湖北省枣阳市2016届中考数学适应性试题(扫描版)

合集下载

湖北省襄阳市2016年中考适应性考试数学试卷含答案 (2)

湖北省襄阳市2016年中考适应性考试数学试卷含答案 (2)

2016年九年级适应性考试数学试卷一、选择题(每小题3分,共计30分) ( )1.2016-的倒数的绝对值为:A. 2016-B.20161-C.2016D. 20161,结果如下表: A.众数是2元 B.中位数是2元 C.极差是5元 D.平均数是2.45元 ( )3.下列运算正确的是:A.532a a a =+B.ab b a 624=+C.1)11(02=+a D.10)52(2= ( )4.如图,AB ∥DE,AC ⊥CD,并且∠A=35º,则∠D 的度数为:A.55ºB.45ºC.30ºD.60º( )5.已知函数44)1(2+--=x x k y 与x 轴只有一个交点,则k 的取值范围是:A.2≤k 且1≠kB. 2<k 且1≠kC.2=kD. 2=k 或1( )6. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.已知1微米相当于1米的一百万分之一,则2.5微米用科学记数可表示为 A. 7105.2-⨯米 B.6105.2-⨯ 米 C. 7105.2⨯米 D. 6105.2⨯米 ( )7.如图所示的是由一些正方体小木块搭成的几何体的主视图与俯视图,它最多需要小木块的块数是:A.8B. 7C.6D.5( )8.如图,在△ABC 中,分别以点A 和点B 为圆心,大于21AB 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC 于点D,连接AD,若△ADC 的周长为8,AB=6, 则△ABC 的周长为:A.20B.22C.14D.16 ( )9.已知抛物线c bx ax y ++=2的图像如图所示, 则直线b ax y -=一定不经过:A.第一象限B. 第二象限C. 第三象限D. 第四象限( )10.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F,将△DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC,EF 交于点N.有下列四个结论: ①BF 垂直平分EN;②BF 平分∠MFC;③△DEF ∽△FEB;④tan ∠N=3.其中,将正确结论的序号全部选对的是:ABCDE第4题图主视图俯视图AB C DMN Ox yA. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(每小题3分,共计18分)11.计算: 6)272483(÷-=________________.12.如图,点P 是反比例函数在第二象限上的一点,且矩形PEOF 的面积为5,则反比例函数的表达式为_____________. 13.若关于x 的不等式组⎩⎨⎧>+≥-0630x x m 的整数解恰好有三个,则m 的取值范围是____________.14.盒子里装有大小形状相同,质地均匀的4个白球和3个红球,搅匀后从中摸出一个球,放回搅匀后,再摸出第二个球,则两次取出的均是红球的概率是___________.15. 如图四边形ABCD 是⊙O 的内接四边形,已知∠BOD=120°则∠BCD 的度数为___________16.已知□ABCD 的周长为40㎝,AE ⊥BC 于点E,AF ⊥CD 于点F,若AE=4㎝,AF=6㎝,则CE+CF=_________㎝. 三、解答题(共72分) 17.(6分)先化简,再求值:222)11(yxy x yy x y x +-÷+-- 其中145sin 21-︒=x ,230sin 2-︒=y18. (6分)从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲地到乙地需54分钟, 从乙地到甲地需42分钟.甲地到乙地全程是多少千米?19. (6分)如图,点E 是□ABCD 的边AD 上一点,连接CE 并延长交BA 的延长线于点F,若BG=DE,并且∠AEF=70º.求∠AGB 的度数.A BCDE F G20. (7分)为响应襄阳市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A,B,C,D 四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,解答下列问题:A BCD O(1)被抽取的学生总数是_____人,C 等在样本中所占的百分比是_____; (2) D 等在扇形统计图所对应的圆心角是多少度?并补全左侧的条形图; (3)估计全校校生成绩为A 等的大约有多少人?21. (6分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B 两个凉亭之间的距离.现测得AC=50m,BC=100m, ∠CAB=120º,请计算A,B 两个凉亭之间的距离.22. (7分)如图,AB 是⊙O 的直径,C 是⊙O 上的一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于E. (1)求证:AC 平分∠DAB ; (2)连接CE ,若CE=6,AC=8,求⊙O 的直径的长.23. (10分)为了拉动内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益p (元)会相应降低且满足:11051+-=x p(0≥x ).(1)在政府补贴政策实施后,求出该商场销售彩电台数y 与政府补贴款额x 之间的函数关系式;(2)在政府未出台补贴措施之前,该商场销售彩电的总收益额为多少元?(3)要使该商场销售彩电的总收益最大,政府应将每台补贴款额x 定为多少?并求出总收益的最大值.100014000100200y(台)x(元)24. (12分)已知:将一副三角板(Rt △ABC 和Rt △DEF)如图①摆放,点E,A,D,B 在一条直线上,且D 是AB 的中点.将Rt △DEF 绕点D 顺时针方向旋转角α(︒<<︒900α),在旋转过程中,直线DE,AC 相交于点M,直线DF,BC 相交于点N,分别过点M,N 作直线AB 的垂线,垂足为G ,H.(1)当︒=30α时(如图②),求证:AG=DH;(2) 当︒=60α时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当︒<<︒900α(如图④)时,求证:DH GD HB AG ⋅=⋅.25. (12分)如图,抛物线与直线相交于A,B 两点,若点A 在x 轴上,点B 的坐标是(2,4),抛物线与x 轴另一交点为D,并且△ABD 的面积为6,直线AB 与y 轴的交点的坐标为(0,2).点P 是线段AB(不与A,B 重合)上的一个动点,过点P 作x 轴的垂线,交抛物线与点Q. (1)分别求出抛物线与直线的解析式; (2)求线段PQ 长度的最大值;(3)当PQ 取得最大值时, 在抛物线上是否存在M 、N 两点(点M 的横坐标小于N 的横坐标),使得P 、D 、M 、N 为顶点的四边形是平行四边形?若存在,求出MN 的坐标;若不存在,请说明理由.参考答案一.选择题二.填空题11.23 12.x y 5-= 13.21<≤m 14.499 15.120º 16.31020+或324+ 三.解答题17.yx y x y y x y x y x y y y x y x y x y x y x y x y x +-=-⋅-+=-⋅-+---++=)(2)())((2)(]))(())(([:22原式解 ……………………3分由1212112221145sin 21+=-=-⨯=-︒=x ,212212230sin 2-=-⨯=-︒=y 得: 2,22=+=-y x y x ……………………5分∴原式=222222=⨯ ……………………6分 18.解:设从甲地到乙地时上坡段的路程为x 千米,平路段的路程为y 千米,根据题意,得:⎪⎪⎩⎪⎪⎨⎧=+=+604245605443y x y x ……………………3分解得⎩⎨⎧==6.15.1y x ……………………4分1.36.15.1=+=+y x ……………………5分答:甲地到乙地的全程是3.1千米. ……………………6分19.解: ∵四边形ABCD 是平行四边形∴AB=CD, ∠B=∠D ……………………2分 又∵BG=DE∴△ABG ≌△CDE ……………………3分 ∴∠AGB=∠CED ……………………4分 ∵∠CED=∠AEF=70º ……………………5分 ∴∠AGB=70º ……………………6分20.解:(1)200,10% ……………………………………………………2分 (2)36º (补全图略)………………………………………………………………4分 (3)9002001201500=⨯……………………………………………………6分 答:全校学生成绩为A 等的大约有900人. ……………………………7分 21.解: 过点C 作CD ⊥AB 于D在Rt △CDA 中∠CAD=180º-∠CAB=180º-120º =60º…………………………………1分 ∵ACCDCAD =∠sin ∴325235060sin =⨯=︒⋅=AC CD ………………………………………………2分 同理:25215060cos =⨯=︒⋅=AC AD ………………………………………………3分 在Rt △CBD 中,1325)325(1002222=-=-=CD BC BD ………………4分∴AB=BD-AD=251325- ………………………………………………5分 答:AB 之间的距离是(251325-)m. ………………………………………………6分 22.(1)证明:如图,连接OC∵CD 是⊙O 的切线 ∴OC ⊥CD ∴∠OCF=90º ∵AD ⊥CD∴∠D=∠OCF=90º (2)分∴OC ∥AD∴∠1=∠3 ……………………………………3分 ∵OA=OC ∴∠2=∠3 ∴∠1=∠2即AC 平分∠DAB ……………………………………4分 (2)如右图,连接OE∵∠1=∠2, ∠1=EOC ∠21,∠2=BOC ∠21∴BOC EOC ∠=∠∴BC=CE=6 …………………………5分 ∵AB 是⊙O 的直径 ∴∠ACB=90º 在Rt △ABC 中10682222=+=+=BC AC AB …………………………6分∴⊙O 的直径的长为10. …………………………7分 23.(1)解:根据题意,可设b kx y += 将(100,1000),(200,1400)代入上式,得:⎩⎨⎧=+=+14002001000100b k b k ………………………2分 解得⎩⎨⎧==6004b k ………………………3分∴所求作的函数关系式为:6004+=x y . ………………………4分 (2) ∵在6004+=x y 中,当0=x 时,600=y在11051+-=x p 中,当0=x 时,110=p ………………5分 ∴66000110600=⨯答: 在政府未出台补贴措施之前,该商场销售彩电的总收益额为66000元. ……6分 (3)设总收益为W 元,则W=)11051)(6004(+-+x x ………………7分 =66000320542++-x x =98000)200(542+--x ………………8分∵ 054<-=a∴W 存在最大值∴当x=200时W 有最大值98000. ………………9分答: 政府应将每台补贴款额定为200元时,可获得最大利润98000元. ………………10分 24、(1)∵∠A=∠MDA=α=30º∴MA=MD 又∵MG ⊥AD∴AG=21AD ………………1分 ∵∠FDB=90º -α=90º -30º =60º ,∠B=60º ∴△CDB 是等边三角形 又∵CH ⊥BD ∴DH=21BD ………………2分 ∵D 为AD 的中点∴AD=BD ………………3分 ∴AG=DH ………………4分 (2)∵∠A=∠NDB ,AD=BD ,∠B=∠MDA=α=60º∴△AMD ≌△DNB ………………5分 ∴AM=DN又∵∠A=∠NDH=90º -α=90º -60º =30º,∠AGM=∠DHN=90º ∴△AGM ≌△DHN ………………7分 ∴AG=DH ………………8分 (3)在Rt △AGM 中,∠A=30º∴∠AMG=90º -30º =60º =∠B又∵∠AGM=∠NHB=90º∴△AGM ∽△NHB ………………9分∴NHHBAG MG =∴MG ·NH=AG ·HB ………………10分 ∵∠GMD+∠GDM=90º,∠HDN+∠GDM=90º ∴∠GMD=∠HDN又∵∠MGD=∠DHN=90º ∴△MGD ∽△DHN ∴DHHNMG GD =∴MG ·NH=GD ·DH ………………11分 ∴AG ·HB=GD ·GH ………………12分25、(1)解:设直线的解析式为: b kx y += 将点B(2,4),点(0,2)代入上式得:⎩⎨⎧==+242b b k 解得⎩⎨⎧==21b k ∴所求直线的解析式为:2+=x y . ………………2分当0=y 时,2-=x ,即点A 的坐标为(-2,0) ∵S △ABD =64)]2([21||21=⨯--⨯=⋅D B x y AD ∴1=D x∴点D 的坐标(1,0)设抛物线的解析式为:)1)(2(-+=x x a y 将点B(2,4)代入上式得:1=a∴所求抛物线的解析式为:)1)(2(-+=x x y即22-+=x x y ………………4分(2)设点P 的横坐标为t ,则点P 为(t ,t+2),点Q 为(t ,22-+t t )………………5分 ∴PQ=t+2-(22-+t t )=42+-t ………………7分 ∵a=-1<0∴PQ 有最大值4 ………………8分 (3)由(2)知点P 坐标为(0,2) ………………9分 ①以PD 为平行四边形的边时,设点M 坐标为(m ,n )则点N 为(m+1,n-2) ∵点M 、N 均在抛物线上∴ n=m 2+m-2n-2=(m+1)2+m+1-2 解得 m=-2n=0∴M(-2,0),N (-1,-2) …………10分 ②以PD 为平行四边形的对角线时,设点M 为(m,n )则点N 为(1-m,2-n )同(1)理得M (-1,-2)N (2,4) …………11分 综上所述存在M (-2,2),N (-1,-2)和M (-1,-2),N (2,4)满足题意。

