (1分)直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=________度.17. (1分)已知正整数a满足不等式组(x为未知数)无解,则a的值为________18. (1分)二元一次方程组解是________.三、解答题 (共7题;共75分)19. (10分) (2019九上·泉州期中) 计算(1)计算:(2)解方程: .20. (5分)解不等式:.并把解集在数轴上表示出来.21. (8分)(2011·宜宾) 某校开展了以“人生观、价值观”为主题的班队活动.活动结束后,初三(2)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调査(要求每位同学只选自己最认可的一项观点),并制成了如图所示的扇形统计图.(1)该班学生选择“和谐”观点的有________人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是________.(2)如果该校有1500名初三学生.利用样本估计选择“感恩”观点的初三学生约有________人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查.求恰好选到“和谐”和“感恩”观点的概率.22. (10分)如图(a),已知∠BAG+∠AGD=180°,AE、EF、EG是三条折线段.(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.23. (12分)(2018·昆山模拟) 如图1,一次函数y=kx﹣6(k≠0)的图象与y轴交于点A,与反比例函数y= (x>0)的图象交于点B(4,b).(1) b=________;k=________;(2)点C是线段AB上一点,过点C且平行于y轴的直线l交该反比例函数的图象于点D,连接OC,OD,BD,若四边形OCBD的面积S四边形OCBD= ,求点C的坐标;(3)将第(2)小题中的△OCD沿射线AB方向平移一定的距离后,得到△O'C'D',若点O的对应点O'恰好落在该反比例函数图象上(如图2),求此时点D的对应点D'的坐标.24. (15分)“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:可供使用人数(人/条)价格(元/条)长条椅3160弧形椅5200景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.25. (15分) (2016七下·柯桥期中) 已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共75分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
泰州七年级下册数学期末试卷复习练习(Word版 含答案)
泰州七年级下册数学期末试卷复习练习(Word版含答案)一、解答题1.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论.(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为.2.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.3.如图1,AB//CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠=︒.EOF100(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.4.如图,已知//AB CD ,CN 是BCE ∠的平分线. (1)若CM 平分BCD ∠,求MCN ∠的度数;(2)若CM 在BCD ∠的内部,且CM CN ⊥于C ,求证:CM 平分BCD ∠;(3)在(2)的条件下,过点B 作BP BQ ⊥,分别交CM 、CN 于点P 、Q ,PBQ ∠绕着B 点旋转,但与CM 、CN 始终有交点,问:BPC BQC ∠+∠的值是否发生变化?若不变,求其值;若变化,求其变化范围.5.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.二、解答题6.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程. 解:(1)如图①,过点P 作//PM AB . ∴140AEP ∠=∠=︒(_____________), ∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行), ∴_____________(两直线平行,同旁内角互补), ∴130PFD ∠=︒, ∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示).7.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数.8.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.9.已知两条直线l 1,l 2,l 1∥l 2,点A ,B 在直线l 1上,点A 在点B 的左边,点C ,D 在直线l 2上,且满足115ADC ABC ∠=∠=o .(1)如图①,求证:AD ∥BC ;(2)点M ,N 在线段CD 上,点M 在点N 的左边且满足MAC BAC ∠=∠,且AN 平分∠CAD ;(Ⅰ)如图②,当30ACD ∠=o 时,求∠DAM 的度数; (Ⅱ)如图③,当8CAD MAN ∠=∠时,求∠ACD 的度数.10.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .三、解答题11.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.12.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.13.如图,直线m 与直线n 互相垂直,垂足为O 、A 、B 两点同时从点O 出发,点A 沿直线m 向左运动,点B 沿直线n 向上运动.(1)若∠BAO 和∠ABO 的平分线相交于点Q ,在点A ,B 的运动过程中,∠AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP 是∠BAO 的邻补角的平分线,BP 是∠ABO 的邻补角的平分线,AP 、BP 相交于点P ,AQ 的延长线交PB 的延长线于点C ,在点A ,B 的运动过程中,∠P 和∠C 的大小是否会发生变化?若不发生变化,请求出∠P 和∠C 的度数;若发生变化,请说明理由.14.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.15.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒; ③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、解答题1.(1)AB//CD ,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180° 【分析】(1)过点E 作EF//AB ,利用平行线的性质则可得出解析:(1)AB //CD ,证明见解析;(2)∠E 1+∠E 2+…∠E n =∠B +∠F 1+∠F 2+…∠F n -1+∠D ;(3)(n -1)•180° 【分析】(1)过点E 作EF //AB ,利用平行线的性质则可得出∠B =∠BEF ,再由已知及平行线的判定即可得出AB ∥CD ;(2)如图,过点E 作EM ∥AB ,过点F 作FN ∥AB ,过点G 作GH ∥AB ,根据探究(1)的证明过程及方法,可推出∠E +∠G =∠B +∠F +∠D ,则可由此得出规律,并得出∠E 1+∠E 2+…∠E n =∠B +∠F 1+∠F 2+…∠F n -1+∠D ;(3)如图,过点M 作EF ∥AB ,过点N 作GH ∥AB ,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论. 【详解】解:(1)过点E 作EF //AB ,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠F n-1+∠D.故答案为:∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.故答案为:(n-1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.2.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG =∠CBE +∠GBE , ∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ, 整理得:2γ+β=55°,∴∠FBE =∠FBG +∠GBE =2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°. 【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.3.(1) ;(2)的值为40°;(3). 【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解; (2)过点M 作MK ∥AB ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53.【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即可得关于n 的方程,计算可求解n 值. 【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD , ∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,, ∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒, 即360BEO EOF DFO ∠+∠+∠=︒, ∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO ,设BEM OEM x CFN OFN y ∠=∠=∠=∠=,,∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒,∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD ,∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,,∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠()x KMN HNM y =+∠-∠-=x -y=40°,故EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD ,∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠,∴KFD EHK AEG ∠=∠+∠,∵50EHK NMF ENM ∠=∠-∠=︒,∴50KFD AEG ∠=︒+∠,即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠. ∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ , 1AEO AEG OEG AEG AEG n∠=∠+∠=∠+∠, ∵260BEO DFO ∠+∠=︒,∴100AEO CFO ∠+∠=︒, ∴11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即(180)1KFD AEG n ⎛⎫ ⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫ ⎪⨯⎭︒︒⎝+=, 解得53n = .经检验,符合题意, 故答案为:53. 【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键. 4.(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,,根据解析:(1)90°;(2)见解析;(3)不变,180°【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3)180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,根据平行线的性质及平角的定义即可得解.【详解】解(1)CN ,CM 分别平分BCE ∠和BCD ∠,12BCN BCE ∴=∠,12BCM BCD ∠=∠, 180BCE BCD ∠+∠=︒,111()90222MCN BCN BCM BCE BCD BCE BCD ∴∠=∠+∠=∠+∠=∠+∠=︒;(2)CM CN ⊥,90MCN ∴∠=︒,即90BCN BCM ∠+∠=︒,22180BCN BCM ∴∠+∠=︒, CN 是BCE ∠的平分线,2BCE BCN ∴∠=∠,2180BCE BCM ∴∠+∠=︒,又180BCE BCD ∠+∠=︒,2BCD BCM ∴∠=∠,又CM 在BCD ∠的内部,CM ∴平分BCD ∠;(3)如图,不发生变化,180BPC BQC ∠+∠=︒,过Q ,P 分别作//QG AB ,//PH AB ,则有//////QG AB PH CD ,BQG ABQ ∴∠=∠,CQG ECQ ∠=∠,BPH FBP ∠=∠,CPH DCP ∠=∠, ⊥BP BQ ,CP CQ ⊥,90PBQ PCQ ∴∠=∠=︒,180ABQ PBQ FBP ∠+∠+=︒,180ECQ PCQ DCP ∠+∠+∠=︒,180ABQ FBP ECQ DCP ∴∠+∠+∠+∠=︒,BPC BQC BPH CPH BQG CQG ∴∠+∠=∠+∠+∠+∠180ABQ FBP ECQ DCP =∠+∠+∠+∠=︒,180BPC BQC ∴∠+∠=︒不变.【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键. 5.(1)80°;(2)∠AKC =∠APC ,理由见解析;(3)∠AKC =∠APC ,理由见解析【分析】(1)先过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP ,再根据∠解析:(1)80°;(2)∠AKC =12∠APC ,理由见解析;(3)∠AKC =23∠APC ,理由见解析【分析】(1)先过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP ,再根据∠APC =∠APE +∠CPE =∠BAP +∠DCP 进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC =23∠APC .【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.二、解答题6.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=, ∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.7.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.8.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠, 11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.9.(1)证明见解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ)5DAM ∠=︒;(Ⅱ)25ACD ∠=︒.【分析】(1)先根据平行线的性质可得65BAD ∠=︒,再根据角的和差可得180BAD ABC ∠+∠=︒,然后根据平行线的判定即可得证;(2)(Ⅰ)先根据平行线的性质可得30BAC ACD ∠=∠=︒,从而可得30MAC ∠=︒,再根据角的和差可得35DAC ∠=︒,然后根据DAM DAC MAC ∠=∠-∠即可得;(Ⅱ)设MAN x ∠=,从而可得8CAD x ∠=,先根据角平分线的定义可得142CAN CAD x ∠=∠=,再根据角的和差可得5BAC MAC x ∠=∠=,然后根据65CAD BAC BAD ∠+∠=∠=︒建立方程可求出x 的值,从而可得BAC ∠的度数,最后根据平行线的性质即可得.【详解】(1)12//,115l l ADC ∠=︒,18065BAD ADC ∴∠=︒-∠=︒,又115ABC ∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(2)(Ⅰ)12//,30l l ACD ∠=︒,30BAC ACD ∴∠=∠=︒,MAC BAC ∠=∠,30MAC ∴∠=︒,由(1)已得:65BAD ∠=︒,35DAC BAD BAC ∴∠=∠-∠=︒,35305DAM DAC MAC ∴∠=∠-∠=︒-︒=︒;(Ⅱ)设MAN x ∠=,则8CAD x ∠=, AN 平分CAD ∠,142CAN CAD x ∴∠=∠=, 5MAC CAN MAN x ∴∠=∠+∠=,MAC BAC ∠=∠,5BAC x ∴∠=,由(1)已得:65BAD ∠=︒,65CAD BAC BAD ∴∠+∠=∠=︒,即8565x x +=︒,解得5x =︒,525BAC x ∴∠==︒,又12//l l ,25ACD BAC ∴∠=∠=︒.【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键.10.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD =12∠ABN ,即可求出结果;(3)不变,∠APB :∠ADB =2:1,证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论; (4)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.【详解】解:(1)①∵AM//BN ,∠A =64°,∴∠ABN =180°﹣∠A =116°,故答案为:116°;②∵AM//BN ,∴∠ACB =∠CBN ,故答案为:CBN ;(2)∵AM//BN ,∴∠ABN+∠A =180°,∴∠ABN =180°﹣64°=116°,∴∠ABP+∠PBN =116°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP+2∠DBP =116°,∴∠CBD =∠CBP+∠DBP =58°;(3)不变,∠APB :∠ADB =2:1,∵AM//BN ,∴∠APB =∠PBN ,∠ADB =∠DBN ,∵BD 平分∠PBN ,∴∠PBN =2∠DBN ,∴∠APB :∠ADB =2:1;(4)∵AM//BN ,∴∠ACB =∠CBN ,当∠ACB =∠ABD 时,则有∠CBN =∠ABD ,∴∠ABC+∠CBD =∠CBD+∠DBN∴∠ABC =∠DBN ,由(1)∠ABN =116°,∴∠CBD =58°,∴∠ABC+∠DBN =58°,∴∠ABC =29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.三、解答题11.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD,∠EAD=∠EAB=12∠BAD,则可得∠E= 12(∠D+∠B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC∠+︒=∠+∠ADP DFO ABC OEB∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=12∠BCD,∠EAD=∠EAB=12∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E,∴∠E=12(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC交AD于点F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=12∠BCD,∠EAD=∠EAB=12∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-12∠BCD=∠B+∠BAE-12(∠B+∠BAD+∠D)= 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F ,,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.12.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不发生变化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.13.(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ =∠QBO =12∠ABO ,∠PBA =∠PBF =∠ABF , ∴∠PBQ =∠ABQ+∠PBA =90°,又∵∠PBC =∠PBQ+∠CBQ =180°,∴∠QBC =180°﹣90°=90°.又∵∠QBC+∠C+∠BQC =180°,∴∠C =180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.14.(1)①115°,110°;②,证明见解析;(2),证明见解析.【解析】【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析. 【解析】【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形的内角和定理可得∠AFD=90°+12∠B ;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.15.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB=110°;如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。
泰兴数学试卷答案初中下册
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 3.14B. -2C. 0D. √2答案:D2. 若方程2x - 3 = 7的解为x,则x的值为()A. 2B. 3C. 4D. 5答案:C3. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 圆答案:C4. 已知一元二次方程x^2 - 5x + 6 = 0,则其两个根的和为()A. 2B. 3C. 4D. 5答案:B5. 在直角坐标系中,点A(2, 3)关于x轴的对称点坐标为()A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)答案:A6. 若等差数列的前三项分别为2, 5, 8,则该数列的公差为()A. 1B. 2C. 3D. 4答案:B7. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 1/xD. y = 3x答案:C8. 下列式子中,完全平方公式应用错误的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^2答案:C9. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠B的度数为()A. 40°B. 50°C. 60°D. 70°答案:B10. 若等比数列的前三项分别为1, 2, 4,则该数列的公比为()A. 1B. 2C. 4D. 8答案:B二、填空题(每题5分,共20分)11. 方程x^2 - 4x + 4 = 0的解为______。
答案:x1 = x2 = 212. 若a > b,则a - b的值______。
答案:大于013. 等差数列1, 4, 7, ...的第10项为______。
泰兴七年级下册数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,是负数的是()A. -3.5B. 2.5C. 0D. -52. 若a=2,b=-3,则a+b的值为()A. 5B. -5C. 0D. 13. 在直角坐标系中,点P(-2,3)关于x轴的对称点坐标是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,3)4. 下列方程中,有唯一解的是()A. 2x+3=7B. 3x-5=0C. 2x+5=2xD. 3x+2=05. 一个等腰三角形的底边长为10cm,腰长为12cm,那么这个三角形的面积是()A. 60cm²B. 72cm²C. 80cm²D. 90cm²6. 下列函数中,是反比例函数的是()A. y=2x+3B. y=3/xC. y=x²D. y=x7. 若a²+b²=50,且a-b=6,则ab的值为()A. 14B. 15C. 16D. 178. 下列图形中,是平行四边形的是()A. 矩形B. 等腰梯形C. 等边三角形D. 梯形9. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°10. 下列数中,属于有理数的是()A. √3B. πC. 0D. 无理数二、填空题(每题5分,共25分)11. 若a=-2,b=3,则a²-b²的值为______。
12. 在直角坐标系中,点Q(1,-2)关于原点的对称点坐标是______。
13. 解方程:3x-5=7,得x=______。
14. 一个长方形的长是6cm,宽是4cm,那么这个长方形的周长是______cm。
15. 若x=2是方程2x+3=5的解,则该方程的另一个解是______。
三、解答题(每题10分,共40分)16. (1)计算:-3×(-4)+5×2÷(-1)。
泰州市初一下学期数学期末试卷带答案