襄阳市枣阳市年中考适应性考试数学试题

襄阳市枣阳市年中考适应性考试数学试题

X 市202X 年中考适应性考试数学真题一、选择题:〔本大题共10个小题,每题3分,共30分〕1.以下各数中,最小的数是( )A.0B.3C.-3D.-22.以下计算中正确的选项是( )A.a ·22a a =B. 428236a a a =÷C.4222)2(a a = D. a 2·22a a =3.实数3的值在( )A.0与1之间B.1与2之间C.2与3之间D.3与4之间4.如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a ,b 上,如果∠2=50°,那么∠1的度数为( )A .10°B .20°C .30°D .40°5.不等式组的解集在数轴上表示为( ) 6.某几何体的主视图和左视图如下图,则该几何体可能是( )A.长方体B.圆锥C.圆柱D.球7.一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A.3,3,0.4B.2,3,2C.3,2,0.4D.3,3,28. 在以下事件中,必定事件是( )A .在足球赛中,弱队战胜强队B .任意画一个三角形,其内角和是360°C. 抛掷一枚硬币,落地后反面朝上 D .通常温度降到0℃以下,纯洁的水结冰9.某商品的售价为100元,连续两次降价x %后售价降低了36元,则x 为( )A.8B.20C.36D.1810.如图,正方形ABCD 的边长为2 cm ,动点P 从点A 出发,在正方形ABCD 的边上沿A→B -→C 的方向运动到点C 停止.设点P 的运动路程为x (cm),在以下图象中,能表示△ADP 的面积y (cm 2)关于x (cm)的函数关系的图象是( )二、填空题:〔本大题共6个小题,每题3分,共18分〕11.某市202X 年初中毕业生人数约为43000人,数据43000用科学记数法表示为 .12.分解因式822-x = .13.互联网“微商〞经营已成为群众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为 元.14.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高 米(结果保存根号).15.《九章算术》是X 数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.〞其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.〞该问题的答案是 步.16. 如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD 的长为 .三、解答题:〔本大题共9个小题,共72分〕.17.〔此题总分值6分〕先化简,再求值:)(5))(()2(2y x x y x y x y x ---+++,其中12+=x ,12-=y .18.〔此题总分值6分〕为了提高科技创新意识,我市某中学在“202X 年科技节〞活动中举行科技比赛,包含“航模〞、“机器人〞、“环保〞、“建模〞四个类别(每个学生只能参加一个类别的比赛),依据各类别参赛人数制成不完全的条形统计图和扇形统计图如下: 请依据以上图品信息,解答以下问题:(1)全体参赛的学生共有 人,扇形统计图中“建模〞所在扇形的圆心角是 °;(2)将条形统计图补充完整;(3)在比赛结果中,获得“环保〞类一等奖的学生为1名男生和2名女生,获得“建模〞类一等奖的学生为1名男生和1名女生.现从这两类获得一等奖的学生中各随机选取1名学生参加市级“环保建模〞考察活动.则选取的两人中恰为1名男生1名女生的概率是 .19.〔此题总分值6分〕证明命题“在角的内部角的平分线上的点到角的两边的距离相等〞,要依据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明同学依据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC ,点P 在OC 上, .求证: .请你补全已知和求证,并写出证明过程.20.〔此题总分值6分〕早晨,小明步行到离家900米的学校去上学,到学校时发觉眼镜忘在家中,于是他马上按原路步行回家,拿到眼镜后马上按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.求小明步行的速度(单位:米/分钟)是多少.21.〔此题总分值7分〕如图,一次函数b kx y +=的图象与反比例xm y =的图象相交于A 〔-2,1〕,B 〔n ,-2〕两点.(1)求反比例函数和一次函数的解析式;(2) 求△ABO 的面积.22.〔此题总分值8分〕如图,在△ABC 中,∠C=90°, ∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F.(1)试推断直线BC 与⊙O 的位置关系,并说明理由;(2)假设BD 32=,BF=2,求阴影局部的面积(结果保存π).23. 〔10分〕某科技开发公司研制出一种新型产品,每件产品的本钱为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓舞商家购置该新型产品,公司决定商家一次购置这种新型产品不超过10件时,每件按3000元销售;假设一次购置该种产品超过 10件时,每多购置一件,所购置的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购置这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购置这种产品x 件,开发公司所获的利润为y 元,求y (元)与x (件)之间的函数关系式,并写出白变量x 的取值范围.(3)该公司的销售人员发觉:当商家一次购置这种产品的件数超过某一数量时,会出现随着一次购置的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购置的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)24.〔此题总分值10分〕如图,四边形ABCD 为正方形,点E 在边 AB 上,点F 在AB 的延长线上,点G 在边AD 上,且EF=n AB ,DG=n AE ,连接DE 、FG 相交于点H.(1)假设1=n ,如图(1),求∠EHF 的度数〔提示:连接CG ,CF 〕;(2)假设21=n ,如图(2),求tan ∠EHF 的值.25.(本小题总分值13分)如图,在平面直角坐标系中,抛物线y =ax 2-2ax -3a 〔a >0〕与x 轴交于A ,B 两点〔点A 在点B 左侧〕,经过点A 的直线l :y =kx +b 与y 轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .〔1〕求点A 的坐标及直线l 的函数表达式〔其中k ,b 用含a 的式子表示〕;〔2〕点E 为直线l 下方抛物线上一点,当△ADE 的面积的最大值为254时,求抛物线的函数表达式;〔3〕在〔2〕的条件下,设点P 是抛物线对称轴上一点,点Q 是坐标平面内一点,请问:是否存在以点A 、D 、P 、Q 为顶点的四边形是以AD 为边的矩形?假设存在,请直接写出P ,Q 两点的坐标;假设不存在,请说明理由.202X 年中考适应性考试数学参考答案一.选择题二.填空题11.4.3×104 12.)2)(2(2-+x x 13. 80 14.34 15.6 16. 412三.解答题17.解: 原式xy x y x y xy x 554422222+--+++=…………………3分 xy 9=…………………………………………………………4分当12+=x ,12-=y 时,原式=9.……………………………6分18.解:〔1〕60 72 ………………………………………………2分144°………………………………………………………2分〔2〕图略.〔“环保〞15人,“建模〞12人〕………………3分〔3〕21…………………………………………………………6分 19.PD ⊥OA ,PE ⊥OB ,垂足分别为D,E..…………………………………1分 PD=PE. …………………………………………………………………2分证明:∵PD ⊥OA ,PE ⊥OB ,∴∠PDO=∠PEO=90°. …………………………………………………3分在△PDO 和△PEO 中,∠PDO=∠PEO ,∠AOC=∠BOC ,OP=OP ,∴△PDO ≌△PEO ,……………………………………………………5分∴PD=PE.………………………………………………………………6分20.解:设小明步行的速度为x 米/分钟,依据题意得103900900=-xx ,……………………………………………3分 解得60=x . …………………………………………………5分经检验:60=x 是原方程的解.∴小明步行的速度为60米/分钟. ……………………………6分21.解:〔1〕∵反比例函数xm y =的图象经过点A 〔-2,1〕, ∴2-==xy m , ∴反比例函数的解析式为xy 2-=.…………………1分 ∵点〔n ,-2〕在反比例函数上,∴n =1. ……………2分 ∵直线b kx y +=经过点A 〔-2,1〕,B 〔1,-2〕.∴⎩⎨⎧-=+=+-.2,12b k b k ,解之,得⎩⎨⎧-=-=.1,1b k ,……………4分∴一次函数的解析式为1--=x y .…………………5分〔2〕在1--=x y 中,当0=x 时,1-=y .设直线1--=x y 与y 轴相交于点C ,则OC =1.…………………6分∴S △AOB = S △OAC +S △OBC =23.……………………………7分 22.〔1〕直线BC 与⊙O 相切. …………………………………………1分理由如下:连接OD. ∵AD 平分∠BAC ,∴∠CAD=∠OAD.又OA=OD ,∴∠OAD=∠ODA, ∴∠CAD=∠ODA.∴OD ∥AC ,……………………2分 ∴∠BDO=∠C=90°.∴OD ⊥BC .∵D 在⊙O 上,∴直线BC 与⊙O 相切. …………………………………4分 〔2〕设⊙O 的半径为r ,则OD=r ,OB=r +2.由〔1〕知∠BDO=90°,∴222OB BD OD =+, 即222)2()32(+=+r r ,解得r =2.………………………………………………5分 ∵tan ∠BOD 3232===OD BD ,∴∠BOD =60°. …………………7分 ∴π32-32S -S ODF OBD ==∆扇形阴影S .…………………………………8分 23. (1)设商家一次购置这种产品m 件时,销售单价恰好为2600元.由题意可得3000-10(m -10)=2 600,解得m =50.答:商家一次购置这种产品50件时,销售单价恰好为2600元.…………………2分(2)由题意,得3000-10(x -10)≥2 600,解得x ≤50,………………………………3分 当0≤x ≤10时,y =(3000-2 400)x =600x ;………………………………………4分 当10<x ≤50时,y =[3000-2400-10(x -10)]x =x x 700102+-;……………5分 当x >50时,y =(2600-2400)x =200x . …………………6分(3)由x x y 700102+-=可知抛物线开口向下, 当352=-=ab x 时,利润y 有最大值, 因此,为使商家一次购置的数量越多,公司所获的利润越大,x 值应不大于35. ……………………………………………………………………………………………8分 设销售单价为p 元,则p=3000-10(x-10)=-10x+3100.∵k=-10<0,p 随x 的增大而减小.∴当x=35时,p 有最小值为-1035+3100=2750〔元〕.答:公司应将最低销售单价调整为2750元. …………………10分24. (1)如图 (1)所示,连接CG 、CF . ∵四边形ABCD 是正方形, ∴AB=BC=CD=AD ,∠A=∠ABC=∠BCD=∠CDA=90°. …………1分 当n =1时,EF=AB ,DG=AE,∴BF=AE=DG ,∴△CBF ≌△CDG ,……………………………2分 ∴CF=CG ,∠FCB=∠GCD. …………………………………3分∵∠GCD+∠GCB=∠BCD=90°,∴∠FCG=∠FCB+∠GCB=90°, ∴∠CFG=45°. ………………………………………4分∵EF ∥DC 且EF=DC ,∴四边形EFCD 为平行四边形.∴DE ∥CF.∴∠FHE=∠CFG=45°. …………………5分(2)过点F 作FM ∥DE ,交DC 于点M ,如图(2)所示,连接GM. ∵EF ∥DM ,∴四边形EFMD 为平行四边形.……………6分∴ DM=EF ,ED=FM .∵EF=21AB ,DG=21AE ,∴DM=21AB=21AD. ……………7分 ∴DM ︰AD=DG ︰AE.∴△DGM ∽△AED ,∴∠ADE=∠DMG . ……8分 ∵∠ADE+∠EDM=90°,∴∠DMG+∠EDM=90°,∴GM ⊥DE ,又∵DE ∥FM ,∴∠FMG=90°. ………………9分∴tan ∠EHF=tan ∠GFM=21===AD DM ED GM FM GM .……10分 25. 解:〔1〕在y =ax 2-2ax -3a 中,令y =0,得ax 2-2ax -3a =0,解得x 1=-1,x 2=3. ∵点A 在点B 的左侧,∴A 〔-1,0〕.……………1分如图1,过点D 作DF ⊥x 轴于点F ,∵∠AOC =∠AFD =90°,∴DF ∥OC .∴OF OA =CD AC. ∵CD =4AC ,∴OF OA =CD AC=4.……………………3分 ∵OA =1,∴OF =4.∴D 点的横坐标为4,代入y =ax 2-2ax -3a ,得y =5a .∴D 〔4,5a 〕. 把A ,D 的坐标代入y =kx +b ,得045k b k b a -+=⎧⎨+=⎩,解得k a b a =⎧⎨=⎩. ∴直线l 的函数表达式为y =ax +a .……………………5分〔2〕如图2,过点E 作EH ∥y 轴,交直线l 于点H ,设E 〔x ,ax 2-2ax -3a 〕,则H 〔x ,ax +a 〕.∴HE =(ax +a )-(ax 2-2ax -3a )=-ax 2+3ax +4a .…………7分 ∴S △ADE =S △AEH +S △DEH =52(-ax 2+3ax +4a )=-52a (x -32)2+1258a .……8分,∴△ADE 的面积的最大值为1258a .………9分 ∴1258a =254,解得a =25.……………………10分 ∴抛物线的函数表达式为y =25x 2-45x -65.……………………11分 〔3〕P 1(1,9.5),Q 1(-4,7.5);………12分,P 2(1,-5),Q 2(6,-3).………13分。