泰州市初一下学期数学期末试卷带答案一、选择题1.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD 2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.冠状病毒是引起病毒性肺炎的病原体的一种,可以在人群中扩散传播,某冠状病毒的直径大约是0.000000081米,用科学计数法可表示为( )A .-98.110⨯B .-88.110⨯C .-98110⨯D .-78.110⨯4.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 5.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=06.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .7.下列运算正确的是( ) A .a 2+a 2=a 4 B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 8.计算28+(-2)8所得的结果是( )A .0B .216C .48D .299.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .610.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠A=∠3C .∠1=∠4D .∠1=∠A二、填空题11.新型冠状肺炎病毒(COVID ﹣19)的粒子,其直径在120~140纳米即0.00000012米~0.00000014米之间,数据0.00000012用科学记数法可以表示为_____.12.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______13.等式01a =成立的条件是________.14.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.15.如果9-mx +x 2是一个完全平方式,则m 的值为__________.16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.17.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____. 18.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.19.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.20.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 三、解答题21.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )22.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△ABC 的高CD ;(3)在图中能使S △PBC =S △ABC 的格点P 的个数有 个(点P 异于A )23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C =∠EFG ,∠CED =∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF =80°,∠D =30°,求∠AEM 的度数.24.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立.25.已知,关于x 、y 二元一次方程组237921x y a x y -=-⎧⎨+=-⎩的解满足方程2x-y=13,求a 的值.26.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.27.解下列方程组:(1)32316x yx y-=⎧⎨+=⎩(2)234229x y zx y z⎧==⎪⎨⎪-+=-⎩28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A、错误.由∠1=∠4应该推出AB∥CD.B、错误.由∠2=∠3,应该推出BC//AD.C、正确.D、错误.由∠CBA+∠C=180°,应该推出AB∥CD,故选:C.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.2.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解3.B解析:B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000081=-88.110 ;故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D解析:D【分析】直接根据平行线的判定定理对各选项进行逐一分析即可.【详解】解:A 、∠C=∠1不能判定任何直线平行,故本选项错误;B 、∠A=∠2不能判定任何直线平行,故本选项错误;C 、∠C=∠3不能判定任何直线平行,故本选项错误;D 、∵∠A=∠1,∴EB ∥AC ,故本选项正确.故选:D .【点睛】本题考查的是平行线的判定,用到的知识点为:内错角相等,两直线平行.5.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.6.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x>2+1,-3x>3,x<-1,在数轴上表示为:,故选B.【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.7.B解析:B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D.【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.9.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.10.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、∵∠A+∠2=180°,∴AB∥DF,故本选项错误;B、∵∠A=∠3,∴AB∥DF,故本选项错误;C、∵∠1=∠4,∴AB∥DF,故本选项错误;D、∵∠1=∠A,∴AC∥DE,故本选项正确.故选:D.【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.二、填空题11.2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:2×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00 000 012=1.2×10﹣7,故答案是:1.2×10﹣7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b =3或−3(舍去),a =−1,则ab =−1.故答案是:−1.13..【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:.故答案为:.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键. 解析:0a ≠.【分析】根据零指数幂有意义的条件作答即可.【详解】由题意得:0a ≠.故答案为:0a ≠.【点睛】本题考查零指数幂有意义的条件.熟练掌握非零的零次幂等于1是解题的关键.14.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.16.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n=8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.-4【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案.【详解】解:当x=1时,,,∵,∴故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案.【详解】解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++,∴4a b c ++=-故答案为:-4.【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键. 18.4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,解析:4【分析】设购买x 个A 品牌足球,y 个B 品牌足球,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x 个A 品牌足球,y 个B 品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.19.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.20.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a -b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a 2-b 2=(a+b)(a-b),a 2﹣b 2=﹣1,a+b=12, ∴a-b=-1÷12=-2, 故答案为-2.三、解答题21.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.22.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB ,过点C 作AB 延长线的垂线段;(3)过点A 作BC 的平行线,这条平行线上的格点数(异于点A )即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C =180°﹣110°=70°,又∵AB ∥CD ,∴∠AEC =∠C =70°,∴∠AEM =180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.24.(1) 112-92=40; (2) (2n+1)2-(2n -1)2=8n ,证明详见解析【分析】(1)根据所给式子可知:()()22223121121181-⨯+⨯-⨯-==,()()22225322122182-⨯+⨯-⨯-==,()()22227523123183-⨯+⨯-⨯-==,由此可知第5个式子;(2)根据题(1)的推理可得第n 个式子,利用完全平方公式可证得结果;【详解】(1)∵第1个式子为: ()()22223121121181-⨯+⨯-⨯-==第2个式子为: ()()22225322122182-⨯+⨯-⨯-==第3个式子为: ()()22227523123183-⨯+⨯-⨯-==∴第5个式子为: ()()222225125111940⨯+-⨯-=-=即第5个式子为:2211940-=(2)根据题(1)的推理可得:第n 个式子: ()()2221218n n n +--=∵左边=224414418n n n n n +-++-==右边∴等式成立.【点睛】本题考查数式规律的探索,解题的关键仔细观察所给的式子,正确找出式子的规律.【分析】先联立x+2y=−1与2x−y=13解出x ,y ,再代入2x−3y=7a−9即可求出a 值.【详解】依题意得21213x y x y +=-⎧⎨-=⎩解得53x y =⎧⎨=-⎩, 代入2x−3y=7a−9,得:a=4,故a 的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.26.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.27.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A 类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B 类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C 类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B 种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.。
江苏省泰州市七年级下学期期末考试数学试题
江苏省泰州市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·古冶期中) 5的算术平方根是()A . 5B .C . -5D .2. (2分) (2016七下·普宁期末) 下列各组角中,∠1与∠2是对顶角的为()A .B .C .D .3. (2分) (2017七下·台山期末) 在平面直角坐标系中,点(-3,-4)的位置在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)为了保护生态环境,某地将一部分耕地改为林地,改变后,林地的面积和耕地的面积和共有180万公顷,耕地面积是林地面积的25%,已知改变后耕地面积为x万公顷,林地面积为y公顷,以下关于x、y的四个方程组,其中符合题意的是()A .B .C .D .5. (2分) (2018八下·太原期中) 解不等式时,去分母后结果正确为()A . 2(x+2)>1﹣3(x﹣3)B . 2x+4>6﹣3x﹣9C . 2x+4>6﹣3x+3D . 2(x+2)>6﹣3(x﹣3)6. (2分)(2019·湖南模拟) 下列说法中正确的是()A . “打开电视机,正在播放《动物世界》”是必然事件B . 某种彩票的中奖率为 ,说明每买1 000张彩票,一定有一张中奖C . 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D . 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查7. (2分)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A . a户最长B . b户最长C . c户最长D . 三户一样8. (2分)如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥CD.A . 50°B . 40°C . 30°D . 60°9. (2分) (2019八上·温州期末) 下列选项中a的值,可以作为命题“a2>4,则a>2”是假命题的反例是()A .B .C .D .10. (2分) (2019八下·桂平期末) 平南县某小区5月份随机抽取了15户家庭,对其用电情况进行了统计,统计情况如下(单位:度):78,62,95,108,87,103,99,74,87,105,88,76,76,94,79.则用电量在71~80的家庭有()A . 4户B . 5户C . 6户D . 7户二、填空题 (共6题;共8分)11. (1分)已知x的平方根是±8,则x的立方根是________ .12. (1分)(2014·苏州) 某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为________.13. (1分)如果方程组的解与方程组的解相同,则a+b=________ .14. (1分) (2020八下·泗辖月考) 运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是________.15. (1分) (2020七下·恩施月考) 如图①: ∥ ,图②: ∥ 图③: ∥ ,图④: ∥ …,则第n个图中的=________°(用含n的代数式表示)16. (3分) (2017七下·南陵竞赛) 图为手的示意图,在各个手指间标记字母 A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C → … 的方式)从 A 开始数连续的正整数 1,2,3,4,…,当数到时,对应的字母是________;当字母C第次出现时,恰好数到的数是________;当字母C第次出现时(为正整数),恰好数到的数是________(用含的代数式表示).三、解答题 (共8题;共87分)17. (10分) (2019八上·房山期中) 解方程:(1) 3(x-1)3=24;(2) -1= .18. (10分) (2019七下·长垣期末) 已知关于x、y的二元一次方程组 .(1)若,求k的值;(2)若,,求k的取值范围.19. (10分)(2017·润州模拟) 解方程(1)解方程: + =4(2)解不等式组,并把它们的解集在数轴上表示出来.20. (5分)如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D。
江苏省泰州中学附属初级中学七年级数学下学期期末考试
江苏省泰州中学附属初级中学2015-2016学年七年级数学下学期期末考试试题一、选择题(每小题3分,共18分) 1 . 12-等于( ▲ ) A .2 B .21 C .2- D .21- 2.下列计算中,结果正确的是( ▲ )A .532532x x x =+ B .632632x x x =•C . x x x 2223=÷ D .6322)2(x x =3.在下列各组条件中,不能说明△ABC ≌△DEF 的是( ▲ )A .AB=DE ,∠B=∠E ,∠C=∠FB .AC=DF , BC=EF ,∠A=∠DC .AB=DE ,∠A=∠D ,∠B=∠E D .AB=DE , BC=EF ,AC=DF4.正n 边形的每一个外角都不大于40°,则满足条件的多边形边数最少为( ▲ )A .七边形B .八边形C .九边形D .十边形5.工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合,过角尺顶点C 作射线OC .由作法,得△MOC≌△NOC 的依据是 ( ▲ ) A .AASB .SASC .ASAD .SSS6. 如图,正方形ABCD 和CEFG 的边长分别为m 、n ,那么∆AEG 的面积的值 (▲ ) A .与m 、n 的大小都有关 B .与m 、n 的大小都无关 C .只与m 的大小有关 D .只与n 的大小有关第5题 第6题 二.填空题(每题3分,共30分)7.已知某种植物花粉的直径为0.00032cm ,将数据0.00032用科学记数法表示为▲ . 8.若一个多边形的内角和等于720°,则这个多边形是 ▲ 边形.9.若a >0,且3,2==yxa a ,则=-yx a2 ▲ 10.若不等式ax-2>0的解集为x <-2,则关于y 的方程02=+ay 的解为 ▲ .A B C D G E F11.已知:234x ty t =+⎧⎨=-⎩,则用x 的代数式表示y 为 ▲ .12.计算()()12-+x a x 的结果中不含关于字母x 的一次项,则=a ▲ . 13.甲、乙、丙三种商品,若购买甲5件、乙6件、丙3件,共需315元钱,购甲3件、乙4件、丙1件共需205元钱,那么购甲、乙、丙三种商品各一件共需钱 ▲ 元.14.若不等式组1+240x ax >⎧⎨-⎩≤无解,则a 的取值范围是 ▲ .15.14410823与 的大小关系是 ▲ .16.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC、△ADF、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1﹣S 2= ▲ .第16题 三、解答题(本大题共10题,共102分)17.计算(每小题4分,共8分)(1)021(2013)()43π---+- (2)4(a +2)(a +1)-7(a +3)(a -3)18.因式分解(每小题4分,共8分)(1)-2x 2+4x-2 (2)(x 2+4)2 -16x 219.解方程(不等式)组(每小题4分,共8分)(1)1243231y x x y ++⎧=⎪⎨⎪-=⎩ ( 2 ) 9587422133x x x x +<+⎧⎪⎨+>-⎪⎩20.(本题8分)若关于y x 、的二元一次方程组⎩⎨⎧-=++-=+42232y x m y x 的解满足x-y >-3,求出满足条件的m 的所有非负整数解.21.(本题10分)如图,若AE 是△ABC 边上的高,∠EAC 的角平分线AD 交BC 于D ,∠ACB=40°,求∠ADE.DFBA22.(本题10分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB ,AF=AC ,判断 EC 与BF 的关系,并说明理由.23.(本题12分) (1)猜想:试猜想22b a +与ab 2的大小关系,并说明理由;(2)应用:已知()051≠=-x x x ,求221xx +的值; (3)拓展:代数式221xx +是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.24.(本题满分12分) 我市某校组织七年级部分学生和老师到溱湖风景区开展社会实践活动,租用的客车有每辆50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x 辆,还差5人才能坐满;(1)则该校参加此次活动的师生共 ▲ 人(用含x 的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.25.(本题满分12分)已知如图,四边形ABCD,BE 、DF 分别平分四边形的外角∠MBC 和∠NDC ,若∠BAD=α,∠BCD=β(1)如图1,若α+β=︒150,求∠MBC +∠NDC 的度数;A B MC F(2)如图1,若BE 与DF 相交于点G ,∠BGD=45°,请写出α、β所满足的等量关系式; (3) 如图2,若α=β,判断BE 、DF 的位置关系,并说明理由.图1 . 图226.(本题满分14分)已知正方形ABCD 中,AB=BC=CD=DA=4,∠A=∠B=∠C=∠D=90°.动点P 以每秒1个单位速度从点B 出发沿线段BC 方向运动,动点Q 同时以每秒4个单位速度从A 点出发沿正方形的边AD ﹣DC ﹣CB 方向顺时针作折线运动,当点P 与点Q 相遇时停止运动,设点P 的运动时间为t .(1)当运动时间为 ▲ 秒时,点P 与点Q 相遇; (2)当AP ∥CQ 时,求线段DQ 的长度;(3)用含t 的代数式表示以点Q 、P 、A 为顶点的三角形的面积S ,并指出相应t 的取值范围;(4)连接PA ,当以点Q 及正方形的某两个顶点组成的三角形和△PAB 全等时,求t 的值.图1 备用图1 备用图2G七年级数学期末考试参考答案一、1 .B 2.C 3.B 4.C 5.D 6.D 二、填空7.4102.3-⨯ 8.六 9..9210.2=y 11.314+-=x y 12.2113.5514.3≥a15.3108>214416.6三、解答题17.(1)4- (2)711232++-a a 18 .(1)-2(x-1)2(2)(x+2)2(x-2)219.(1)⎪⎩⎪⎨⎧-=-=373y x (2)-21<x <2 20.2,1,0=m 21.65°22 .平行且相等23.(1)ab b a 222≥+ (2)27 (3)最小值为2 24 .(1)530-x (2)145 (3)175 25.(1)150 (2)90=-αβ ° (3)平行26.(1)512 (2)54 (3)⎪⎪⎩⎪⎪⎨⎧≤+-=≤++-=≤=)5122(2410)21(822)10(82t t s t t t s t t s πππ(4)512,58,34,54注意:所有答案必须写在答题纸上。
泰州市数学七年级下学期期末数学试题题