2016年湖北省中考适应性考试数学试卷(附答案)

2016年湖北省中考适应性考试数学试卷(附答案)

湖北省中考适应性考试数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只 有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.-5的绝对值是 ( ) A .51 B . 5 C .51- D . -5 2.下列各图中,不是中心对称图形的是 ( )3.下列计算正确的是( ) A .()623a a -=- B .222)(b a b a -=- C .235325a a a += D .336a a a =÷ 4.分解因式2m ma -的结果是( )A.(1)(1)m a a +-B.2(1)m a +C.2(1)m a - D.(1)(1)a a -+5.如图,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE6.已知m 10x =,n 10y =,则2310x y +等于( )A .n 3m 2+B .22n m +C .mn 6D .32n m7.如图,已知△ABC 中,∠C=090,若沿图中虚线剪去∠C ,则 ∠1+∠2等于 ( ) A .90° B .135° C .270° D .315°8.已知一元二次方程2x 2+mx-7=0的一个根为x=1,则另一根为( ) A .1 B .2 C .-3.5 D .-59.在函数31-=x y 中,自变量x 的取值范围是( ) A .x ≠3 B .x ≠0 C .x >3 D .x ≠-310.已知抛一枚均匀硬币正面朝上的概率为21,下列说法错误..的是( ) A .连续抛一枚均匀硬币2次,必有1次正面朝上. B .连续抛一枚均匀硬币10次,都可能正面朝上.C .大量反复抛一枚均匀硬币,平均100次出现正面朝上50次.D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的.11.如图,线段AB 两个端点的坐标分别为A(6,6)、B(8,2),以原点O 为位似中心,在第 一象限内将线段AB 缩小为原来的21后得到线段CD ,则端点C 的坐标为( ) A .(3,3) B .(4,3) C .(3,1) D .(4,1)12.如图,P 为⊙O 的直径BA 延长线上的一点,PC 与⊙O 相切,切点为C ,点D 是⊙O 上一点,连接P D .已知PC =PD =B C .下列结论:(1)PD 与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO =CD ;(4)弧AC=弧AD .其中正确的个数为( )A .1个B . 2个C .3个D .4个二、填空题(本大题共5个小题,每小题3分,共15分)请把每小题的答案填在答题卡的相应位置上.13.计算:)3223)(3223(-+=__________________.14.央视报道,中国人每年在餐桌上浪费的粮食价值高达2000亿元,被倒掉的食物相当于 200000000多人一年的口粮,把200000000用科学计数法表示为___________________.15.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:那么这些运动员跳高成绩的众数是( )A .4B .1.75C .1.70D .1.6516.一艘观光游船从港口A 以北偏东60°的方向出港观光,航行60海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测 得事故船在它的北偏东30°方向,马上以40海里每小时的速度前往救援,海警船到达事 故船C 处所需的时间大约为________小时(用根号表示).17. 在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC=6.若P 在线段CA 的延长线上, 且∠ABP =30°,则CP 的长为_______.43和6成绩(m )1.501.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2 A B C 30O60O(港口)(海警船)(游船)三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并将解答过程写在答题卡上每小题对应的答题区域内. 18.已知15-=x ,求代数式652-+x x 的值.19.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.20.如图,直径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD . 已知DE=3,∠BAC+∠EAD=180°,求点A 到BC 的距离.21.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,双曲线1y =xm与直线2y =b x +-交于A ,D 两点,直线2y =b x +-交x 轴于点C ,交y 轴于 点B ,点B 的坐标为(0,3),3==∆∆D O C AO B s s .(1)求m 和b 的值;(2)求21y y >时x 的取值范围.22.下图是某校未制作完整的三个年级假期义工(不计报酬,为他人提供服务的人)的统计 图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有假期义工_______名; (2)将两幅统计图补充完整;(3)要求从七年级、九年级义工中各推荐一名队长候选人,八年级义工中推荐两名队长候选人,再从四名候选人中先后选出两人任队长,用列表法或树形图,求出两名队长都是八年级义工的概率是多少?23.如图,四边形ABCD 为菱形,E为对角线AC 上的一个动点,连结DE 并延长交射线AB 于点F ,连结BE .(1) 求证:∠AFD=∠EBC ;(2) 若∠DAB=90°,当∆BEF 为等腰三角形时,求∠EFB 的度数.24.响应政府“节能”号召,我市华强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯.已知这种节能灯的出厂价为每个10元.某商场试销发现:销售单价定为15元/个,每月销售量为350个;每涨价1元,每月少卖10个.(1)求出每月销售量y (个)与销售单价x (元)之间的函数关系,并写出自变量的取值范围;(2)设该商场每月销售这种节能灯获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(3)如果物价部门规定,这种节能灯的销售单价不得高于25元.商场根据公司生产调拨计划得知,每月商场最多可销售这种节能灯300个,在这种情况下,商场每月销售这种节能灯最多可获得多少利润?A B CD E F ABC D E F (备用图)25.如图,AB为⊙O的直径,C,E为⊙O上的两点,AC平分∠EAB,CD⊥AE于D.(1)求证:CD为⊙O的切线;(2)过点C作CF⊥AB于F,如图2,判断CF和AF,DE之间的数量关系,并证明之;3,求图中阴影部分的面积.(3)若AD-OA=1.5,AC=326.如图,矩形OABC的顶点O,A,C都在坐标轴上,点B的坐标为(8,3),M是BC 边的中点.(1)求出点M的坐标和△COM的周长;(2)若点P是矩形OABC的对称轴MN上的一点,使以O,M,C,P为顶点的四边形是平行四边形,求出符合条件的点P的坐标;(3)若P是OA边上一个动点,它以每秒1个单位长度的速度从A点出发,沿AO方向向点O匀速运动,设运动时间为t秒.是否存在在某一时刻t,使以P,O,M为顶点的三角形与△C OM 相似?若存在,求出此时t的值;若不存在,请说明理由.参考答案评分说明:1.若与参考答案有不用的解法而解答过程正确者,请参照本评分标准分步给分。

枣阳市2016年中考适应性考试

枣阳市2016年中考适应性考试

枣阳市2016年中考适应性考试语文试卷(本试卷共6页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:本卷为试题卷,在试题卷上作答无效,请将答案写在答题卡上。

一、积累与运用(20分)1.下面句子中有两个错别字,请改正后用正楷字将整个句子抄写在米字格中。

(2分)深沉赤烈的情感,荡气回长的赞歌。

2.根据语境,给下面一段话中加点的字注音。

(2分)清晨,驻足雄伟壮丽的东津大桥,谛.()听桥下涛涛江水,目睹鳞次栉比的住宅小区,我不禁想起那一首曾风靡.()一时的老歌---《涛声依旧》。

是呀,涛声依旧,可襄阳已换新颜!3.下列句子中加点成语使用正确的一项是()(2分)A.山东失效疫苗事件发生后,疫苗题材图书的出版和销售络绎不绝....。

B.枣阳家电下乡活动展示了各种款式的家电,真让农民朋友见异思迁....。

C.第四季“中国好声音”歌手张磊以一首《年少如风》技惊四座,令人叹为观止....。

D.中国人民对日本篡改教科书,美化侵略中国这件事,真的是义愤..。

..填膺4.下列句子没有语病的一项是()(2分)A.时隔8年后,襄阳城区全面恢复“禁鞭令”,即由原来的“限放”改为“全面禁放”。

B.《叶问3》这部电影对我很熟悉,因为我一直喜欢《叶问》系列电影。

C.《西游记》以其丰富的想象和离奇的情节,深受文学爱好者和青少年朋友的喜爱。

D.通过举办“G20峰会”,使全世界的目光都聚焦到了飞速发展中的中国。

5.把下列句子组成一段通畅的话,正确排序的一项是()(2分)①漫溯人生的河流,我们看到了伟大的生命歌唱者,他们在人生的磨难中笑傲红尘,坚忍不拔。

②我们无法忘怀这些生命的歌唱者,在我们低落、惆怅、失意的时候,耳畔总能传来一曲曲天籁,激励与鞭策着我们前行。

③左丘失明,却有《国语》存世;司马迁遭受腐刑,《史记》却传诵千古。

④生命如一条河流,唯有经历过惊涛骇浪才能更显辉煌。

⑤虽然水波不兴也是一种美,但波涛汹涌更能让人刻骨铭心。

中考适应性考试数学试题(附答案)

中考适应性考试数学试题(附答案)

枣阳市2018年中考适应性考试数学试题一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列各数中,最小的数是( )A.0B.3C.-3D.-22.下列计算中正确的是( )A.a ·22a a =B. 428236a a a =÷C.4222)2(a a = D. a 2·22a a =3.实数3的值在( )A.0与1之间B.1与2之间C.2与3之间D.3与4之间4.如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a ,b 上,如果∠2=50°,那么∠1的度数为( )A .10°B .20°C .30°D .40°5.不等式组的解集在数轴上表示为( )6.某几何体的主视图和左视图如图所示,则该几何体可能是( )A.长方体B.圆锥C.圆柱D.球7.一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A.3,3,0.4B.2,3,2C.3,2,0.4D.3,3,28. 在下列事件中,必然事件是( )A .在足球赛中,弱队战胜强队B .任意画一个三角形,其内角和是360°C. 抛掷一枚硬币,落地后反面朝上 D .通常温度降到0℃以下,纯净的水结冰9.某商品的售价为100元,连续两次降价x %后售价降低了36元,则x 为( )A.8B.20C.36D.1810.如图,正方形ABCD 的边长为2 cm ,动点P 从点A 出发,在正方形ABCD 的边上沿A→B -→C 的方向运动到点C 停止.设点P 的运动路程为x (cm),在下列图象中,能表示△ADP 的面积y (cm 2)关于x (cm)的函数关系的图象是( )二、填空题:(本大题共6个小题,每小题3分,共18分)11.某市2018年初中毕业生人数约为43000人,数据43000用科学记数法表示为 .12.分解因式822-x = .13.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为 元.14.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高 米(结果保留根号).15.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是 步.16. 如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD 的长为 .三、解答题:(本大题共9个小题,共72分).17.(本题满分6分)先化简,再求值:)(5))(()2(2y x x y x y x y x ---+++,其中12+=x ,12-=y .18.(本题满分6分)为了提高科技创新意识,我市某中学在“2018年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(每个学生只能参加一个类别的比赛),根据各类别参赛人数制成不完全的条形统计图和扇形统计图如下:请根据以上图品信息,解答下列问题:(1)全体参赛的学生共有 人,扇形统计图中“建模”所在扇形的圆心角是 °;(2)将条形统计图补充完整;(3)在比赛结果中,获得“环保”类一等奖的学生为1名男生和2名女生,获得“建模”类一等奖的学生为1名男生和1名女生.现从这两类获得一等奖的学生中各随机选取1名学生参加市级“环保建模”考察活动.则选取的两人中恰为1名男生1名女生的概率是 .19.(本题满分6分)证明命题“在角的内部角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程.下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.已知:如图,∠AOC=∠BOC ,点P 在OC 上, .求证: .请你补全已知和求证,并写出证明过程.20.(本题满分6分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.求小明步行的速度(单位:米/分钟)是多少.21.(本题满分7分)如图,一次函数b kx y +=的图象与反比例xm y =的图象相交于A (-2,1),B (n ,-2)两点.(1)求反比例函数和一次函数的解析式;(2) 求△ABO 的面积.22.(本题满分8分)如图,在△ABC 中,∠C=90°, ∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F.(1)试判断直线BC 与⊙O 的位置关系,并说明理由;(2)若BD 32=,BF=2,求阴影部分的面积(结果保留π).23. (10分)某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过 10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y (元)与x (件)之间的函数关系式,并写出白变量x 的取值范围.(3)该公司的销售人员发现:当商家一次购买这种产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)。