泰州市数学七年级下学期期末数学试题题一、选择题1.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 32.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)3.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <d B .a <d <c <b C .b <a <d <c D .c <a <d <b4.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 25.下列计算错误的是( ) A .2a 3•3a =6a 4 B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 6.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是( )A .0B .1C .3D .7 7.如图,将△ABC 纸片沿DE 折叠,点A 的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A .40°B .60°C .80°D .140° 8.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .7 9..已知2x a y =⎧⎨=-⎩是关于x ,y 的方程3x ﹣ay =5的一个解,则a 的值为( ) A .1 B .2 C .3 D .410.下列方程组中,是二元一次方程组的为( )A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩二、填空题11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.12.积的乘方公式为:(ab)m=.(m是正整数).请写出这一公式的推理过程.13.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A的个位数字是__________.14.20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫⎪⎝=______.15.()7(y x-+________ 22)49y x=-.16.一个n边形的内角和为1080°,则n=________.17.关于,x y的方程组3x y mx my n-=⎧⎨-=⎩的解是11xy=⎧⎨=⎩,则n的值是______.18.计算:2m·3m=______.19.已知一个多边形的每一个外角都等于,则这个多边形的边数是.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)三、解答题21.先化简,再求值:(3x+2)(3x-2)-5x(x+1)-(x-1)2,其中x2-x-10=0.22.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.23.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x yx y+=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③.把方程①代入③得:2×3+y=5,∴y=﹣1①得x=4,所以,方程组的解为41 xy=⎧⎨=-⎩.请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组325 9419 x yx y-=⎧⎨-=⎩.(2)已知x,y满足方程组22223212472836x xy yx xy y⎧-+=⎨++=⎩,求x2+4y2﹣xy的值.24.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b+=?25.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=,2100×(12)100=;(2)通过上述验证,归纳得出:(a•b)n=;(abc)n=.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.26.解下列方程组(1)29 321 x yx y+=⎧⎨-=-⎩.(2)34332(1)11 x yx y⎧+=⎪⎨⎪--=⎩.27.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.28.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a2)·3a=(-2×3)×(a2·a)=-6a3故选:B.【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.D解析:D【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A.不是乘积的形式,错误;B.等号左边的式子不是多项式,不符合因式分解的定义,错误;C.不是乘积的形式,错误;D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;故选:D.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.解析:C【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c故选:C【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.4.C解析:C【分析】直接利用图形面积求法得出等式,进而得出答案.【详解】 梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2,故a 2-b 2=(a +b )(a -b ).故选:C .【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.5.C解析:C【分析】A .根据同底数幂乘法运算法则进行计算,底数不变指数相加,系数相乘.即可对A 进行判断B .根据幂的乘方运算法则对B 进行判断C .根据同类项的性质,判断是否是同类项,如果不是,不能进行相加减,据此对C 进行判断D .根据同底数幂除法运算法则对D 进行判断【详解】A .2a 3•3a =6a 4,故A 正确,不符合题意B .(﹣2y 3)2=4y 6,故B 正确,不符合题意C .3a 2+a ,不能合并同类项,无法计算,故C 错误,符合题意D .a 5÷a 3=a 2(a≠0),故D 正确,不符合题意【点睛】本题考查了同底数幂乘法和除法运算法则,底数不变指数相加减.幂的乘方运算法则,底数不变指数相乘.以及同类项合并的问题,如果不是同类项不能合并.6.A解析:A【分析】观察所给等式发现规律末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,进而可得算式:3+32+33+34+…+32020结果的末位数字.【详解】解:观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,发现规律:末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,所以2020÷4=505,而3+9+7+1=20,20×505=10100.所以算式:3+32+33+34+…+32020结果的末位数字是0.故选:A .【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律.7.C解析:C【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题.【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒,346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒,【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.8.C解析:C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x ,由三角形三条边的关系得4-2<x <4+2,∴2<x <6,∴第三边的长可能是4.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.9.A解析:A【解析】【分析】将x 和y 的值代入方程计算即可.【详解】将2x a y =⎧⎨=-⎩代入方程得:3(2)5a a -⋅-= 解得:1a =故选:A.【点睛】本题考查了已知二元一次方程的解求方程中未知数的值,理解题意是解题关键. 10.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意;【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题11.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.:ambm,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=ambm,理由:(ab)m=ab×ab×ab×ab×…×ab解析::a m b m,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=a m b m,理由:(ab)m=ab×ab×ab×ab×…×ab=aa…abb…b=a m b m故答案为a m b m.【点睛】本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.13.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A的个位数字是1,故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.14.【分析】根据同底数的幂的乘法运算的逆运算,先将分成,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】解:故答案为:.【点睛】本题考查幂的乘方和积的乘方,将不同底数 解析:5-12【分析】 根据同底数的幂的乘法运算的逆运算,先将2019512⎛⎫- ⎪⎝⎭分成2018551212⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ ,再根据积的乘方的逆运算,把指数相同的数相乘即可.【详解】 解:20192018512125⎛⎫-⨯ ⎪⎝⎭⎭⎛⎫ ⎪⎝ 20182018551212125⎛⎫⎛⎫⎛⎫=-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20182018512512512⎛⎫⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2018512512512⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭ ()20185112⎛⎫=-⨯- ⎪⎝⎭ 512=- 故答案为:512-. 【点睛】本题考查幂的乘方和积的乘方,将不同底数且不同指数的幂转化为底数相同或者指数相同的幂是解题关键.15.【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,解析:7y x --【分析】根据平方差公式进行解答.【详解】解:∵49y2-x2 =(-7y)2-x2,∴(-7x+y)(-7x-y)=49y2-x2.故答案为-7x-y.【点睛】本题考查了平方差公式,掌握平方差公式的特征是解题的关键.16.8【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】n-⋅︒.主要考查了多边形的内角和公式.多边形内角和公式:()218017.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得:,解得:,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x,y代入方程组,首先求得m,进而可以求得n.【详解】解:将11x y =⎧⎨=⎩代入方程组得:31=1m m n -⎧⎨-=⎩, 解得:21m n =⎧⎨=-⎩, 故n 的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.18.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m 2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键. 19.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可. 【详解】解:∵π0=1,2-1=12,1>12, ∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键. 三、解答题21.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.22.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.23.(1)32xy=⎧⎨=⎩;(2)15【分析】(1)把9x﹣4y=19变形为3x+2(3x﹣2y)=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x =3,把x =3代入3x ﹣2y =5得y =2,即方程组的解为32x y =⎧⎨=⎩; (2)原方程组变形为22223(4)2472(4)36x y xy x y xy ⎧+-=⎨++=⎩①② ①+②×2得,7(x 2+4y 2)=119,∴x 2+4y 2=17,把x 2+4y 2=17代入②得xy =2∴x 2+4y 2﹣xy =17﹣2=15答:x 2+4y 2﹣xy 的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.24.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】 (1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩, 解得3525x y ⎧=⎨=⎩. 答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=,整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180ab +=成立, ∴322153a b +=+=或28+24=52. 故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.25.(1)1, 1, (2)a n b n , a n b n c n ,(3)132-. 【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】 解:(1)(2×12)100=1,2100×(12)100=1; (2)(a•b )n =a n b n ,(abc )n =a n b n c n , (3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×132 =(﹣1)2015×132 =﹣1×132 =﹣132. 【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.26.(1)272x y =⎧⎪⎨=⎪⎩;(2)692x y =⎧⎪⎨=⎪⎩【分析】(1)根据加减消元法,即可求解;(2)先去分母,去括号,移项,合并同类项,再通过加减消元法,即可求解.【详解】(1)29321x y x y +=⎧⎨-=-⎩①②, +①②得:48x =.解得:2x =, 把2x =代入①得:229y +=,解得:72y =, ∴方程组的解为272x y =⎧⎪⎨=⎪⎩; (2)原方程可化为3436329x y x y +=⎧⎨-=⎩①②, ①-②得:627y =,解得:92y =, 把92y =代入②得:399x -=,解得:6x =, ∴方程组的解为692x y =⎧⎪⎨=⎪⎩. 【点睛】本题主要考查解二元一次方程组,掌握加减消元法,是解题的关键.27.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC =80°,由角平分线的定义得到∠ABE =12∠ABC =40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD =180°-∠ACB =140°,根据角平分线的定义得到∠CBE=12∠ABC =40°,∠ECD =12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE ⊥BC 时,②如图2,当CE ⊥AB 于F 时,③如图3,当CE ⊥AC 时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A =60°,∠ACB =40°,∴∠ABC =80°,∵BM 平分∠ABC ,∴∠ABE =12∠ABC =40°, ∵CE ∥AB ,∴∠BEC =∠ABE =40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.28.2x2-8x-3;-9.【解析】【分析】根据整式的乘法运算法则即可化简求值.【详解】解:原式=x2-4x+4+2(x2-2x-8)-(x2-9)=x2-4x+4+2x2-4x-16-x2+9=2x2-8x-3当x=1时,原式=2-8-3=-9【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.。
2015-2016年江苏省泰州市泰兴市黄桥东区域七年级(下)期末数学试卷(解析版)
2015-2016学年江苏省泰州市泰兴市黄桥东区域七年级(下)期末数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列计算错误的是()A.2m+3n=5mn B.a6÷a2=a4C.(a2)3=a6D.a•a2=a3 2.(2分)下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b3.(2分)若方程组的解满足x+y=0,则a的取值是()A.a=﹣1B.a=1C.a=0D.a不能确定4.(2分)不等式组中两个不等式的解集在数轴上可表示为()A.B.C.D.5.(2分)下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个6.(2分)△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF 的面积为()A.10B.8C.6D.4二、填空题(每小题3分,共24分)7.(3分)生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000003cm,这个数量用科学记数法可表示为3×10﹣n cm,则n=.8.(3分)一个凸多边形的内角和是其外角和的2倍,则这个多边形是边形.9.(3分)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=°.10.(3分)若a x=2,a y=3,则a3x﹣2y=.11.(3分)若a﹣b=﹣2,则(a2+b2)﹣ab=.12.(3分)如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为.13.(3分)甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了场.14.(3分)若多项式4x4+1加上一个含字母的单项式,就能变形为一个含x的多项式的平方,则这样的单项式为.三、解答题:(本题满分64分)15.(6分)计算、化简:(1)计算:(﹣2016)0+()﹣2+(﹣3)3;(2)化简:(2x﹣3y)2﹣(y+3x)(3x﹣y).16.(6分)因式分解:(1)2x2﹣4x+2;(2)a2(a﹣b)+(b﹣a).17.(6分)完成以下证明,并在括号内填写理由:已知:如图,∠EAB=∠CDF,CE∥BF.求证:AB∥CD.证明:∵CE∥BF,∴∠CDF=∠C,∵∠EAB=∠CDF,∴∠=∠,∴AB∥CD.18.(8分)解方程组或不等式组:(1);(2),并写出它的整数解.19.(7分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,连接BD.(1)利用三角板在图中画出△ABD中AB边上的高,垂足为H.(2)①画出将△ABD先向右平移2格,再向上平移2格得到的△A1B1D1;②平移后,求线段AB扫过的部分所组成的封闭图形的面积.20.(7分)第31届夏季奥林匹克运动会将于2016年8月5日﹣﹣21日在巴西的里约热内卢举行,小明在网上预订了开幕式和闭幕式两种门票共10张,其中开幕式门票每张700元,闭幕式门票每张550元.(1)若小明订票总共花费5800元,问小李预定了开幕式和闭幕式的门票各多少张?(2)若小明订票费用不到6100元,则开幕式门票最多有几张?21.(8分)已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.22.(8分)已知,关于x,y的方程组的解满足x<y<0.(1)求a的取值范围;(2)化简|a|﹣|a+3|.23.(8分)△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=40°,求∠BAC的度数.2015-2016学年江苏省泰州市泰兴市黄桥东区域七年级(下)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列计算错误的是()A.2m+3n=5mn B.a6÷a2=a4C.(a2)3=a6D.a•a2=a3【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【解答】解:A、2m+3n,无法计算,故此选项符合题意;B、a6÷a2=a4,正确,故此选项不符合题意;C、(a2)3=a6,正确,故此选项不符合题意;D、a•a2=a3,正确,故此选项不符合题意;故选:A.2.(2分)下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6xB.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b【考点】51:因式分解的意义.【解答】解:A、右边不是积的形式,故A选项错误;B、是多项式乘法,不是因式分解,故B选项错误;C、是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故C选项正确;D、不是把多项式化成整式积的形式,故D选项错误.故选:C.3.(2分)若方程组的解满足x+y=0,则a的取值是()A.a=﹣1B.a=1C.a=0D.a不能确定【考点】92:二元一次方程的解;97:二元一次方程组的解.【解答】解:方程组两方程相加得:4(x+y)=2+2a,将x+y=0代入得:2+2a=0,解得:a=﹣1.故选:A.4.(2分)不等式组中两个不等式的解集在数轴上可表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【解答】解:,由①得,x≥1,由②得,x>3,故不等式组的解集为:x>3.在数轴上表示为:.故选:D.5.(2分)下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个B.3个C.2个D.1个【考点】@8:四种命题及其关系.【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.6.(2分)△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF 的面积为()A.10B.8C.6D.4【考点】K3:三角形的面积.【解答】解∵AD是中线,∴S△ABD=S△ADC,S△BDF=S△FDC,∴S△ABD﹣S△BDF=S△ADC﹣S△FDC,即S△ABF=S△ACF,同理得:S△ABF=S△BFC,∴S△ABF=S△ACF=S△BFC,∴S△ABF=S△ABC=×24=8,故选:B.二、填空题(每小题3分,共24分)7.(3分)生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000003cm,这个数量用科学记数法可表示为3×10﹣n cm,则n=7.【考点】1J:科学记数法—表示较小的数.【解答】解:∵0.0000003=3×10﹣7=3×10﹣n;∴n=7,故答案为:7.8.(3分)一个凸多边形的内角和是其外角和的2倍,则这个多边形是6边形.【考点】L3:多边形内角与外角.【解答】解:设多边形边数为n.则360°×2=(n﹣2)•180°,解得n=6.故答案为:6.9.(3分)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=54°.【考点】JA:平行线的性质.【解答】解:∵∠ECD=36°,∠ACB=90°,∴∠ACD=90°,∴∠ACE=∠ACD﹣∠ECD=90°﹣36°=54°,∵CE∥AB,∴∠A=∠ACE=54°.故答案为:54°.10.(3分)若a x=2,a y=3,则a3x﹣2y=.【考点】47:幂的乘方与积的乘方;48:同底数幂的除法.【解答】解:a3x﹣2y=(a x)3÷(a y)2=8÷9=.故答案为:.11.(3分)若a﹣b=﹣2,则(a2+b2)﹣ab=2.【考点】55:提公因式法与公式法的综合运用.【解答】解:∵a﹣b=﹣2,∴原式=(a2+b2﹣2ab)=(a﹣b)2=2.故答案为:2.12.(3分)如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为28°.【考点】JA:平行线的性质.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故答案为:28°.13.(3分)甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了7场.【考点】C9:一元一次不等式的应用.【解答】解:设甲队胜了x场,则平了(10﹣x)场,由题意得,3x+(10﹣x)≥24,解得:x≥7,即甲队至少胜了7场.故答案为:7.14.(3分)若多项式4x4+1加上一个含字母的单项式,就能变形为一个含x的多项式的平方,则这样的单项式为±4x2,4x8.【考点】4E:完全平方式.【解答】解:∵多项式4x4+1加上一个单项式后能成为一个整式的完全平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是4次项,①4x4+4x8+1=(2x4+1)2,故此单项式是4x8.②∵4x4+1±4x2=(2x2±1)2,故此单项式是±4x2;故答案是:±4x2,4x8.三、解答题:(本题满分64分)15.(6分)计算、化简:(1)计算:(﹣2016)0+()﹣2+(﹣3)3;(2)化简:(2x﹣3y)2﹣(y+3x)(3x﹣y).【考点】4C:完全平方公式;4F:平方差公式;6E:零指数幂;6F:负整数指数幂.【解答】解:(1)(﹣2016)0+()﹣2+(﹣3)3;=1+4﹣27=﹣22;(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)=4x2﹣12xy+9y2﹣9x2+y2=﹣5x2﹣12xy+10y2.16.(6分)因式分解:(1)2x2﹣4x+2;(2)a2(a﹣b)+(b﹣a).【考点】55:提公因式法与公式法的综合运用.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2;(2)原式=a2(a﹣b)﹣(a﹣b)=(a﹣b)(a2﹣1)=(a﹣b)(a+1)(a﹣1).17.(6分)完成以下证明,并在括号内填写理由:已知:如图,∠EAB=∠CDF,CE∥BF.求证:AB∥CD.证明:∵CE∥BF已知,∴∠CDF=∠C两直线平行,内错角相等,∵∠EAB=∠CDF,∴∠C=∠EAB,∴AB∥CD同位角相等,两直线平行.【考点】JB:平行线的判定与性质.【解答】证明:∵CE∥BF,已知,∴∠CDF=∠C,两直线平行,内错角相等,∵∠EAB=∠CDF,∴∠C=∠EAB,∴AB∥CD,同位角相等,两直线平行.故答案为:已知,两直线平行,内错角相等,C,EAB,同位角相等,两直线平行.18.(8分)解方程组或不等式组:(1);(2),并写出它的整数解.【考点】98:解二元一次方程组;CB:解一元一次不等式组;CC:一元一次不等式组的整数解.【解答】解:(1)整理得:,①+②得:3x=7,解得:x=,把x=代入①得:+5y=0,解得:y=﹣,所以原方程组的解为:;(2)∵解不等式①得:x<3,解不等式②得:x≥1,∴不等式组的解集为1≤x<3,∴不等式组的整数解为1,2.19.(7分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,连接BD.(1)利用三角板在图中画出△ABD中AB边上的高,垂足为H.(2)①画出将△ABD先向右平移2格,再向上平移2格得到的△A1B1D1;②平移后,求线段AB扫过的部分所组成的封闭图形的面积.【考点】K2:三角形的角平分线、中线和高;Q4:作图﹣平移变换.【解答】(1)如图:线段DH即为所求.(2)①如图:△A1B1D1即为所求.②如图,线段AB扫过的部分所组成的封闭图形(阴影部分)的面积=2×4+×1×2=8+1=9.20.(7分)第31届夏季奥林匹克运动会将于2016年8月5日﹣﹣21日在巴西的里约热内卢举行,小明在网上预订了开幕式和闭幕式两种门票共10张,其中开幕式门票每张700元,闭幕式门票每张550元.(1)若小明订票总共花费5800元,问小李预定了开幕式和闭幕式的门票各多少张?(2)若小明订票费用不到6100元,则开幕式门票最多有几张?【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用.【解答】解:(1)设开幕式门票x张,闭幕式门票y张,由题意,解得答:开幕式门票2张,闭幕式门票8张;(2)设开幕式门票有x张,由题意700x+550(10﹣x)<6100,解得x<4,∵x是整数,∴x的中点整数为3,∴开幕式门票最多3张.21.(8分)已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【考点】IJ:角平分线的定义;J9:平行线的判定.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.22.(8分)已知,关于x,y的方程组的解满足x<y<0.(1)求a的取值范围;(2)化简|a|﹣|a+3|.【考点】97:二元一次方程组的解.【解答】解:(1)解得,,∵x<y<0,∴解得,a<﹣3,即a的取值范围是a<﹣3;(2)∵a<﹣3,∴a+3<0,∴|a|﹣|a+3|=﹣a+a+3=3.23.(8分)△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=40°,求∠BAC的度数.【考点】JB:平行线的判定与性质.【解答】解:(1)∠AOC=∠ODC,理由:∵三个内角的平分线交于点O,∴∠OAC+∠OCA=(∠BAC+∠BCA)=(180°﹣∠ABC),∵∠OBC=∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=90°+∠ABC=90°+∠OBC,∵OD⊥OB,∴∠BOD=90°,∴∠ODC=90°+∠OBD,∴∠AOC=∠ODC;(2)①∵BF平分∠ABE,∴∠EBF=∠ABE=(180°﹣∠ABC)=90°﹣∠DBO,∵∠ODB=90°﹣∠OBD,∴∠FBE=∠ODB,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=ABE=(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=ACB,∵∠F=∠FBE﹣∠BCF=(∠BAC+∠ACB)﹣∠ACB=BAC,∵∠F=40°,∴∠BAC=2∠F=80°.。