湖北省枣阳市中考适应性考试数学考试卷(解析版)(初三)中考模拟.doc

湖北省枣阳市中考适应性考试数学考试卷(解析版)(初三)中考模拟.doc

湖北省枣阳市中考适应性考试数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型 选择题填空题简答题xx 题 xx 题 xx 题 总分 得分一、xx 题(每空xx 分,共xx 分)【题文】计算-(-1)的结果是A. ±1B. -2C. -1D. 1 【答案】D【解析】试题分析:利用“负负得正”的口诀,可得-(-1)=1,故答案选D. 考点:有理数的运算.【题文】下列调查中,最适合采用全面调查(普查)方式的是 A. 对襄阳市辖区内汉江流域水质情况的调查 B. 对乘坐飞机的旅客是否携带违禁物品的调查 C. 对一个社区每天丢弃塑料袋数量的调查 D. 对襄阳电视台“襄阳新闻”栏目收视率的调查 【答案】B【解析】逐项分析四个选项中们案例最适合的调查方法,即可得出结论. 解:A 、对襄阳市辖区内长江流域水质情况的调查,应采用抽样调查; B 、对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查; C 、对一个社区每天丢弃塑料袋数量的调查, 应采用抽样调查; D 、对襄阳电视台“襄阳新闻”栏目收视率的调查,应采用抽样调查. 故选B .“点睛”本题考查了全面调查与抽样调查,解题的关键是逐项分析四个选项应用的调查方法.本题属于基础题,难度不大,解决该题型题目时,联系实际选择调查方法是关键. 【题文】如图所示,用量角器度量∠AOB,可以读出∠AOB 的度数为A. 45°B. 55°C. 125°D. 135° 【答案】B【解析】试题分析:由生活知识可知这个角小于90度,排除C 、D ,又OB 边在50与60之间,所以,度数评卷人得分应为55°.故选B.考点:用量角器度量角.【题文】下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A、不是轴对称图形,不符合题意;B、是轴对称图形不是中心对称图形,不符合题意;C、是轴对称图形又是中心对称图形,符合题意;D、是轴对称图形不是中心对称图形,不符合题意;故选C.“点睛”此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.【题文】下列计算中,结果是的是A. B. C. D.【答案】D【解析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.解:A、a2+a4≠a6,不符合;B、a2•a3=a5,不符合;C、a12÷a2=a10,不符合;D、(a2)3=a6,符合.故选D.“点睛”本题考查了合并同类项、同底数幂的乘法、幂的乘方。

湖北省枣阳市2016届中考模拟考试数学试题(扫描版)(附答案)$718385

湖北省枣阳市2016届中考模拟考试数学试题(扫描版)(附答案)$718385

参考答案一.选择题二.填空题11. 1≠x 12.43 13. 22-=x y 14.2 15.9∶25 16. π4 三.解答题17.解:1)1()12)(1(2++---x x x 11212222+---+--=x x x x x152+-=x x . ……………………………………………………3分当23-=x 时,39181)23(5)23(2-=+---.……6分18.解:(1)200…………………………………………………………1分144°………………………………………………………2分(2)C 有200-20-80-40=60人,补全统计图,如图所示.……………………………………………3分(3)列表如下:……………………………5分所以有12种等可能的结果,其中符合要求的只有2种,………6分则P (选中甲、乙两位同学)61122==.…………………………7分19.(1)如图所示.……………………………………………2分(2)AF ∥BC 且AF=BC. …………………………………3分理由如下:∵AB=AC ,∴∠ABC=∠C.∴∠DAC=∠ABC+∠C=2∠C.………………………………4分由作图可知:∠DAC=2∠FAC ,∴∠C=∠FAC ,∴AF ∥BC.………………………………5分∵点E 是AC 的中点,∴AE=CE.又∠AEF=∠CEB ,∴△AEF ≌△CEB.∴AF=BC.…………………………………………………6分20.解:(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运x 2趟,根据题意得121211=+x x ,解得18=x ,则362=x ,18=x .……………3分 经检验:18=x 是原方程的解.答:甲车单独运完需18趟,乙车单独运完需36趟.……………4分(2)设甲车每一趟的运费是a 元,由题意得:4800)200(1212=-+x a ,解得300=a ,………………………………………………6分则乙车每一趟的费用是300-200=100(元),单独租用甲车总费用是18×300=5400(元),单独租用乙车总费用是36×100=3600(元),3600<5400,故单独租用一台车,租用乙车合算.……………7分21.解:(1)如图,过点A 作AD ⊥x 轴于点D.∵sin ∠AOC 54==OA AD ,OA=5,∴AD=4.………………………1分 由勾股定理,得3452222=-=-=AD OA DO .∵点A 在第一象限,∴点A 的坐标为(3,4).………………2分将点A 的坐标(3,4)代入x m y =,得34m =,∴12=m , ∴反比例函数的解析式为xy 12=,……………………………3分 将点A 的坐标(3,4)代入2+=nx y ,得32=n , ∴一次函数的解析式为232+=x y .……………………………4分(2)在232+=x y 中,令0=y , 即0232=+x ,∴3-=x , ∴点B 的坐标为(-3,0).…………………………5分 ∴OB=3.又∵AD=4,∴6432121=⨯⨯=⋅=∆AD OB S AOB , ∴△AOB 的面积为6.……………………………………6分22.证明:(1)如图,连接OC. 由垂径定理得3221==CD CE .…………………………1分 设OC=R ,在Rt △OCE 中,由勾股定理得222)32()2(=--R R ,解得R=4.………………………………………………………2分 ∴34)32(62222=+=+=ED AE AD .∴AD=CD.……………………………………………………3分∵FA 是⊙O 的切线,∴FA ⊥AB.又CD ⊥AB ,∴FA ∥CD.又FC ∥CD ,∴四边形FADC 是平行四边形.……………4分∴四边形FADC 是菱形.…………………………………5分(2)连结OF ,∵四边形FADC 是菱形,∴FC=FA.……………………………………………………6分又OC=OA ,OF=OF ,∴△FOC ≌△FOA (SSS ),∴∠FCO=∠FAO=90°,……………………………………7分∴FC ⊥OC ,∴FC 是⊙O 的切线.……………………………8分23.(1)=y…………………………2分(2)=w …………………4分化简得=w …………………5分即=w …………………………6分当0≤x ≤30,且x =5时,w 的最大值为6250;当-20≤x ≤0,且25-=x 时,w 的最大值为6125.…7分 由题意知x 应取整数,故当2-=x 或3-=x 时,w <6125<6250.故当销售价格为65元时,利润最大,最大利润为6250元. …………8分(3)由题意,w ≥6000,如图,令6000=w ,得51-=x ,02=x ,103=x ,…………9分∴-5≤x ≤10.故将销售价格控制在55元到70元之间(包括55元和70元)才能使每月利润不少于6000元.………………10分24.(1)∵DM ∥EF ,∴∠AMD=∠AFE.……………………………………1分∵∠AFE=∠A ,∴∠AMD=∠A. ∴DM=DA.………………………………2分(2)∵D ,E 分别为AB ,BC 的中点,∴DE ∥AC. ∴∠DEB=∠C ,∠BDE=∠A.……………………………3分 ∴∠BDE=∠AFE.………………………………………………………4分∴∠BDG+∠GDE=∠C+∠FEC.∵∠BDG=∠C ,∴∠EDG=∠FEC. ∴△DEG ∽△ECF.………………6分(3)如图所示.∵∠BDG=∠C=∠DEB ,∠B=∠B ,∴△BDG ∽△BED. ∴BDBG BE BD =,即BD 2=BE·BG .…………………………………8分 ∵∠A=∠AFE ,∠B=∠CFH ,∴∠C=180°-∠AFE-∠CFH=∠EFH.又∵∠FEH=∠CEF ,∴△EFH ∽△ECF. ∴ECEF EF EH =,即EF 2=EH·EC.…………………………………9分 ∵DE ∥AC ,DM ∥EF ,∴四边形DEFM 是平行四边形.∴EF=DM=AD=BD. ∵BE=EC ,∴EH=BG=1.…………………………10分25.解:(1)由已知,得C (3,0),D (2,2).∵∠ADE=90°-∠CDB=∠BCD ,∴AE=AD ×tan ∠ADE=1. ∴E(0,1). …………………………1分设过点E 、D 、C 的抛物线的解析式为c bx ax y ++=2(0≠a ).将点E 的坐标代入,得1=c .………………………………2分将1=c 和点D 、C 的坐标分别代入,得⎩⎨⎧=++=++,0139,2124b a b a 解得⎪⎪⎩⎪⎪⎨⎧=-=.613,65b a 故过点E 、D 、C 的抛物线的解析式为1613652++-=x x y .…………3分 (2)EF=2GO 成立.…………………………………………………………4分∵点M 在抛物线上,点M 的横坐标为56,∴点M 的纵坐标为512. 设DM 的解析式为)0(1≠+=k b kx y ,将点D 、M 的坐标分别代入,得⎪⎩⎪⎨⎧=+=+,51256,2211b k b k 解得⎪⎩⎪⎨⎧=-=.3,211b k ∴DM 的解析式为321+-=x y .……………………5分 ∴F (0,3),EF=2.如图,过点D 作DK ⊥OC 于点K ,则DA=DK.∵∠ADK=∠FDG=90°,∴∠FDA=∠GDK.又∵∠FAD=∠GKD=90°,∴△DAF ≌△DKG .∴KG=AF=1. ∴GO=1. ∴EF=2GO.……………………………………7分(3)如图.点P 在AB 上,G (1,0),C (3,0),则设P (,2).∴2222)1(+-=t PG ,2222)3(+-=t PC ,GC=2.……………………8分①若PG=PC ,则22222)3(2)1(+-=+-t t ,解得2=t . ∴P (2,2),此时点Q 与点P 重合,∴Q 1(2,2).……9分②若PG=GC ,则22222)1(=+-t ,解得1=t ,∴P (1,2),此时GP ⊥x 轴.GP 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为37.∴Q 2(1,37).………………………10分③若PC=GC ,则22222)3(=+-t ,解得3=t ,∴P (3,2),此时PC=GC=2,△PCG 为等腰直角三角形.过点Q 作QH ⊥x 轴于点H ,则QH=GH ,设QH=h ,∴Q (1+h ,h ), ∴h h h =++++-1)1(613)1(652,解得571=h ,22-=h (舍去). ∴Q 3(512,57).……………………………………………… 11分 综上所述,存在三个满足条件的点Q ,即Q 1(2,2),Q 2(1,37),Q 3(512,57).…………………………12分。