泰兴初一下期末数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -3/4B. -5/6C. 0D. 22. 下列各数中,无理数是()A. √4B. √9C. √25D. √163. 已知a > b,则下列不等式中错误的是()A. a + 3 > b + 3B. a - 2 < b - 2C. 2a > 2bD. 3a > 3b4. 一个等腰三角形的底边长为4cm,腰长为5cm,则这个三角形的周长是()A. 9cmB. 10cmC. 14cmD. 15cm5. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 6C. 7D. 86. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 平行四边形D. 梯形7. 下列各式中,正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)³ = a³ + 3a²b + 3ab² + b³D. (a - b)³ = a³ - 3a²b + 3ab² - b³8. 在平面直角坐标系中,点A(2,3)关于x轴的对称点是()A. A(2,-3)B. A(-2,3)C. A(-2,-3)D. A(2,-3)9. 下列方程中,无解的是()A. x + 3 = 0B. 2x - 4 = 0C. 3x + 2 = 0D. 5x - 5 = 010. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 等边三角形的内角都是直角C. 直角三角形的两条直角边长度相等D. 等腰梯形的两底平行二、填空题(每题3分,共30分)11. √16的平方根是______。
12. 如果a² = 9,那么a的值为______。
江苏省泰州市七年级下学期数学期末考试试卷
江苏省泰州市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各题中,给出的三条线段不能组成三角形的是().A . 4 cm,6 cm,10 cm,B . 5cm,3cm,4cm;C . 3cm,8cm,10cm;D . 5cm,9cm,5cm。
2. (2分)(2017·青浦模拟) 已知a>b,下列关系式中一定正确的是()A . a2<b2B . 2a<2bC . a+2<b+2D . ﹣a<﹣b3. (2分) (2019七下·瑶海期末) 关于x,y的方程组的解满足x>y,则m的取值范围是()A . m<2B . m>2C . m<1D . m>14. (2分)下列等式从左边到右边的变形属于分解因式的是()A . (ab+1)(ab﹣1)=a²b2﹣1B . x2﹣4x+4=x(x﹣4)+4C . x2﹣5x+6=(x﹣2)(x﹣3)D . (x﹣y)2+(y﹣x)=(x﹣y)(x﹣y+1)5. (2分) a2-(b-c)2有一个因式是a+b-c,则它的另一个因式是()A . a-b-cB . a+b+cC . a+b-cD . a-b+c6. (2分) (2019八上·椒江期末) 用直角三角板,作△ 的高,下列作法正确的是A .B .C .D .7. (2分)方程组的解是()A .B .C .D .8. (2分)(2019·怀化模拟) 下列运算不正确的是()A . (m2)3=m6B . a10÷a9=aC . x3•x5=x8D . a4+a3=a79. (2分)(2020·哈尔滨模拟) 如图,将△ABC绕点A逆时针旋转到△AED,其中点B与点E是对应点,点C与点D是对应点,且DC∥AB,若∠CAB=65°,则∠CAE的度数为()A . 10°B . 15°C . 20°D . 25°10. (2分)(2017·株洲) 如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A . 145°B . 150°C . 155°D . 160°二、填空题 (共10题;共10分)11. (1分)分解因式:12x2﹣3y2=________ .12. (1分)如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=________度.13. (1分) (2016七下·大冶期末) 如图,三角形ABC的三条边的长都是2个单位,现将三角形ABC沿射线BC方向向右平移1个单位后,得到三角形DEF,则四边形ABFD的周长为________个单位.14. (1分) (2017七下·邗江期中) 已知则x=________.15. (1分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记分.小明参加本次竞赛得分要超过100分,他至少要答对________道题.16. (1分) (2019八上·潘集月考) (2x-1)(-3x+2)=________.17. (1分)已知:a﹣2的值是非负数,则a的取值范围为________18. (1分)如图,在直角△ABC中,∠C=90°,AC=12cm,BC=5cm,AB=13cm,则点C到边AB距离等于________ cm.19. (1分) (2017七下·如皋期中) 如图,在长为10m,宽为8m的长方形空地上,沿平行于长方形边的方向分割出三个形状、大小完全一样的小长方形花圃(阴影部分).则其中一个小长方形的面积为________m2 .20. (1分)(2018·镇江模拟) 分解因式: ________.三、解答题 (共6题;共45分)21. (5分)(2017·黔东南模拟) 解不等式组:,并把解集在数轴上表示出来.22. (5分)已知关于x的多项式3x2+x+m因式分解后有一个因式是3x-2,求m的值.23. (15分) (2020八下·巴中月考) 如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B(-4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5若存在请直接写出该点的坐标.24. (5分) (2018八上·兴义期末) 如图,在△ABC中,CD AB于D,CE是 ACB的平分线, A=20 , B=60 ,求 BCD和 ECD的度数.25. (5分)如图,在△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.26. (10分) (2017七下·临沧期末) 把文字翻译成数学符号,构建方程组模型是解此类题的关键;方案型问题就是要构建双边不等式,有几个整数解就有几种方案;某工程队现有大量的沙石需要运输.工程队下属车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共45分)21-1、答案:略22-1、答案:略23-1、答案:略23-2、答案:略23-3、24-1、答案:略25-1、答案:略26-1、答案:略26-2、答案:略。
泰州市七年级下学期期末数学试题题及答案
泰州市七年级下学期期末数学试题题及答案一、选择题1.如图1的8张长为a,宽为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.b=5a B.b=4a C.b=3a D.b=a2.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为()A.65°B.70°C.75°D.80°3.x2•x3=()A.x5B.x6C.x8D.x94.不等式3+2x>x+1的解集在数轴上表示正确的是()A.B.C.D.5.点M位于平面直角坐标系第四象限,且到x轴的距离是5,到y轴的距离是2,则点M 的坐标是()A.(2,﹣5)B.(﹣2,5)C.(5,﹣2)D.(﹣5,2)6.如图,在△ABC 中,CE⊥AB 于 E,DF⊥AB 于 F,AC∥ED,CE 是∠ACB 的平分线,则图中与∠FDB 相等的角(不包含∠FDB)的个数为()A.3 B.4 C.5 D.6 7.下列运算中,正确的是()A.a8÷a2=a4B.(﹣m)2•(﹣m3)=﹣m5C.x3+x3=x6D.(a3)3=a68.将一副三角板如图放置,作CF//AB,则∠EFC的度数是()A.90°B.100°C.105°D.110°9.下列给出的线段长度不能与4cm,3cm能构成三角形的是()A.4cm B.3cm C.2cm D.1cm 10.下列方程组中,是二元一次方程组的为()A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩二、填空题11.34xy=⎧⎨=-⎩是方程3x+ay=1的一个解,则a的值是__________.12.若x+3y-4=0,则2x•8y=_________.13.若关于x、的方程()2233b aax b y-+++=是二元一次方程,则b a=_______ 14.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A的个位数字是__________.15.已知30m-=,7m n+=,则2m mn+=___________.16.因式分解:224x x-=_________.17.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为__________2mm.18.如图,//PQ MN ,A 、B 分别为直线MN 、PQ 上两点,且45BAN ∠=︒,若射线AM 绕点顺时针旋转至AN 后立即回转,射线BQ 绕点B 逆时针旋转至BP 后立即回转,两射线分别绕点A 、点B 不停地旋转,若射线AM 转动的速度是a ︒/秒,射线BQ 转动的速度是b ︒/秒,且a 、b满足()2510a b -+-=.若射线AM 绕点A 顺时针先转动18秒,射线BQ 才开始绕点B 逆时针旋转,在射线BQ 到达BA 之前,问射线AM 再转动_______秒时,射线AM 与射线BQ 互相平行.19.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 20.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.三、解答题21.因式分解:(1)249x - (2) 22344ab a b b --22.解不等式(组)(1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来. (2)解不等式835113x x x x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解. 23.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD 和BF ,若这两个正方形的边长a 、b 如图标注,且满足a+b =10,ab =20.请求出阴影部分的面积.(4)图4中给出了边长分别为a 、b 的小正方形纸片和两边长分别为a 、b 的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a 2+5ab+2b 2的长方形,并仿照图1、图2画出拼法并标注a 、b ;②研究①拼图发现,可以分解因式2a 2+5ab+2b 2= .24.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.25.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.26.计算(1)1012(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-.27.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.(1)画出平移后的ΔA B C ''';(2)连接BB '、CC ',那么线段BB '与CC '的关系是_________;(3)四边形BCC B ''的面积为_______.28.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b 225315()BC AB a BC a AB a BC AB b BC AB b22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b ,5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA ,CD 交于点E .∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.3.A解析:A【分析】根据同底数幂乘法,底数不变指数相加,即可.【详解】x2•x3=x2+3=x5,故选A.【点睛】该题考查了同底数幂乘法,熟记同底数幂乘法法则:底数不变,指数相加.4.A解析:A【分析】先解不等式求出不等式的解集,然后根据不等式的解集在数轴上的表示方法判断即可.【详解】解:移项,得2x-x>1-3,合并同类项,得x>﹣2,不等式的解集在数轴上表示为:.故选:A.【点睛】本题考查了一元一次不等式的解法和不等式的解集在数轴上的表示,属于基础题型,熟练掌握一元一次不等式的解法是关键.5.A解析:A【分析】先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).故选:A.【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.6.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.7.B解析:B【分析】根据同类项的定义及合并同类相法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,分析判断后利用排除法求解.【详解】解:A、a8÷a2=a4不正确;B、(-m)2·(-m3)=-m5正确;C、x3+x3=x6合并得2x3,故本选项错误;D、(a3)3=a9,不正确.故选B.【点睛】本题主要考查了合并同类项及同底数幂的乘法、除法,熟练掌握运算性质和法则是解题的8.C解析:C【分析】根据等腰直角三角形求出∠BAC ,根据平行线求出∠ACF ,根据三角形内角和定理求出即可.【详解】解:∵△ACB 是等腰直角三角形,∴∠BAC =45°,∵CF //AB ,∴∠ACF =∠BAC =45°,∵∠E =30°,∴∠EFC =180°﹣∠E ﹣∠ACF =105°,故选:C .【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.9.D解析:D【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+,解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形,故选:D .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.10.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意;故选:D .考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.二、填空题11.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值. 12.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.13.1【解析】根据题意得:,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.解析:1【解析】根据题意得:2121{30baab-=+=≠+≠,解得:b=3或−3(舍去),a=−1,则ab=−1.故答案是:−1.14.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A 的个位数字是1, 故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.15.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21【分析】由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 16.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.解析:2(2)x x -【分析】直接提取公因式即可.【详解】2242(2)x x x x -=-.故答案为:2(2)x x -.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.17.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩ ∴小长方形的面积为:22515375xy mm 【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.18.15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM 的位置,∠MAM=18°×5=90°,然后分情况讨论即可.【详解】∵,∴a=5,b=1解析:15或22.5【分析】先由题意得出a ,b 的值,再推出射线AM 绕点A 顺时针先转动18秒后,AM 转动至AM '的位置,∠MAM '=18°×5=90°,然后分情况讨论即可.【详解】 ∵()2510a b -+-=,∴a=5,b=1,设射线AM再转动t秒时,射线AM、射线BQ互相平行,如图,射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18°×5=90°,分两种情况:①当9<t<18时,如图,∠QBQ'=t°,∠M'AM"=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=5t-45°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=5t-45°,解得t=15;②当18<t<27时,如图∠QBQ'=t°,∠NAM"=5t°-90°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°-t°,∠BAM"=45°-(5t°-90°)=135°-5t°,当∠ABQ'=∠BAM"时,BQ'//AM",此时,45°-t°=135°-5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM射线BQ互相平行.故答案为:15或22.5【点睛】本题考查了非负数的性质,平行线的判定,完全平方公式,掌握知识点是解题关键.19.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把21x y =⎧⎨=⎩代入方程得:4﹣1+k =0, 解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.20.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.三、解答题21.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.22.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.【详解】解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)2222()222a b c a b c ab bc ac ++=+++++;(2)45;(3)20;(4)①见解析,②(2)(2)a b a b ++.【分析】(1)根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积;另一种是直接利用正方形的面积公式计算,由此即可得出答案; (2)利用(1)中的等式直接代入即可求得答案;(3)根据阴影部分的面积等于两个正方形的面积之和减去两个直角三角形的面积即可得; (4)①依照前面的拼图方法,画出图形即可;②参照题(1)的方法,根据面积的不同求解方法即可得出答案.【详解】(1)由题意得:2222()222a b c a b c ab bc ac ++=+++++故答案为:2222()222a b c a b c ab bc ac ++=+++++;(2)11,38a b c ab bc ac ++=++= ∴2222()(222)a b c a b c ab bc ac ++++=-++2)2(()a b c ab ac bc -+=+++211238=-⨯45=;(3)四边形ABCD 、四边形ECGF 为正方形,且边长分别为a 、b90A G ∴∠=∠=︒,AB AD BC a ===,FG CG b ==,BG BC CG a b =+=+ ∵10,20a b ab +==∴ABCD ECGF ABD BFG S S S S S =+--阴影221122AB CG AB AD FG BG =+-⋅-⋅ 2211()22a b a a b a b =+-⋅-⋅+ 22111222a b ab =+-213()22a b ab =+- 213102022=⨯-⨯ 20=;(4)①根据题意,作出图形如下:②根据面积的不同求解方法得:22(2522)(2)a ab b a b a b ++=++故答案为:(2)(2)a b a b ++.【点睛】本题考查了因式分解的几何应用、完全平方公式的几何应用,掌握因式分解的相关知识是解题关键. 24.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299 ab⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.25.73x+;-11【分析】根据整式的运算法则即可求出答案.【详解】解:22222511x x x x x222445521x x x x x73x当2x=-时,原式14311.【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.26.(1)2-;(2)103x【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.【详解】解:(1)原式=213=2---;(2)原式12252481010122101010221=24443xx x x x x x x xx x⨯+-⎛⎫⋅+⋅-=-=-=-=⎪⎝⎭.【点睛】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.27.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A、C平移后的对应点A'、C'即可画出平移后的△A B C''';(2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C'''即为所求;(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.28.(1)x(x-y)2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x(x2-2xy+y2)=x(x-y)2;(2)原式=(3x)2-2×(3x)(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.。
泰州市姜堰区2015-2016学年七年级下期末考试数学试题含答案
(2)运用网格画出 AB 边上的高 CD 所在的直线,标出垂足 D ;
(3)线段 BB 与 CC 的关系是
;
(4)如果 ABC 是按照先向上 4 格,再向右 5 格的方式平移到 A ,那么线段 AC 在
运动过程中扫过的面积是
.
25.(本题 12 分)光明小区房屋外墙美化工程工地有大量货物需要运输,某车队有载重量 为 8 吨和 10 吨的卡车共 15 辆,所有车辆运输一次能运输 128 吨货物. (1)求该车队载重量为 8 吨、10 吨的卡车各有多少辆? (2)随着工程的扩大,车队需要一次运输货物 170 吨以上,为了完成任务,车队准备增 购这两种卡车共 5 辆(两种车都购买),请写出所有可能的购车方案.
▲
.
七年级数学试卷 第 1 页 共 5 页
9.已知 am =2, an =3,则 am2n
▲
.
10.五边形的内角和比它的外角和多
▲
度.
11.已知 a+b=3,ab=1,则 a2+b2=
▲
.
12.若三角形三条边长分别是1, a , 4 (其中 a 为整数),则 a 的取值为 ▲
.
13.命题“对顶角相等”的逆命题是
(1) a a5 2a2 3
(2) 1 2 3 2 30
2
18.(本题 8 分)先化简,再求值:
2a b2a b a4a 3b其中 a 1, b 2
19.(本题 10 分)因式分解:
(1) a 2b abc
(2) m4 2m2 1
20.(本题 10 分)解方程组:
七年级数学试卷 第 2 页 共 5 页
x y 2 (1) x 2 y 4
2016-2017学年江苏省泰兴市黄桥东区域七年级下学期期中联考数学试卷(带解析)
绝密★启用前2016-2017学年江苏省泰兴市黄桥东区域七年级下学期期中联考数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:81分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、如图,已知四边形ABCD 中,AD ∥BC ,∠A =∠BCD =∠ABD ,DE 平分∠ADB ,下列说法:①AB ∥CD ;②ED ⊥CD ;③S △EDF =S △BCF ④∠CDF =∠CF D .其中正确的说法有( )A. 1个B. 2个C. 3个D. 4个2、我市为了创建全国文明城市,经统一规划,将一正方形草坪的南北方向增加2m ,东西方向缩短2m ,则改造后的长方形草坪面积与原来正方形草坪面积相比 ( ) A .减少4m 2 B .增加4m 2 C .保持不变 D .无法确定3、如果一个三角形的两条边长分别为2和6,那么它的第三边长可能是( )A .2B .4C .6D .84、下列各计算中,正确的是( ) A .B .C .D .5、已知是二元一次方程5x +3y =1的一组解,则m 的值是( )A .3B .C .D .二、选择题(题型注释)6、如图,分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是 ( )A .B .C .D .第II卷(非选择题)三、填空题(题型注释)7、如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为_________°.8、一个大正方形和四个边长相等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是_______________________.(用a、b的代数式表示).9、如图,△ABC中,∠B=58°,AB∥CD, ∠ADC=∠DAC,∠ACB的平分线交DA的延长线于点E,则∠E的度数为____________________°.10、如图,三角板的直角顶点在直线a 上,已知∠1=25°,则∠2的度数为_________________°.11、已知,则(1)=_______________;(2)= _________.12、三角形的线段中能将一个三角形的面积分成相等两部分的是_________________.13、一个正多边形,它的每一个外角都等于45°,则该正多边形为正__________________边形.14、已知关于x 、y 的方程3x m−3 + 4y n +2=11是二元一次方程,则m + n 的值为________________.15、计算:若2m =3,2n =4,则等于__________________.16、据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000007克,用科学记数法表示此数正确的是____________________.四、解答题(题型注释)17、如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格. (1)请在图中画出平移后的△A ´B ´C ´, (2)再在图中画出△ABC 的高CD ,(3)在图中能使的格点P 的个数有 个(点P 异于A ) .18、直线MN 与直线PQ 垂直相交于O ,点A 在射线OP 上运动,点B 在射线OM 上运动, 如图1,已知AC 、BC 分别是∠BAP 和∠ABM 角的平分线,(1)点A 、B 在运动的过程中,∠ACB 的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB 的大小.(2)如图2,将△ABC 沿直线AB 折叠,若点C 落在直线PQ 上,则∠ABO =________, 如图3,将△ABC 沿直线AB 折叠,若点C 落在直线MN 上,则∠ABO =________ (3)如图4,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E 、F ,则∠EAF = ;在△AEF 中,如果有一个角是另一个角的倍,求∠ABO 的度数.19、如图,有足够多的边长为a 的小正方形(A 类)、长为a 宽为b 的长方形(B 类)以及边长为b 的大正方形(C 类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使它的边长分别为(2a +b )、(a +2b ),不画图形,试通过计算说明需要C 类卡片多少张;(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使它的面积等于a 2+5ab +4b 2,画出这个长方形,并根据图形对多项式a 2+5ab +4b 2进行因式分解;(3) 如图③,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个矩形的两边长(x >y ),观察图案并判断,将正确关系式的序号填写在横线上______ _____(填写序号)①.xy =②.x +y =m ③.x 2-y 2=m ·n ④.x 2+y 2 =20、已知:如图,△ABC 中,∠BAD =∠EBC ,AD 交BE 于F . (1)试说明 : ∠ABC =∠BFD ;(2)若∠ABC =35°,EG ∥AD ,EH ⊥BE ,求∠HEG 的度数.21、如图,AD ∥BC ,∠EAD=∠C ,∠FEC=∠BAE ,∠EFC=50°. (1)求证:AE ∥CD ;(2)求∠B 的度数.22、如图,AE ∥BD ,∠CBD =56°,∠AEF =125°,求∠C 的度数.23、(1)有一道题:“化简求值:,其中”.小凡在解题时把“”抄成了“”,但计算的结果与正确答案一致,请你通过计算加以说明;(2)已知2x +5y -3=0,求4x -1·32y 的值.24、解方程组:⑴;⑵25、因式分解: (1);(2);(3)26、计算:(1) ;(2);(3)参考答案1、C2、A3、C4、D5、B6、D7、180°.8、ab9、2910、6511、 3 712、中线13、814、315、16、17、见解析;4个.18、(1)∠AEB的大小不会发生变化,∠AEB=135°;(2)30°,60°;(3)90°,60°或72°.19、(1)2;(2)画图得;(3)①②③④20、(1)证明见解析;(2)55°21、(1)证明见解析;(2)50°22、69°23、(1)答案见解析;(2)224、(1)2)25、(1) (2) (3)26、(1)-10 (2)3(3)【解析】1、试题分析:∵AD∥BC,∴∠A+∠ABC=180°,∠ADC+∠BCD=180°,∵∠A=∠BCD,∴∠ABC=∠ADC,∵∠A=∠BCD,∴四边形ABCD是平行四边形,∴AB∥CD,∵∠A=∠ABD,DE平分∠ADB,∴DE⊥AB,∴DE⊥CD,∵AB∥CD,∴△BED的边BE上的高和△EBC的边BE上的高相等,∴由三角形面积公式得:S△BED=S△EBC,都减去△EFB的面积得:S△EDF=S△BCF,∴①②③都正确,如果∠DEC=∠BEC=45°根据2的结论,△DCE就是等腰直角三角形,就应该有DE =" DC" = AB,而DE和AB显然不相等,所以④是错误的点睛:本题考查了平行四边形的性质和判定,平行线性质,等腰三角形的性质,三角形的面积的应用,解决本题的关键就是通过已知条件推出AB∥CD.在说明两个三角形面积相等的时候,我们可以证明两个大三角形的面积相等然后再减去同一个小三角形,从而得出所求的面积相等;同时我们也可以根据同底等高或等底同高来进行说明.2、试题分析:设原来正方形的边长为xm,则改造后的长方形的长为(x+2)m,宽为(x-2)m,则(x+2)(x-2)-=-4,即面积减少了4.3、试题分析:三角形的三边必须满足两边之和大于第三边,两边之差小于第三边,则第三边的长度的范围为:.4、试题分析:本题主要考查的就是同底数幂的计算法则,A、不是同类项,无法进行合并计算;B、同底数幂乘法,底数不变,指数相加,原式=;C、同底数幂的除法,底数不变,指数相减,原式=;D、幂的乘方法则,底数不变,指数相乘,原式=.点睛:本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:等等.5、试题分析:将x=2,y=m代入方程可得:5×2+3m=1,解得:m=-3.6、试题解析:A、可以由一个“基本图案”旋转得到,不可以由一个“基本图案”平移得到,故本选项错误;B、是轴对称图形,不是基本图案的组合图形,故本选项错误C、不可以由一个“基本图案”平移得到,故把本选项错误;D、可以由一个“基本图案”平移得到,故把本选项正确;故选D.7、试题分析:根据折叠图形的性质和三角形内角和定理可得:∠DOE+∠EOF+∠HOG=∠A+∠C+∠B=180°,则∠1+∠2=360°-180°=180°.考点:三角形内角和8、试题解析:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.考点:平方差公式的几何背景.9、试题分析:设∠ACD=x,则根据等腰三角形的性质可得:∠ADC=∠DAC=90°-x,根据平行线的性质可得:∠EAB=90°-x,∠BAC=x,根据△ABC的内角和定理可得:∠ACB=122-x,则根据角平分线的性质可得:∠ACE=61-x,则∠EAC+∠ACE=90-x+x+61-x=151°,则根据△ACE的内角和定理可得:∠E=180°-151°=29°.点睛:本题主要考查的就是等腰三角形的性质、三角形内角和定理以及角平分线的性质.解决这个问题的关键就是将△EAC中的三个内角与∠ACD联系在一起,然后根据三角形内角和定理进行求解得出答案.解决这个问题还需要注意平行线的性质的应用,将未知的角通过平行线和已知的角联系在一起.10、试题分析:根据题意可得:∠1+∠3=90°,则∠3=90°-25°=65°,根据两直线平行,同位角相等可得:∠2=∠3=65°.11、试题分析:(1)、根据提取公因式进行因式分解,然后进行计算,原式=xy(x+y)=1×3=3;(2)、根据完全平方公式进行化简计算,原式=-2xy=9-2=7.12、试题分析:三角形的中线可以将三角形的面积分成相等的两部分.13、试题分析:正多边形的每一个外角的度数=,则根据题意可得:=45,解得:n=8,即这个正多边形为正八边形.14、试题分析:二元一次方程是指含有2个未知数,且未知数的次数是1次的整式方程,根据定义可得:m-3=1,n+2=1,解得:m=4,n=-1,则m+n=4+(-1)=3.点睛:本题主要考查的就是二元一次方程的定义.在解答有关方程的定义的题目时,一定要特别注意未知数前面的系数含有参数时,还需要考虑未知数的系数不为零.在解答这种类型的题目时,同学们还需要注意一点就是我们首先需要将方程进行化简,然后根据化简后的方程来进行判断,得出答案.15、试题分析:同底数幂的除法,底数不变,指数相减,原式=16、试题分析:科学计数法是指a×,且,小数点向右移动几位,则n的相反数就是几.17、试题分析:首先分别找出点A、B、C三点经过平移后的对应点,然后顺次进行连接得到平移后的三角形;根据高线的做法作出三角形的高线;根据面积相等的法则得出点P的个数.试题解析:(1)(2)如图所示:△A′B′C′就是所求的三角形,线段CD就是所求的线段.(3)4个考点:图象的平移、三角形高线的做法.18、试题分析:(1)、根据角平分线的性质得出角度,然后根据三角形的内角和定理得出答案;(2)、根据角度之间的关系就可以分别进行计算,得出答案;(3)、根据角平分线的性质得出∠E=∠ABO和∠EAF=90°,然后根据直角三角形中角的关系求出∠E的度数,从而得出∠ABO的度数.试题解析:(1)、∵AC、BC分别是∠BAP和∠ABM角的平分线∴∠CAB= (180°-∠BAO),∠CBA= (180°-∠ABO)∴∠CAB+∠CBA= (180°-∠BAO +180°-∠ABO)= (360°-90°)=135°∴∠ACB=180°-135°=45°,即∠ACB的大小不会改变,度数为45°.(2)、30°,60°(3)、∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO= ∠BAO,∠EOQ=∠BOQ, ∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线, ∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的倍,故有:①∠EAF=∠E,,∠E=60°,∠ABO=120°;②∠EAF=∠F,∠E=30°,∠ABO=60°;③∠F=∠E,∠E=36°,∠ABO=72°;④∠E=∠F,∠E=54°,∠ABO=108°.∴∠ABO为60°或72°.点睛:本题主要考查的就是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.同学们在解答这种问题的时候,一定要注意外角与内角之间的联系,不能只关注某一部分.在需要分类讨论的时候一定要注意分类讨论的思想.19、试题分析:(1)、根据C类图形的面积为,然后根据多项式乘法公式得出C类图形的张数;(2)、根据等积法得出因式分解的结果;(3)、根据等积法得出相等的式子.试题解析:(1)∵∴需要C类卡片2张;(2)a2+5ab+4b2=(a+b) (a+4b)(3)①②③④20、试题分析:(1)、根据三角形外角的性质得出以及∠ABC=∠ABF+∠FBC,结合已知条件得出答案;(2)、根据题意得出,根据平行线的性质得出,最后根据垂直得出角的度数.试题解析:(1)、∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC ∵∠BAD=∠FBC ∴∠ABC=∠BFD(2)、由上题可知:∠ABC="∠BFD=35°" ∵EG∥AD ∴∠BEG=∠BFD=35°∵EH⊥BE∴∠BEH=90°∴∠HEG=∠BEH-∠BEG=55°21、试题分析:(1)、根据AD和BC平行得出∠EAD=∠AEB,根据已知条件∠AEB=∠C,从而根据同位角相等,两直线平行得出答案;(2)、根据△ABE和△EFC的内角和定理得出∠B和∠EFC相等,从而得出答案.试题解析:(1)∵AD∥BC,∴∠EAD=∠AEB ∵∠EAD=∠C∴∠AEB=∠C∴AE∥CD(2)∵∠B=180°-∠AEB-∠BAE ∠EFC=180°-∠C-∠FEC又∵∠AEB=∠C,∠FEC=∠BAE ∴∠B=∠EFC=50°22、试题分析:首先根据两直线平行同位角相等得出∠A的度数,然后根据邻补角的性质得出∠AEC的度数,最后根据三角形的内角和定理得出∠C的度数.试题解析:∵AE∥BD ∴∠A=∠CBD=56°∵∠AEF=125°∴∠AEC=55°∴∠C=180°-56°-55°=69°23、试题分析:(1)、首先根据多项式的乘法计算法则和完全平方公式将括号去掉,然后进行合并同类项得出化简后的结果,然后进行判断;(2)、首先化成同底数,然后根据同底数幂的乘法计算法则进行计算得出答案.试题解析:(1)原式=或时原式=(2)因为2x+5y-3=0所以2x+5y-2=1所以24、试题分析:在利用加减法消元法解二元一次方程组时,当一个未知数的系数相同时,我们可以利用减法进行消元;当一个未知数的系数互为相反数时,我们可以利用加法进行消元.试题解析:(1)①×2-②,得x=-5将x=-5代入①,得y=-10 ∴这个方程组的解是(2)②-①,得2x=10 x=5把x=5代入①,得y=2 ∴这个方程组的解是25、试题分析:(1)、提取公因式x进行因式分解即可得出答案;(2)、首先提取公因式xy,然后利用平方差公式进行因式分解得出答案;(3)、首先利用平方差公式,然后再利用利用完全平方公式进行因式分解.试题解析:(1) 原式=(2) 原式=(3)原式=26、试题分析:(1)、根据立方、0次幂和负指数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据幂的乘方法则和同底数幂的乘法得出各式的值,然后进行求和得出答案;(3)、根据完全平方公式和平方差公式将多项式进行展开,然后进行合并同类项计算得出答案.试题解析:(1)原式=(2)(3)==。
江苏省泰兴市2016-2017学年七年级下学期期末考试数学试卷