中考试题枣阳市模拟考试.docx

中考试题枣阳市模拟考试.docx

枣阳市2016年中考模拟考试数学试题(本试题共4页,满分120分,考试时间120分钟)★祝考试顺利★ 注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘贴在答题卡上的指定位置.2.选择题每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

作图一律用28铅笔或0.5毫米黑色签字笔。

4.考试结束后,请将本试题卷与答题卡一并上交。

一、选择题:(本大题共l0个小题,每4、题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.数轴上的点A 、B 位置如图所示,则线段AB 的长度为A .-3B .5C .6D .72.数据0.000207用科学记数法表示为31007.2.-⨯A 41007.2.-⨯B 51007.2.-⨯C 61007.2.0-⨯3.下列因式分解错误的是))((.22y x y x y x A -+=- 222)(.y x y x B +=+)(.2y x x xy x C +=+ 22)3(96.+=++x x x D4.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为ο130.A ο120.B ︒140.C ο125.D5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面的字是A .和B .谐C .襄D .阳6.有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是10.A 10.B 2.C 2.D7.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :,5:3=AC 则ABAD 的值为 21.A 33.B 32.C 22.D8.若不等式组⎩⎨⎧->-≥-2210x x a x 有解,则a 的取值范围是 1.->a A 1.-≥a B 1.≤a C 1.<a D9.点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是A .当弦PB 最长时,△APC 是等腰三角形B .当△APC 是等腰三角形时,PO ⊥ACC .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,∆APC 是等腰三角形10.如图,港口A 在观测站O 的正东方向,OA =4 km .某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为km A 4. km B 32. km C 22. km D )13(+⋅二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横线上.11.若分式12-x 有意义,则X 的取值范围是_____________. 12.现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是 13.把抛物线122++=x x y 向下平移2个单位长度,再向右平移1个单位长度,所得到的抛物线的解析式是______________.14.已知关于X 的一元二次方程04222=-++k x x 有两个不相等的实数根,且k 和方程的根均为整数,则k =__________.15.如图,已知在∆ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,,//,//AB EF BC DE且AD :AB =3:8,那么16.如图,正方形ABCD 的边长为4,点E 在BC 上,四边形EFGB也是正方形,以B 为圆心,BA 长为半径画弧AC ,连接AF ,CF ,则图中阴影部分面积为__________.三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤。

枣阳市中考适应性考试数学答案

枣阳市中考适应性考试数学答案

枣阳市中考适合性考试数学答案一.选择题:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C D A B C A D B D C D 二.填空题:(每小题3分,共15分)13.21 14.-1,0,1,2 15. 10 16. 75°或15° 17. π4 三、解答题:(共69分)18.解:原式=1)1)(1(2----x x x x ·14412+--x x x …………………………1分 112--=x x ·x x x 211)12(12-=--.………………………………3分 由022=-+x x ,解得21-=x ,12=x .………………………5分由题意,得x ≠1,将2-=x 代入,得原式=51.………………6分 19.(1) 100………………………………………1分(2)条形统计图中,空气质量为“良”的天数为100×20%=20(天),所以要补画一个高为20的长方形;条形统计图略. ………………2分 72°……………………3分(3)共有6种等可能情况………………5分其中符合一男一女的有4种,故所求概率为P 32=.…………………………………………6分 20.(1)证明:由图知BC=DE ,∴∠BDC=∠BCD.∵∠DEF=30°,∴∠BDC=∠BCD=75°………………………………1分∵∠ACB=45°,∴∠DOC=30°+45°=75°. ∴∠COD=∠BDC.∴△CDO 是等腰三角形.……………………………………3分(2)在Rt △BDF 中,=BDDF tan ∠DBF 33=……………………4分 ∵BD 3=·=32 6.…………………………………………5分在Rt △ABC 中,=BCAB tan45°, ∴AB=22·623=.………6分 21.解:(1)设甲车单独运完此堆垃圾需运x 趟,则乙车单独运完此堆垃圾需运x 2趟,根据题意得121211=+x x ,解得18=x ,则362=x . 经检验,18=x 是原方程的解.……………3分答:甲车单独运完需18趟,乙车单独运完需36趟.(2)设甲车每一趟的运费是a 元,则题意得:4800)200(1212=-+a a ,解得300=a .……………………5分则乙车每一趟的费用是300-200=100(元),单独租用甲车总费用是18×300=5400(元),单独租用乙车总费用是36×100=3600(元),3600<5400,故单独租用一台车,租用乙车合算.………………6分22.(1)∵点A (1,4)在x k y =1的图象上,∴4=k , ∴xy 41=.………………1分 ∵点B 在xy 41=的图象上, ∴2-=m ,∴点B (-2,-2).……………2分又∵点A 、B 在一次函数b ax y +=2的图象上,∴⎩⎨⎧-=+-=+,22,4b a b a 解得⎩⎨⎧==,2,2b a ∴222+=x y .……………………3分 ∴这两个函数的表达式分别为:x y 41=,222+=x y . (2)由图象可知,当1y >2y 时,自变量x 的取值范围为0<x <1或x <-2.……4分(3)∵点C 与点A 关于x 轴对称,∴C (1,-4).如图,过点B 作BD ⊥AC ,垂足为D ,作D (1,-2),于是△ABC 的高BD=|1-(-2)|=3,底AC=8.…………………………5分∴S △ABC =21AC ·BD=12.………………………………6分 23.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD.∴∠OAE=∠OCF ,∠OEA=∠OFC.……………………1分又∵AE=CF ,∴△AEO ≌△CFO (ASA ). ∴OE=OF.………………2分(2)连接BO.∵OE=OF ,BE=BF ,∴BO ⊥EF ,且∠EBO=∠FBO.………………3分∵四边形ABCD 是矩形,∴∠BCF=90°,又∵∠BAC=2∠BAC ,∠BEF=∠BAC+∠EOA ,∴∠BAC=∠EOA ,∴AE=OE.……4分∵AE=CF ,OE=OF ,∴OF=CF.又∵BF=BF ,∴△BOF ≌△BCF (HL ).……………………5分∴∠CBF=∠FBO=∠OBE. ∴∠ABC=90°,∴∠OBE=30°.∴∠BEO=60°,∴∠BAC=30°.……………………6分∵tan ∠BAC AB BC =,∴tan30°AB 32=,即AB 3233=,∴AB=6.…………7分 24. 解:(1)连接OC ,∵OA=OC ,∴∠OAC=∠OCA.∵PC 是⊙O 的切线,AD ⊥CD ,∴∠OCP=∠D=90°,∴OC ∥AD.………2分∴∠CAD=∠OCA=∠OAC.即AC 平分∠DAB.………………………………3分(2)PC=PF.………………………………………………………………4分证明:∵AB 是直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.………………5分又∵∠ACE=∠BCE ,∠PFC=∠CAB+∠ACE ,∠PCF=∠PCB+∠BCE. ∴∠PFC=∠PCF. ∴PC=PF.……………………………………6分(3)连接AE. ∵∠ACE=∠BCE ,∴=,∴AE=BE. 又∵AB 是直径,∴∠AEB=90°.AB 102==BE ,∴OB=OC=5.……………………8分∵∠PCB=∠PAC ,∠P=∠P, ∴△PCB ∽△PAC.∴CA BC PC PB =.∵tan ∠PCB=tan ∠PCD 43=. ∴CA BC PC PB =43=.……………………9分 设PB x 3=,则PC x 4=,在Rt △POC 中,2225)4()53(+=+x x , 解之,得01=x ,7302=x . ∵x >0,∴730=x ,∴PF=PC=7120.……………………10分 25. 解:(1)30;………………………………………………1分(2)甲y =3015+-x ; ………………………………2分=乙y ⎩⎨⎧⋯⋯⋯⋯<<+-⋯⋯⋯⋯⋯⋯≤≤分分4).21(60303),10(30x x x x令甲y =乙y ,得x x 303015=+-,解之,得32=x .…………5分 进而甲y =乙y =20,∴点M 的坐标是(32,20).…………6分 ∴M 的坐标表示:甲、乙经过32h 第一次相遇,此时离点B 的距离是20km.……7分 (3)分三种情况讨论:①当0≤x ≤32时,即甲乙两人相遇前相距3km 以内, 甲y -乙y ≤3,得x x 303015-+-≤3,解之得 x ≥53, ∴53≤x ≤32; ……8分 ②当32<x ≤1时,甲乙两人相遇后相距3km 以内 乙y -甲y ≤3,得)3015(30+--x x ≤3,解之得 x ≤1511 ∴32<x ≤1511……9分 ③当1<x ≤2时,即乙返回时与甲相距3km 以内乙y -甲y ≤3,得)3015()6030(+--+-x x ≤3,解之得 x ≥59 ∴59≤x ≤2 综上可得:53≤x ≤1511或59≤x ≤2时,甲、乙两人能够有无线对讲机保持联系。

襄阳枣阳市中考模拟考试数学试题含答案

襄阳枣阳市中考模拟考试数学试题含答案

枣阳市2016年中考模拟考试数学试题(本试题共4页,满分120分,考试时间120分钟)★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、考试号填写在试题卷和答题卡上,并将考试号条形码粘 贴在答题卡上的指定位置.2.选择题每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.非选择题(主观题)用0.5毫米的黑色签字笔直接答在答题卡上每题对应的答题区域内, 答在试题卷上无效。