绝密★启用前江苏省泰兴市2016-2017学年七年级下学期期末考试数学试卷试卷副标题考试范围:xxx ;考试时间:78分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、在四边形ABCD 中,如果∠A +∠B +∠C=260°,那么∠D 的度数为( )A .120°B .110°C .100°D .90°【答案】C【解析】∵在四边形ABCD 中,∠A+∠B+∠C+∠D=360°,且∠A+∠B+∠C=260°, ∴∠D=100°, 故选C试卷第2页,共17页2、如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点A ,点C 分别在直线a ,b 上,且a ∥b .若∠1=60°,则∠2的度数为( )A .75°B .105°C .135°D .155°【答案】B【解析】∵在Rt △ABC 中,∠BAC=90°,AB=AC , ∴∠B=∠ACB=45°,∴∠3=180°−60°−45°=75°, ∵a ∥b ,∴∠2=180°−∠3=105°, 故选B.3、能说明“对于任何实数a ,”是假命题的一个反例可以是 ( )A .B .C .D .【答案】A【解析】对于|a|>-a ,当-a <0时,不等式成立,当-a≥0时,不等式不成立,则只要a 为非正数,不等式不成立, 观察可选项可得a=<0,符合反例.故选A.4、如图,AD 是△ABC 的中线,DE 是△ADC 的高线,AB =3,AC =5,DE =2,点D 到AB 的距离是( )A .2B .C .D .【答案】D【解析】∵AC=5,DE=2, ∴△ADC 的面积为×5×2=5, ∵AD 是△ABC 的中线, ∴△ABD 的面积为5,∴点D 到AB 的距离是2×5÷3=. 故选A.点睛:此题考查三角形的面积问题,关键是根据三角形的面积得出△ADC 的面积是5三角形的面积等于底边长与高线成绩的一半,三角形的中线将三角形的面积分成相等的两部分.二、选择题(题型注释)5、下列图形中,由AB ∥CD ,能使∠1=∠2成立的是()A .B .C .D .【答案】C试卷第4页,共17页【解析】故选B.6、有一根40cm 的金属棒,欲将其截成x 根7cm 的小段和y 根9cm 的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( ) A .B .C .D .【答案】B【解析】试题分析:根据金属棒的长度是40mm ,则可以得到7x+9y≤40,化简得x≤,根据题意知40﹣9y≥0,且y 是正整数,因此可以得到y 的值可以是:1或2或3或4. 当y=1时,x≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3mm ; 当y=2时,x≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1mm ; 当y=3时,x≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6mm ; 当y=4时,x≤,则x=0(舍去). 则最小的是:x=3,y=2. 故选B .考点:一次函数的应用第II 卷(非选择题)三、填空题(题型注释)7、直接写出计算结果:=_____;______.【答案】-3【解析】(1)(2xy )•=(2xy )•=(2×9))•(x•)•(y•y 6)=;(2)()0−()−2=1-4=-3. 故答案为: (1). (2). -3 8、若把代数式化成的形式,其中m ,k 为常数,则=_____.【答案】-7 【解析】=(x−2)2−9,所以m=2,k=−9, 所以m+k=2−9=−7. 故答案是:−7.9、如图,正方形ABCD 是由两个小正方形和两个小长方形组成的,根据图形写出一个正确的等式:_________.【答案】【解析】由图可得, 正方形ABCD 的面积=,正方形ABCD 的面积=,试卷第6页,共17页∴.故答案为:.10、如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.【答案】180° 【解析】∵AB ∥CD, ∴∠1=∠EFD, ∵∠2+∠EFC=∠3, ∠EFD=180°-∠EFC, ∴∠1+∠3—∠2=180° 11、已知,且,那么的值为________.【答案】.【解析】试题解析:∵已知2a+2b+ab=①,a+b+3ab=②,∴②×2得:2a+2b+6ab=-1③, 则③-①得:5ab=-1-,解得ab=-, 把ab 的值代入②式得:a+b=+1=,∴a+b+ab=-=. 考点:解二元一次方程组. 12、已知则第个等式为____________.【答案】【解析】根据21-20=20,22-21=21,23-22=22,可得被减数、减数、差都是以2为底数的幂的形式,减数和差的指数相同,被减数的指数比减数和差的指数都多1,第n 个等式是:2n−2n−1=2n−1。
江苏省泰州市七年级下学期数学期末试卷
江苏省泰州市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·广州期中) 将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A . 向左平移1个单位B . 向右平移3个单位C . 向上平移3个单位D . 向下平移1个单位2. (2分) (2019七下·江汉期末) 下列调查中,适合采用全面调查的是()A . 调查长江的水质情况B . 调查全市中学生每天的就寝时间C . 调查一枚火箭所有零件的合格情况D . 调查某批次汽车的抗撞击能力3. (2分) (2020八上·苍南期末) 在直角坐标系中,点(-1,2)位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分) (2017七下·长春期末) 下列四组数中,是方程的解的是()A .B .C .D .5. (2分) (2019七上·哈尔滨月考) 如图所示的四个图形中,∠1和∠2是同位角的是()A . ②③B . ①②③C . ①②④D . ①④6. (2分)方程组的解与与的值相等,则等于()A . 2B . 1C . 6D . 47. (2分) (2020七下·山西期中) 我们定义,例如:,若满足,则的整数解有()A . 0个B . 1个C . 2个D . 3个8. (2分)如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为()A . ①②③④B . ①②④C . ①③④D . ①②③9. (2分) (2020七下·唐县期末) 下列说法中,不正确的是()A . 0是绝对值最小的实数B . =-C . 任意一个实数的立方根都是非负数D . ±3是9的平方根10. (2分) (2017七上·温州月考) 如图,面积为的正方形由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中大长方形的长是小长方形长的倍,若中间小正方形(阴影部分)的面积为,则小长方形的周长是()A .B .C .D .二、填空题 (共10题;共13分)11. (1分) (2016七上·嘉兴期末) 的平方根=________.12. (1分) (2020七下·南昌期末) 在,3.14159,,﹣8,,0.6,0,,中是无理数的个数有________个.13. (1分) (2019七下·洛阳月考) 若则的值为________.14. (1分)(2018·覃塘模拟) 如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.15. (1分)(2014·来宾) 某校在九年级的一次模拟考试中,随机抽取40名学生的数学成绩进行分析,其中有10名学生的成绩达108分以上,据此估计该校九年级640名学生中这次模拟考数学成绩达108分以上的约有________名学生.16. (1分) (2020八上·长清月考) 已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,则a+2b+c的算术平方根为________.17. (1分) (2020七下·巴彦淖尔期中) 若将三个数表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是________.18. (2分) (2016八上·永登期中) ﹣27的立方根为________,的平方根为________.19. (2分) (2020七下·广陵期中) 如图,在六边形,,则________°.20. (2分)如图,点O是AC的中点,将周长为4cm的菱形ABCD沿对角线AC方向平移AO长度得到菱形OB′C′D′,则四边形OECF的周长是________ cm.三、解答题 (共9题;共62分)21. (5分)(2019·株洲模拟) 计算:22. (5分) (2020七下·长兴期末) 解方程组:23. (5分)(2014·海南) 计算:(1)12×(﹣)+8×2﹣2﹣(﹣1)2(2)解不等式≤ ,并求出它的正整数解.24. (1分) (2020七下·渭南月考) 如下左图,已知l∥m,小亮把三角板的直角顶点放在直线m上。
泰州市七年级下学期期末数学试题题及答案
泰州市七年级下学期期末数学试题题及答案一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30° D .∠A=12∠B=13∠C 3.下列计算中,正确的是( )A .235235x x x +=B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 5.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1- 6.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米 7.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 8.计算a 10÷a 2(a≠0)的结果是( )A .5aB .5a -C .8aD .8a -9.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.12.计算(﹣2xy )2的结果是_____.13.已知30m -=,7m n +=,则2m mn +=___________.14.已知一个多边形的每个外角都是24°,此多边形是_________边形.15.已知2x =3,2y =5,则22x+y-1=_____.16.计算:5-2=(____________)17.已知2x +3y -5=0,则9x •27y 的值为______.18.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.19.计算212⎛⎫= ⎪⎝⎭______. 20.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为_______. 三、解答题21.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A .(1)求证://FE OC ;(2)若∠BFE =110°,∠A =60°,求∠B 的度数.22.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.23.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D . ①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).24.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y q x y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.25.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________.(2)求m 与n 的数量关系.26.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?27.问题1:现有一张△ABC 纸片,点D 、E 分别是△ABC 边上两点,若沿直线DE 折叠. (1)探究1:如果折成图①的形状,使A 点落在CE 上,则∠1与∠A 的数量关系是 ; (2)探究2:如果折成图②的形状,猜想∠1+∠2和∠A 的数量关系是 ; (3)探究3:如果折成图③的形状,猜想∠1、∠2和∠A 的数量关系,并说明理由.(4)问题2:将问题1推广,如图④,将四边形ABCD 纸片沿EF 折叠,使点A 、B 落在四边形EFCD 的内部时,∠1+∠2与∠A 、∠B 之间的数量关系是 .28.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B 选项错误;C 、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B 选项错误;D 、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C ,则∠C=90°,所以D 选项正确. 故选:D .【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°. 3.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确. D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.4.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA ,CD 交于点E .∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA 与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC 为等腰直角三角形∴∠E=45°∴在△EAD 中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD 互为对顶角∴∠2=∠EAD =70°故选:B .【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米, 故选:A .【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A .原式=x 2﹣2x +1,B .原式=﹣(x ﹣1)2=﹣x 2+2x ﹣1;C .(x +1)(x ﹣1)=x 2﹣1;D .原式=x 2+2x ﹣x ﹣2=x 2+x ﹣2;∴计算结果为x 2﹣1的是C .故选:C .【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.8.C解析:C【解析】【分析】根据同底数幂的除法法则即可得.【详解】1021028(0)a a a a a -÷==≠故选:C.【点睛】本题考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减.9.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.10.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确; 从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确, 故选:B .【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 12.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x 2y 2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy )2=4x 2y 2.故答案为:4x 2y 2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.13.21【分析】由得,再将因式分解可得, 然后将、代入求解即可.【详解】解:∵,∴,又∵∴,故答案为:.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 解析:21由30m -=得3m =,再将2m mn +因式分解可得()m m n +, 然后将3m =、7m n +=代入求解即可.【详解】解:∵30m -=,∴3m =,又∵7m n +=∴2()3721m mn m m n +=+=⨯=,故答案为:21.【点睛】此题考查了主要考查了代数式求值,利用整体代入法求解更加简单. 14.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.15.【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x×2y÷2=(2x )2×2y÷2=9×5÷2=故答案为 解析:452【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2 =452故答案为:452. 【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.16.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.17.243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x27y=32x解析:243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 18.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC ∥DE ,∴∠AFE =∠B =75°,在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.19.【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】解:.故答案为 .【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键. 解析:14【分析】根据分式的乘方运算法则,即分式乘方要把分子、分母分别乘方,即可求解.【详解】 解:222111==224⎛⎫ ⎪⎝⎭. 故答案为14. 【点睛】本题目考查分式的乘方运算法则,难度不大,熟练掌握其运算法则是解题的关键. 20.【分析】根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.【详解】解:∵,故答案为.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯【分析】根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.【详解】解:∵5384000=3.8410⨯,故答案为53.8410⨯.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.三、解答题21.(1)见详解;(2)50°.【分析】(1)由//AB DC ,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平行即可得证;(2)由EF 与OC 平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B 的度数.【详解】(1)证明:∵AB ∥CD ,∴∠A=∠C ,又∵∠1=∠A ,∴∠C=∠1,∴FE ∥OC ;(2)解:∵FE ∥OC ,∴∠BFE+∠DOC=180°,又∵∠BFE=110°,∴∠DOC=180°-110°=70°,∴∠AOB=∠DOC=70°,∵∠A =60°,∴∠B=180°-60°-70°=50°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(1)6;(2)8.【分析】(1)先将原式转化为(a+b )2-2ab ,再将已知代入计算可得;(2)先将原式转化为(a+b )2-4ab ,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b )2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b)2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.23.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB ,∵∠BDC=180︒-12(∠ACB+∠ABC )=180︒-12(180︒-α)=90︒+1α2, ∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α, 同①,说明MN 在旋转过程中∠NDC-∠MDB 的度数只与∠A 有关系,而∠A 始终不变, 故:MN 在旋转过程中∠NDC-∠MDB 的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC ,由②知∠BDC=90︒+1α2, ∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2. 故∠NDC 与∠MDB 的关系是∠NDC+∠MDB=90︒-1α2. 【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.24.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B(4,8)时,m﹣1=4,22n+=8,解得:m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)A、B两点的中点C在第四象限,理由如下:∵点A(a,﹣4)是“爱心点”,∴m﹣1=a,22n+=﹣4,解得:m=a+1,n=﹣10.代入2m=8+n,得2(a+1)=8﹣10,解得:a=﹣2,所以A点坐标为(﹣2,﹣4);∵点B(4,b)是“爱心点”,同理可得m=5,n=2b﹣2,代入2m=8+n,得:10=8+2b﹣2,解得:b=2.所以点B坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.25.(1)16;4;(2)m=3n;【分析】(1)利用a m+n=a m⋅a n和a m-n=a m÷a n进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.【详解】(1)m n a +=a m ×a n =16;m n a -=a m ÷a n=4; (2)∵, ∴∴【点睛】 本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.26.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】//BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.27.(1)12A ∠=∠;(2)122A ∠+∠=∠;(3)见解析;(4)1222360A B ∠+∠=∠+∠-︒【分析】(1)根据三角形外角性质可得;(2)在四边形A EAD '中,内角和为360°,∠BDA=∠CEA=180°,利用这两个条件,进行角度转化可得关系式;(3)如下图,根据(1)可得∠1=2∠DAA ',∠2=2∠EAA ',从而推导出关系式; (4)根据平角的定义以及四边形的内角和定理,与(2)类似思路探讨,可得关系式.【详解】(1)∵△'EDA 是△EDA 折叠得到∴∠A=∠A '∵∠1是△'ADA 的外角∴∠1=∠A+∠A '∴12A ∠=∠;(2)∵在四边形A EAD '中,内角和为360°∴∠A+A '+∠A DA '+∠A EA '=360°同理,∠A=∠A '∴2∠A+∠A DA '+∠A EA '=360°∵∠BDA=∠CEA=180∴∠1+∠A DA '+∠A EA '+∠2=360°∴122A ∠+∠=∠ ;(3)数量关系:212A ∠-∠=∠理由:如下图,连接AA '由(1)可知:∠1=2∠DAA ',∠2=2∠EAA '∴212()2EAA DAA DAE ∠-∠=∠-=∠'∠';(4)由折叠性质知:∠2=180°-2∠AEF ,∠1=180°-2∠BFE相加得:123602(360)22360A B A B ∠+∠=︒-︒-∠-∠=∠+∠-︒.【点睛】本题考查角度之间的关系,(4)问的解题思路是相同的,主要运用三角形的内角和定理和四边形的内角和定理进行角度转换.28.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE即为所求;''的面(4)如图所示,连接AA',CC',则线段AC扫过的面积为平行四边形AA C C积,=⨯=.由图可得,线段AC扫过的面积4728故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.。
泰州市初一下学期数学期末试卷带答案
泰州市初一下学期数学期末试卷带答案一、选择题1.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1 C.11y x += D .xy ﹣1=02.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×1011 3.以下列各组线段为边,能组成三角形的是( ) A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm 4.等腰三角形的两边长分别为3和6,那么该三角形的周长为( )A .12B .15C .10D .12或15 5.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( ) A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩ B .5003%4% 3.4%x y x y +=⎧⎨+=⎩ C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩ D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩6.如图,△A BC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .6 7.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或11 8.下列方程组中,是二元一次方程组的为( )A .1512n m m n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .00x y =⎧⎨=⎩ 9.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-10.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( ) A .23m ≤ B .23m < C .23m ≥ D .23m > 二、填空题11.34x y =⎧⎨=-⎩是方程3x+ay=1的一个解,则a 的值是__________. 12.若x +3y -4=0,则2x •8y =_________.13.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .14.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 15.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .16.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.17.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3=_____.18.下列各数中: 3.14-,327-,π2,17-,是无理数的有______个. 19.分解因式:m 2﹣9=_____. 20.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.三、解答题21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.22.(1)填一填21-20=2( )22-21=2( )23-22=2( )⋯(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+⋯+22019.23.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .24.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示); ②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).25.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩. 26.(知识回顾):如图①,在△ABC 中,根据三角形内角和定理,我们知道∠A +∠B +∠C =180°.如图②,在△ABC 中,点D 为BC 延长线上一点,则∠ACD 为△ABC 的一个外角.请写出∠ACD 与∠A 、∠B 的关系,直接填空:∠ACD = .(初步运用):如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点.(1)若∠A =70°,∠DBC =150°,则∠ACB = °.(直接写出答案)(2)若∠A =70°,则∠DBC +∠ECB = °.(直接写出答案)(拓展延伸):如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =70°,∠P =150°,则∠DBP +∠ECP = °.(请说明理由)(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =40°,求出∠A 和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .27.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?28.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A .x-y 2=1不是二元一次方程;B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程;故选B .【点睛】 本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.2.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm =100×10﹣9m=1×10﹣7m ,故选:C .【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.3.D解析:D【分析】根据三角形任意两边之和大于第三边进行分析即可.【详解】解:A、1+2<4,不能组成三角形;B、2+3=5,不能组成三角形;C、5+6<12,不能组成三角形;D、4+6>8,能组成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件.用两条较短的线段相加,如果大于最长那条就能够组成三角形.4.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6+=,不满足三角形的三边关系定理此时336(2)当等腰三角形的腰为6时,三边为3,6,6+>,满足三角形的三边关系定理此时366++=则其周长为36615综上,该三角形的周长为15故选:B.【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.5.C解析:C【分析】本题有两个相等关系:现有女生人数x+现有男生人数y=现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组.【详解】解:设该校现有女生人数x和男生y,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C .【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.6.A解析:A【解析】试题分析:∵点D ,E ,F ,G 分别是BC ,AD ,BE ,CE 的中点,∴AD 是△ABC 的中线,BE 是△ABD 的中线,CF 是△ACD 的中线,AF 是△ABE 的中线,AG 是△ACE 的中线,∴△AEF 的面积=×△ABE 的面积=×△ABD 的面积=×△ABC 的面积=, 同理可得△AEG 的面积=, △BCE 的面积=×△ABC 的面积=6,又∵FG 是△BCE 的中位线,∴△EFG 的面积=×△BCE 的面积=,∴△AFG 的面积是×3=, 故选A .考点:三角形中位线定理;三角形的面积. 7.D解析:D【解析】【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解.【详解】解:根据已知a 2-ab -ac +bc =11,即a (a -b )-c (a -b )=11,(a -b )(a -c )=11,∵a >b ,∴a -b >0,∴a -c >0,∵a 、b 、c 是正整数,∴a -c =1或a -c =11故选D .【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.8.D解析:D【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.【详解】A 、属于分式方程,不符合题意;B 、有三个未知数,为三元一次方程组,不符合题意;C 、未知数x 是2次方,为二次方程,不符合题意;D 、符合二元一次方程组的定义,符合题意;故选:D .【点睛】考查了二元一次方程组的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”.9.C解析:C【分析】根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.故选:C【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.10.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围.【详解】解:202x m x m -<⎧⎨+>⎩①② 解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m≥2m.解得23 m≤.故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.二、填空题11.a=2【分析】根据题意把代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程解析:a=2【分析】根据题意把34xy=⎧⎨=-⎩代入方程3x+ay=1,求出a即可.【详解】解:根据题意可得3×3+a×(-4)=1,解得a=2.故本题答案为:a=2.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程成立的未知数的值. 12.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.13.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.14.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD∥AB 时,∠BAD=∠D=30°;如图所示,当AB∥CD 时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =60°,∴∠BAD =60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.16.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x ,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣解析:32°.【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°, 则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=32°.故答案是:32°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.18.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 19.(m+3)(m ﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.20.﹣【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣.解析:﹣1 2【分析】先解方程4x﹣1=3x+1,然后把x的值代入2m+x=1,即可求出m的值.【详解】解:4x﹣1=3x+1解得x=2,把x=2代入2m+x=1,得2m+2=1,解得m=﹣12.故答案为:﹣12. 【点睛】 此题考查的是根据两个一元一次方程有相同的解,求方程中的参数,掌握一元一次方程的解法和方程解的定义是解决此题的关键.三、解答题21.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.22.(1)0,1,2(2)11222n n n ---=(3)22020-1【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得11222n n n ---=,然后利用提公因式法12n -可以证明这个等式成立;(3)设题中的表达式为a ,再根据同底数幂的乘法得出2a 的表达式相减即可.【详解】(1)10022212-=-=,21122422-=-=,32222842-=-=,故答案为:0,1,2;(2)第n 个等式为:11222n n n ---=,∵左边=()111222212n n n n ----=-=,右边=12n -,∴左边=右边,∴11222n n n ---=;(3)20+21+22+⋅⋅⋅⋅⋅⋅+22019=21-20+22-21+⋅⋅⋅⋅⋅⋅+22020-22019=22020-1∴01220192020222221++++=-….【点睛】此题主要考察了探寻数列规律问题,认真观察,总结出规律,并能正确的应用规律是解答此题的关键.23.(1)∠APB =∠NAP +∠HBP ;(2)见解析;(3)∠HBP =∠NAP +∠APB【分析】(1)过P 点作PQ ∥GH ,根据平行线的性质即可求解;(2)过P 点作PQ ∥GH ,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P 点作PQ ∥GH ,∵MN ∥GH ,∴MN ∥PQ ∥GH ,∴∠APQ =∠NAP ,∠BPQ =∠HBP ,∵∠APB =∠APQ +∠BPQ ,∴∠APB =∠NAP +∠HBP ,故答案为:∠APB =∠NAP+∠HBP ;(2)如图②,过P 点作PQ ∥GH ,∵MN ∥GH ,∴MN ∥PQ ∥GH ,∴∠APQ +∠NAP =180°,∠BPQ +∠HBP =180°,∵∠APB =∠APQ +∠BPQ ,∴∠APB =(180°﹣∠NAP )+(180°﹣∠HBP )=360°﹣(∠NAP +∠HBP );(3)如备用图,∵MN ∥GH ,∴∠PEN =∠HBP ,∵∠PEN =∠NAP +∠APB ,∴∠HBP =∠NAP +∠APB.故答案为:∠HBP =∠NAP +∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.24.(1)130°;(2)①90︒-α;②不变,90︒-α;③∠NDC+∠MDB=90︒-1α2.【分析】(1)根据已知,以及三角形内角和等于180︒,即可求解;(2)①根据平行线的性质可以证得∠ABD=∠BDM=∠MBD,∠CND=∠A=α,再利用含有α的式子分别表示出∠NDC、∠MDB,进行作差,即可求解代数式;②延长BD交AC于点E,则∠NDE=∠MDB,因此∠NDC-∠MDB=∠NDC-∠NDE=∠EDC,再利用三角形内角和为180︒,即可求解;③如图可知,∠NDC+∠MDB=180︒-∠BDC,利用平角的定义,即可求解代数式.【详解】解:(1)∵∠A=80︒∴∠ABC+∠ACB=180︒-80︒=100︒又∵ BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=12⨯100︒=50︒.∴∠BDC=180︒-50︒=130︒.(2)①∵MN//AB,BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠BDM=∠MBD,∠CND=∠A=α,∴∠NDC=180︒-α-12∠ACB,∠MDB=12∠ABC,∴∠NDC-∠MDB=180︒-α-12∠ACB-12∠ABC=180︒-α-12(∠ACB+∠ABC)=180︒-α-12(180︒-α)=90︒-α.