作图一律用28铅笔或0.5毫米黑色签字笔。

4.考试结束后,请将本试题卷与答题卡一并上交。

一、选择题:(本大题共l0个小题,每4、题3分,共30分)在每小题给出的四个选项中,只 有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.数轴上的点A 、B 位置如图所示,则线段AB 的长度为A .-3B .5C .6D .72.数据0.000207用科学记数法表示为31007.2.-⨯A 41007.2.-⨯B 51007.2.-⨯C 61007.2.0-⨯3.下列因式分解错误的是))((.22y x y x y x A -+=- 222)(.y x y x B +=+)(.2y x x xy x C +=+ 22)3(96.+=++x x x D4.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为130.A 120.B ︒140.C 125.D5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面的字是A .和B .谐C .襄D .阳6.有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是10.A 10.B 2.C 2.D7.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :,5:3=AC 则ABAD 的值为 21.A 33.B 32.C 22.D 8.若不等式组⎩⎨⎧->-≥-2210x x a x 有解,则a 的取值范围是 1.->a A 1.-≥a B 1.≤a C 1.<a D9.点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是A .当弦PB 最长时,△APC 是等腰三角形B .当△APC 是等腰三角形时,PO ⊥ACC .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,∆APC 是等腰三角形10.如图,港口A 在观测站O 的正东方向,OA =4 km .某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为km A 4. km B 32. km C 22. km D )13(+⋅二、填空题:(本大题共6个小题,每小题3分,共18分)把答案填在答题卡的对应位置的横 线上.11.若分式12-x 有意义,则X 的取值范围是_____________. 12.现有四条线段,长度依次是2,3,4,5,从中任选三条,能组成三角形的概率是 13.把抛物线122++=x x y 向下平移2个单位长度,再向右平移1个单位长度,所得到的抛物线的解析式是______________.14.已知关于X 的一元二次方程04222=-++k x x 有两个不相等的实数根,且k 和方程的根均为整数,则k =__________.15.如图,已知在∆ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,,//,//AB EF BC DE且AD :AB =3:8,那么16.如图,正方形ABCD 的边长为4,点E 在BC 上,四边形EFGB也是正方形,以B 为圆心,BA 长为半径画弧AC ,连接AF ,CF ,则图中阴影部分面积为__________.三、解答题:(本大题共9个小题,共72分)解答应写出文字说明、证明过程或演算步骤。

2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。

襄阳市枣阳市中考数学模拟试卷含答案解析

襄阳市枣阳市中考数学模拟试卷含答案解析

湖北省襄阳市枣阳市中考数学模拟试卷一.选择题(共10小题,满分27分)1.(3分)﹣2的相反数是()A.2 B.C.﹣2 D.以上都不对2.(3分)下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩3.(3分)一个角的内部从顶点引出4条射线,则此时构成的角的个数有()A.5个 B.6个 C.10个D.15个4.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.5.(3分)下列运算结果正确的是()A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a66.(3分)对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.(3分)如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO 为平行四边形,则∠DAO与∠DCO的度数和是()A.60°B.45°C.35°D.30°8.(3分)如图,在△ABC中,∠ACB=90°,∠B=32°.分别以A、B为圆心,大于AB的长为半径画弧,两弧交于点D和E,连接DE,交AB于点F,连接CF,则∠AFC的度数为()A.60°B.62°C.64°D.65°9.(3分)如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深x间的函数关系的图象可能是()A. B.C.D.10.(3分)y=x2+(1﹣a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是()A.a≤﹣5 B.a≥5 C.a=3 D.a≥3二.填空题(共6小题,满分18分,每小题3分)11.(3分)万州长江三桥位于万州主城区,于牌楼接到跨越长江,大桥连接长江两岸的过境公路交通和城区过江交通,具有公路桥梁和城市桥梁双重功能,桥梁主线总长2120米,把数据2120米用科学记数法表示为米.12.(3分)北京奥运会的吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”等五个福娃,现将三张分别印有“欢欢”、“迎迎”、“妮妮”这三个吉祥物图案的卡片(卡片形状、大小一样,质地相同)放入一个盒中,小明从盒中任取一张,取到“贝贝”这张卡片是事件(填“必然”或“不可能”或“随机”).13.(3分)若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间小时.14.(3分)下图右边是一个三棱柱,它的正投影是下图中的(填序号).15.(3分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为cm.16.(3分)如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为BC 边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为.三.解答题(共9小题,满分72分)17.(7分)先化简:÷﹣;再在不等式组的整数解中选取一个合适的解作为a的取值,代入求值.18.(6分)某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.19.(6分)如图,在菱形ABCD中,分别延长AB、AD到E、F,使得BE=DF,连结EC、FC.求证:EC=FC.20.(6分)如图所示,△AB C中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?21.(7分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.22.(8分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(10分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?24.(10分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD 均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).25.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y 轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC 上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.湖北省襄阳市枣阳市中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分27分)1.【解答】解:﹣2的相反数是2,故选:A.2.【解答】解:A、某校要对七年级学生的身高进行调查,调查范围小,适合抽样普查,故A错误;B、卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故B 正确;C、班主任了解每位学生的家庭情况,适合普查,故B错误;D、了解九年级一班全体学生立定跳远的成绩适合普查,故D错误;故选:B.3.【解答】解:根据题意可知,角的顶点处有6条射线,共有5+4+3+2+1=15个角.故选D.4.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、是中心对称图形,不是轴对称图形,故此选项错误;故选:C.5.【解答】解:∵a3+a4≠a7,∴选项A不符合题意;∵a4÷a3=a,∴选项B符合题意;∵a3•a2=a5,∴选项C不符合题意;∵(a3)3=a9,∴选项D不符合题意.故选:B.6.【解答】解:121 []=11 []=3 []=1,∴对121只需进行3次操作后变为1,故选:C.7.【解答】解:连接OD,∵四边形ABCO为平行四边形,∴∠B=∠AOC,∵点A、B、C、D在⊙O上,∴∠B+∠ADC=180°,由圆周角定理得,∠ADC=∠AOC,∴∠ADC+2∠ADC=180°,解得,∠ADC=60°,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,∴∠DAO+∠DCO=60°,故选:A.8.【解答】解:由作图可得:DE是AB的垂直平分线,∵∠ACB=90°,∴CF=FB,∵∠B=32°,∴∠BCF=32°,∴∠AFC=32°+32°=64°,故选:C.9.【解答】解:根据球形容器形状可知,函数y的变化趋势呈现出,当0<x<R时,y增量越来越大,当R<x<2R时,y增量越来越小,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故y关于x的函数图象是先凹后凸.故选:A.10.【解答】解:第一种情况:当二次函数的对称轴不在1≤x≤3内时,此时,对称轴一定在1≤x≤3的右边,函数方能在这个区域取得最大值,x=>3,即a>7,第二种情况:当对称轴在1≤x≤3内时,对称轴一定是在区间1≤x≤3的中点的右边,因为如果在中点的左边的话,就是在x=3的地方取得最大值,即:x=≥,即a≥5(此处若a取5的话,函数就在1和3的地方都取得最大值)综合上所述a≥5.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:2120米=2.12×103米.故答案为:2.12×103.12.【解答】解:盒子中没有“贝贝”所以取到“贝贝”这张卡片是不可能事件.13.【解答】解:设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活x+小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,…,平均每人干活的时间也是小时,根据题设,得=10,解得x=16(小时);设共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得16﹣(y﹣1)t=16×,即(y﹣1)t=12,解此不定方程得,,,,,,即参加的人数y=2或3或4或5或7或13.故答案为:16.14.【解答】解:根据投影的性质可得,该物体为三棱柱,则正投影应为矩形.故选②.15.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:416.【解答】解:如图,过E作EG⊥AF,交FA的延长线于G,由折叠可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,又∵∠BAC=75°,∴∠EAF=150°,∴∠EAG=30°,∴EG=AE=AD,当AD⊥BC时,AD最短,∵BC=7,△ABC的面积为14,∴当AD⊥BC时,AD=4=AE=AF,∴△AEF的面积最小值为:AF×EG=×4×2=4,故答案为:4.三.解答题(共9小题,满分72分)17.【解答】解:原式=•﹣=1﹣=﹣=﹣,解不等式3﹣(a+1)>0,得:a<2,解不等式2a+2≥0,得:a≥﹣1,则不等式组的解集为﹣1≤a<2,其整数解有﹣1、0、1,∵a≠±1,∴a=0,则原式=1.18.【解答】解:(1)20÷40%=50(人)15÷50=30%答:本次调查的学生共有50人,在扇形统计图中,m的值是30%.(2)50×20%=10(人)50×10%=5(人).(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,男男男女女男/(男,男)(男,男)(男,女)(男,女)男(男,男)/(男,男)(男,女)(男,女)男(男,男)(男,男)/(男,女)(男,女)女(女,男)(女,男)(女,男)/(女,女)女(女,男)(女,男)(女,男)(女,女)/所有等可能的情况有20种,所抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是.故答案为:50、30%.19.【解答】证明:∵四边形ABCD是菱形,∴CB=CD,∠ABC=∠ADC,∴∠EBC=∠FDC,在△EBC和△FDC中,,∴△EBC≌△FDC,∴EC=FC.20.【解答】解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,m2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1.21.【解答】解:(1)把A(2,m),B(n,﹣2)代入y=得:k2=2m=﹣2n,即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,=•BC•BD∵S△ABC∴×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k2=6,即反比例函数的解析式是y=;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△AOC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OC A+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(3分)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3分)(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)24.【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.25.【解答】解:(1)当x=0,y=3,∴C(0,3).设抛物线的解析式为y=a(x+1)(x﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣2x2+x+3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3x+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣x+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣x+.将y=3x+3与y=﹣x+联立解得:x=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交x轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=kx+3,将F(4,0)代入得:4k+3=0,解得:k=﹣.∴CF的解析式为y=﹣x+3.将y=﹣x+3与y=﹣2x2+x+3联立:解得:x=0(舍去)或x=.将x=代入y=﹣x+3得:y=.∴D(,).。