②不变;延长BD交AC于点E,如图:∴∠NDE=∠MDB ,∵∠BDC=180︒-12(∠ACB+∠ABC )=180︒-12(180︒-α)=90︒+1α2, ∴∠NDC-∠MDB=∠NDC-∠NDE=∠EDC=180︒-∠BDC=180︒-(90︒+1α2)=90︒-α, 同①,说明MN 在旋转过程中∠NDC-∠MDB 的度数只与∠A 有关系,而∠A 始终不变, 故:MN 在旋转过程中∠NDC-∠MDB 的度数不会发生改变.③如图可知,∠NDC+∠MDB=180︒-∠BDC ,由②知∠BDC=90︒+1α2, ∴∠NDC+∠MDB=180︒-(90︒+1α2)=90︒-1α2. 故∠NDC 与∠MDB 的关系是∠NDC+∠MDB=90︒-1α2. 【点睛】本题目考查平行线与三角形的综合,涉及知识点有平行线的性质,三角形内角和等于180°等,是中考的常考知识点,难度一般,熟练掌握以上知识点的综合运用是顺利解题的关键.25.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩;(2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.26.知识回顾:∠A+∠B ;初步运用:(1)80;(2)250;拓展延伸:(1)220;(2)∠A 和∠P 之间的数量关系是:∠P =∠A+80°,理由见解析;(3)见解析.【分析】知识回顾:根据三角形内角和即可求解.初步运用:(1)根据知识与回顾可求出∠DBC 度数,进而求得∠ACB 度数;(2)已知∠A 度数,即可求得∠ABC+∠ACB 度数,进而求得∠DBC+∠ECB 度数. 拓展延伸:(1)连接AP ,根据三角形外角性质,∠DBP =∠BAP+∠APB ,∠ECP =∠CAP+∠APC , 得到∠DBP+∠ECP =∠BAC+∠BPC ,已知∠BAC =70°,∠BPC =150°,即可求得∠DBP+∠ECP 度数;(2)如图⑤,设∠DBO =x ,∠OCE =y ,则∠OBP =∠DBO =x ,∠PCO =∠OCE =y , 由(1)同理得:x+y =∠A+∠O ,2x+2y =∠A+∠P ,即可求出∠A 和∠P 之间的数量关系; (3)如图,延长BP 交CN 于点Q ,根据角平分线定义,∠DBP =2∠MBP ,∠ECP =2∠NCP ,且∠DBP+∠ECP =∠A+∠BPC ,∠A =∠BPC ,得到∠BPC =∠MBP+∠NCP ,因为∠BPC =∠PQC+∠NCP ,证得∠MBP =∠PQC ,进而得到BM ∥CN .【详解】知识回顾:∵∠ACD+∠ACB =180°,∠A+∠B+∠ACB =180°,∴∠ACD =∠A+∠B ;故答案为:∠A+∠B ;初步运用:(1)∵∠DBC =∠A+∠ACB ,∠A =70°,∠DBC =150°,∴∠ACB =∠DBC ﹣∠A =150°﹣70°=80°;故答案为:80;(2)∵∠A =70°,∴∠ABC+∠ACB =110°,∴∠DBC+∠ECB =360°﹣110°=250°,故答案为:250;拓展延伸:(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.【点睛】本题考查了三角形内角和定理,三角形内角和为360°;三角形外角性质定理,三角形的任一外角等于不相邻的两个内角和;角平分线定义,根据角平分线定义证明;以及平行线的判定,内错角相等两直线平行.27.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.28.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.。
江苏省泰州市姜堰市七年级数学下学期期末试卷(含解析)苏科版
七年级(下)期末数学试卷、选择题1 • 4的算术平方根是( )A. 2B. - 2C. 土 2D.2.下列运算正确的是( )A. a 3?a 2=a 6 B .( a 2) 3=a 6C. (- 2a ) 3=- 2a 3 3.若a > b ,则下列各式中一定成立的是()A. a+2 > b+2 B . ac v bcC.- 2a >- 2bD. 3 - a > 3 - b① /仁/2 ② / 3=7 4 ③ / B=7 DCE ④ / B=7 D.A.①或④ B .②或③ C.①或③ D.②或④5.下列命题中,属于真命题的是( )A.同位角互补B. 多边形的外角和小于内角和C.平方根等于本身的数是 1D. 同一平面内,垂直于同一条直线的两条直线平行6.已知,不等式组:< 1- ■ ■ ■ ■只有3个整数解,则a 的取值范围是( )A. 1 v x v 2 B . 1 < x v 2 C. 1< x < 2 D. K x < 2、填空题7 .比较两数的大小3,3 6D. a +a =2a4.如图,给出下列条件:其中,能判断AB// DC的是(9 •已知a m=2, a n=3,则a m「2n_.10. ________________________________ 五边形的内角和比它的外角和多度.11. _____________________________________ 计算:已知:a+b=3, ab=1,则a2+b2= .12. 若三角形三条边长分别是1, a, 4 (其中a为整数),则a的取值为_ .13. 命题“对顶角相等”的逆命题是_.(k二214. 已知是方程2x+ay=6的解,贝U a= .I y=l15. _____________________________________________________ 把面值20元的纸币换成1元和5元的两种纸币,则共有__________________________________________ 种换法.16. 如图,△ ABC的两条中线AM BN相交于点Q已知△ ABC的面积为12,A BOM勺面积为2,则四边形MCNQ勺面积为三、解答题(本大题共10小题,102 分)17. ( 8分)计算:(1)a?a5+ (- 2a2) 3(2)18. ( 8 分)先化简,再求值:(2a+b)( 2a- b)- a (4a- 3b),其中a=- 1, b=- 2.19. ( 10分)因式分解:2(1) a b - abc4 2(2)m- 2m+1.20. ( 10分)解方程组:x - - 2(1) x+2y=4(2) :—l3x+2y=1021.(8分)解不等式组,并把解集在数轴上表示出来._ 1 二计1-fi -7 -fi -5 -4 -3 -9 -1 01 9人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省泰州市泰兴市黄桥东区域七年级(下)期末数学试卷一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列计算错误的是()A.2m+3n=5mn B.a6÷a2=a4C.(a2)3=a6D.a•a2=a32.(2分)下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6x B.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b3.(2分)若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定4.(2分)不等式组中两个不等式的解集在数轴上可表示为()A.B.C.D.5.(2分)下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个 B.3个 C.2个 D.1个6.(2分)△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为()A.10 B.8 C.6 D.4二、填空题(每小题3分,共24分)7.(3分)生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA 分子的直径约为0.0000003cm,这个数量用科学记数法可表示为3×10﹣n cm,则n=.8.(3分)一个凸多边形的内角和是其外角和的2倍,则这个多边形是边形.9.(3分)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A﹦°.10.(3分)若a x=2,a y=3,则a3x﹣2y=.11.(3分)若a﹣b=﹣2,则(a2+b2)﹣ab=.12.(3分)如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为.13.(3分)甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了场.14.(3分)若多项式4x4+1加上一个含字母的单项式,就能变形为一个含x的多项式的平方,则这样的单项式为.三、解答题:(本题满分64分)15.(6分)计算、化简:(1)计算:(﹣2016)0+()﹣2+(﹣3)3;(2)化简:(2x﹣3y)2﹣(y+3x)(3x﹣y).16.(6分)因式分解:(1)2x2﹣4x+2;(2)a2(a﹣b)+(b﹣a).17.(6分)完成以下证明,并在括号内填写理由:已知:如图,∠EAB=∠CDF,CE∥BF.求证:AB∥CD.证明:∵CE∥BF,∴∠CDF=∠C,∵∠EAB=∠CDF,∴∠=∠,∴AB∥CD.18.(8分)解方程组或不等式组:(1);(2),并写出它的整数解.19.(7分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,连接BD.(1)利用三角板在图中画出△ABD中AB边上的高,垂足为H.(2)①画出将△ABD先向右平移2格,再向上平移2格得到的△A1B1D1;②平移后,求线段AB扫过的部分所组成的封闭图形的面积.20.(7分)第31届夏季奥林匹克运动会将于2016年8月5日﹣﹣21日在巴西的里约热内卢举行,小明在网上预订了开幕式和闭幕式两种门票共10张,其中开幕式门票每张700元,闭幕式门票每张550元.(1)若小明订票总共花费5800元,问小李预定了开幕式和闭幕式的门票各多少张?(2)若小明订票费用不到6100元,则开幕式门票最多有几张?21.(8分)已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.22.(8分)已知,关于x,y的方程组的解满足x<y<0.(1)求a的取值范围;(2)化简|a|﹣|a+3|.23.(8分)△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=40°,求∠BAC的度数.2015-2016学年江苏省泰州市泰兴市黄桥东区域七年级(下)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题2分,满分12分)1.(2分)下列计算错误的是()A.2m+3n=5mn B.a6÷a2=a4C.(a2)3=a6D.a•a2=a3【解答】解:A、2m+3n,无法计算,故此选项符合题意;B、a6÷a2=a4,正确,故此选项不符合题意;C、(a2)3=a6,正确,故此选项不符合题意;D、a•a2=a3,正确,故此选项不符合题意;故选:A.2.(2分)下列各式从左到右的变形,是因式分解的是()A.x2﹣9+6x=(x+3)(x﹣3)+6x B.(x+5)(x﹣2)=x2+3x﹣10C.x2﹣8x+16=(x﹣4)2D.6ab=2a•3b【解答】解:A、右边不是积的形式,故A选项错误;B、是多项式乘法,不是因式分解,故B选项错误;C、是运用完全平方公式,x2﹣8x+16=(x﹣4)2,故C选项正确;D、不是把多项式化成整式积的形式,故D选项错误.故选:C.3.(2分)若方程组的解满足x+y=0,则a的取值是()A.a=﹣1 B.a=1 C.a=0 D.a不能确定【解答】解:方程组两方程相加得:4(x+y)=2+2a,将x+y=0代入得:2+2a=0,解得:a=﹣1.故选:A.4.(2分)不等式组中两个不等式的解集在数轴上可表示为()A.B.C.D.【解答】解:,由①得,x≥1,由②得,x>3,故不等式组的解集为:x>3.在数轴上表示为:.故选:D.5.(2分)下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3个.故选:B.6.(2分)△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为()A.10 B.8 C.6 D.4【解答】解∵AD是中线,∴S=S△ADC,S△BDF=S△FDC,△ABD∴S △ABD ﹣S △BDF =S △ADC ﹣S △FDC ,即S △ABF =S △ACF ,同理得:S △ABF =S △BFC ,∴S △ABF =S △ACF =S △BFC ,∴S △ABF =S △ABC =×24=8,故选:B .二、填空题(每小题3分,共24分)7.(3分)生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000003cm ,这个数量用科学记数法可表示为3×10﹣n cm ,则n= 7 .【解答】解:∵0.0000003=3×10﹣7=3×10﹣n ; ∴n=7,故答案为:7.8.(3分)一个凸多边形的内角和是其外角和的2倍,则这个多边形是 6 边形.【解答】解:设多边形边数为n .则360°×2=(n ﹣2)•180°,解得n=6.故答案为:6.9.(3分)如图,点B 、C 、D 在同一条直线上,CE ∥AB ,∠ACB=90°,如果∠ECD=36°,那么∠A ﹦ 54 °.【解答】解:∵∠ECD=36°,∠ACB=90°,∴∠ACD=90°,∴∠ACE=∠ACD ﹣∠ECD=90°﹣36°=54°,∵CE ∥AB ,∴∠A=∠ACE=54°.故答案为:54°.10.(3分)若a x=2,a y=3,则a3x﹣2y=.【解答】解:a3x﹣2y=(a x)3÷(a y)2=8÷9=.故答案为:.11.(3分)若a﹣b=﹣2,则(a2+b2)﹣ab=2.【解答】解:∵a﹣b=﹣2,∴原式=(a2+b2﹣2ab)=(a﹣b)2=2.故答案为:2.12.(3分)如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为28°.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故答案为:28°.13.(3分)甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了7场.【解答】解:设甲队胜了x场,则平了(10﹣x)场,由题意得,3x+(10﹣x)≥24,解得:x≥7,即甲队至少胜了7场.故答案为:7.14.(3分)若多项式4x4+1加上一个含字母的单项式,就能变形为一个含x的多项式的平方,则这样的单项式为±4x2,4x8.【解答】解:∵多项式4x4+1加上一个单项式后能成为一个整式的完全平方,∴此单项式可能是二次项,可能是常数项,可能是一次项,还可能是4次项,①4x4+4x8+1=(2x4+1)2,故此单项式是4x8.②∵4x4+1±4x2=(2x2±1)2,故此单项式是±4x2;故答案是:±4x2,4x8.三、解答题:(本题满分64分)15.(6分)计算、化简:(1)计算:(﹣2016)0+()﹣2+(﹣3)3;(2)化简:(2x﹣3y)2﹣(y+3x)(3x﹣y).【解答】解:(1)(﹣2016)0+()﹣2+(﹣3)3;=1+4﹣27=﹣22;(2)(2x﹣3y)2﹣(y+3x)(3x﹣y)=4x2﹣12xy+9y2﹣9x2+y2=﹣5x2﹣12xy+10y2.16.(6分)因式分解:(1)2x2﹣4x+2;(2)a2(a﹣b)+(b﹣a).【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2;(2)原式=a2(a﹣b)﹣(a﹣b)=(a﹣b)(a2﹣1)=(a﹣b)(a+1)(a﹣1).17.(6分)完成以下证明,并在括号内填写理由:已知:如图,∠EAB=∠CDF,CE∥BF.求证:AB∥CD.证明:∵CE∥BF已知,∴∠CDF=∠C两直线平行,内错角相等,∵∠EAB=∠CDF,∴∠C=∠EAB,∴AB∥CD同位角相等,两直线平行.【解答】证明:∵CE∥BF,已知,∴∠CDF=∠C,两直线平行,内错角相等,∵∠EAB=∠CDF,∴∠C=∠EAB,∴AB∥CD,同位角相等,两直线平行.故答案为:已知,两直线平行,内错角相等,C,EAB,同位角相等,两直线平行.18.(8分)解方程组或不等式组:(1);(2),并写出它的整数解.【解答】解:(1)整理得:,①+②得:3x=7,解得:x=,把x=代入①得:+5y=0,解得:y=﹣,所以原方程组的解为:;(2)∵解不等式①得:x<3,解不等式②得:x≥1,∴不等式组的解集为1≤x<3,∴不等式组的整数解为1,2.19.(7分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,连接BD.(1)利用三角板在图中画出△ABD中AB边上的高,垂足为H.(2)①画出将△ABD先向右平移2格,再向上平移2格得到的△A1B1D1;②平移后,求线段AB扫过的部分所组成的封闭图形的面积.【解答】(1)如图:线段DH即为所求.(2)①如图:△A1B1D1即为所求.②如图,线段AB扫过的部分所组成的封闭图形(阴影部分)的面积=2×4+×1×2=8+1=9.20.(7分)第31届夏季奥林匹克运动会将于2016年8月5日﹣﹣21日在巴西的里约热内卢举行,小明在网上预订了开幕式和闭幕式两种门票共10张,其中开幕式门票每张700元,闭幕式门票每张550元.(1)若小明订票总共花费5800元,问小李预定了开幕式和闭幕式的门票各多少张?(2)若小明订票费用不到6100元,则开幕式门票最多有几张?【解答】解:(1)设开幕式门票x张,闭幕式门票y张,由题意,解得答:开幕式门票2张,闭幕式门票8张;(2)设开幕式门票有x张,由题意700x+550(10﹣x)<6100,解得x<4,∵x是整数,∴x的中点整数为3,∴开幕式门票最多3张.21.(8分)已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.22.(8分)已知,关于x,y的方程组的解满足x<y<0.(1)求a的取值范围;(2)化简|a|﹣|a+3|.【解答】解:(1)解得,,∵x<y<0,∴解得,a<﹣3,即a的取值范围是a<﹣3;(2)∵a<﹣3,∴a+3<0,∴|a|﹣|a+3|=﹣a+a+3=3.23.(8分)△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=40°,求∠BAC的度数.【解答】解:(1)∠AOC=∠ODC,理由:∵三个内角的平分线交于点O,∴∠OAC+∠OCA=(∠BAC+∠BCA)=(180°﹣∠ABC),∵∠OBC=∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=90°+∠ABC=90°+∠OBC,∵OD⊥OB,∴∠BOD=90°,∴∠ODC=90°+∠OBD,∴∠AOC=∠ODC;(2)①∵BF平分∠ABE,∴∠EBF=∠ABE=(180°﹣∠ABC)=90°﹣∠DBO,∵∠ODB=90°﹣∠OBD,∴∠FBE=∠ODB,∴BF ∥OD ;②∵BF 平分∠ABE ,∴∠FBE=ABE=(∠BAC +∠ACB ),∵三个内角的平分线交于点O ,∴∠FCB=ACB ,∵∠F=∠FBE ﹣∠BCF=(∠BAC +∠ACB)﹣∠ACB=BAC , ∵∠F=40°,∴∠BAC=2∠F=80°.赠送:初中数学几何模型举例 【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为 M FEB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。