湖北省枣阳市中考思品适应性试题(扫描版)

湖北省枣阳市中考思品适应性试题(扫描版)

湖北省枣阳市2016年中考思品适应性试卷一.单项选择题1——5 CBDAA 6——10 BDBCD二.非选择题(第26题6分,第27题6分,第28题7分,第29题6分,第30题7分,第31题8分,共40分)26.【关注未成年人健康成长】(6分)(1)①未成年人年幼,身心发育都不够成熟,生活经验不足,缺乏自我保护能力,其权利容易受到侵害;②部分未成年人的法律意识淡薄,不懂得依法维权;③学校及其有关部门的监管不力,执法不严等。

【答出三点给2分,只答一点或两点给1分】(2)①前三位同学的做法都是依法维护自身合法权益的表现,能够最大限度地维权;(1分)②小飞的做法不仅不能有效地维护自身的合法权益,而且还会助长不法侵害者的嚣张气焰,使自己和他人蒙受更大的损失。

(1分)(3)①保持高度的警惕,这是避免受侵害的前提;②面对不法侵害,要保持冷静,机智应对,以保护生命为第一原则;③有能力将其制服时,要勇敢地与其搏斗;没有能力将其制服时,应及时巧妙脱身;④避免无谓地激怒对方,暂时妥协,记住犯罪分子的特征,事后报警等。

【答出三点及以上给2分,只答一点或两点给1分】27.【学会交往感悟亲情、师情、友情】(6分)(1)由于我们和父母的人生经历、生活经验不同,导致在价值观念、兴趣爱好、行为方式等方面存在着较大的差异。

(1分)(2)新型的师生关系建立在民主平等的基础上。

在这种关系中,师生之间人格平等、互相尊重,互相学习、教学相长。

老师是我们学习的合作者、引导者和参与者。

是我们的朋友。

(1分)主动与老师进行沟通;从老师的角度看问题;正确对待老师的表扬和批评;原谅老师的错误;礼貌待师,注意场合,勿失分寸。

(2分,要求答全)(3)①交友是一个平等互惠的过程,要适当地给予朋友帮助,并自觉与朋友分担忧愁、痛苦;②宽容朋友,尊重与朋友之间的差异,增强与朋友间的沟通;③真正的友谊应该是坦诚的,在原则面前一定要坚定,不能以牺牲原则为代价维持所谓的友谊;④要做到谨慎交友,乐交诤友,不交损友。

湖北省襄阳市枣阳市中考数学模拟试卷

湖北省襄阳市枣阳市中考数学模拟试卷
(1)说明:AP 是⊙O 的切线; (2)若 OC=CP,AB=6,求 CD 的长.
23.(10 分)图中是抛物线拱桥,P 处有一照明灯,水面 OA 宽 4m,从 O、A 两处观测 P 处,
仰角分别为 α、β,且 tanα= ,tan
,以 O 为原点,OA 所在直线为 x 轴建立直角
第5页(共7页)
湖北省襄阳市枣阳市中考数学模拟试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)
1.(3 分)下列各数中,最小的数是( )
A.5
B.﹣3
C.0
D.2
2.(3 分)下列计算正确的是( )
A.3x2﹣2x2=1
B.x+x=x2
C.4x8÷2x2=2x4
D.x•x=x2
3.(3 分)如图,AB∥CD,AE 平分∠CAB 交 CD 于点 E,若∠C=50°,则∠AED=( )
三、解答题(本大题共 9 小题,共 69 分)
17.
; 18.50;24%;28.8; 19.
; 20.
; 21.
; 22.

23.
; 24.22.5; 25.

声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/21 9:02:24; 用户:qgjyus er101 02;邮箱:qg jyus er10102.2195 7750;学号: 21985108
,其解集为

14.(3 分)如图,在△ABC 中,分别以点 A,B 为圆心,大于 AB 的长为半径画弧,两弧
相交于点 M,N,作直线 MN,交 BC 于点 D,连接 AD,若△ADC 的周长为 8,AB=6,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省枣阳市2016届中考数学适应性试题
2016年枣阳市适应性考试数学评分标准及参考答案
一.选择题
二.填空题
11.9.2×107 12.1 13.2 14. 12-π
15.15 16. 2
三.解答题
17.解:原式y x y x y x y x y x 2232223][÷+--= ……………………1分
22-=xy . ………………………………………………3分
由9)(2=-y x ,得9222=+-y xy x . ……………………………4分
∵522=+y x ∴ 42=-xy ,2-=xy .……………………5分
∴原式624-=--= . ……………………………………………6分
18.解:(1)∵点C (6,-1)在反比例函数x m
y =的图象上,
∴61m =-,∴6-=m ,∴反比例函数的解析式为x y 6
-=. ……1分
∵点D 在反比例函数x y 6
-=的图象上,且DE=3,
∴x 6
3-=.∴2-=x .∴点D 的坐标为(-2,3).……………………2分
∵C 、D 两点在直线b kx y +=上,∴⎩⎨⎧=+-
-=+.32,
16b k b k
解得⎪⎩⎪⎨⎧
=-=.2,21b k ∴一次函数的解析式为221+-=x y (4)

(2)当x <-2或0<x <6时,一次函数的值大于反比例函数的值.……6分
19.解:根据题意可知∠BAD=45°,∠BCD=30°,AC=20m.
在Rt △ABD 中,由∠BAD=∠BDA=45°,得AB=BD.…………………………1分
在Rt △BDC 中,由tan ∠BCD BC BD =,得BD BD
BC 330tan =︒=.……3分
设BD xm =,则AB xm =,BC xm 3=.
∵BC-AB=20,∴203=-x x ,3.271320
≈-=x .……………………5分
答:该古塔的高度约为27.3m.………………………………………………6分
20.解:(1)5,36 ……………………………………………………2分
(2)420 ………………………………………………………………3分
(3)用树状图(如图所示)设平等、进取、和谐、感恩、互助的序号依次是①②③④⑤.
……………………5分
共有20种等可能情况,恰好选到“和谐”“感恩”的有2种.…………6分 ∴恰好选到“和谐”和“感恩”观点的概率是10
1.……………………7分 21.解:(1)设乙单独整理x 分钟完工,根据题意,得
120204020=++x
. ……………………………………2分 解得80=x . …………………………3分
经检验80=x 是原分式方程的解. 答:乙单独整理80分钟完工.………………………………4分
(2)设甲整理y 分钟完工,根据题意,得
401y -≤80
30,………………………………………………5分 解得y ≥25. …………………………6分
答:甲至少整理25分钟完工.……………………………………7分 22.(1)尺规补图略……………………………………………………………2分
(2)证明:如图,连结OD ,则OD=OA ,∴∠OA D=∠ODA.………………3分
∵∠OAD=∠CAD ,∴∠ODA=∠CAD.
∴OD ∥AC.…………………………………………………………… 4分
又∵∠C=90°,∴∠ODC=90°,
即BC ⊥OD ,∴BC 与⊙O 相切.………………………………5分
(3)解:如图,连结DE ,则∠ADE=90°.
∵∠OAD=∠ODA=∠CAD=30°,∴∠AOD=120°.……………6分
在Rt △ADE 中,42
3
32cos ==∠=EAD AD AE .…………………7分 ∴⊙O 的半径2=r .∴的长ππ3
41802120=⨯=l .………………8分 23.解:(1)当l ≤x ≤20时,令352
130=+x ,得10=x .…………1分 当2l ≤x ≤40时,令3552520=+x
,得35=x .…………2分 即第10天或第35天该商品的销售单价为35元/件.…………3分
(2)当l ≤x ≤20时,500152
1)50)(202130(2++-=--+=x x x x y ;…4分
当2l ≤x ≤40时,52526250)50)(2052520(-=--+=x
x x y .…………5分 ∴=
y ………………………………6分 (3)当l ≤x ≤20时,5.612)15(21500152122+--=++-
=x x x y ; ∵2
1-<0,∴当15=x 时,y 有最大值1y ,且5.6121=y .…………………7分 当2l ≤x ≤40时,∵26250>0,∴x
26250随着x 的增大而减小, ∴当21=x 时,x
26250最大.…………………………………………………8分 于是,当21=x 时,52526250-=x
y 有最大值2y , 且72552521
262502=-=y .………………………………………………9分 ∵1y <2y ,
∴这40天中第21天时该网店获得的利润最大,最大利润为725元.…10分
24.(1)四边形PBMN 为平行四边形.………………………………………1分
证明:在正方形ABCD 中,AB=BC ,∠ABC=∠C.
在△AB M 和△BCP 中,⎪⎩
⎪⎨⎧=∠=∠=,,,CP BM C ABC BC AB
∴△ABM ≌△BCP (SAS ),………………………………………………2分
∴AM=BP ,∠BAM=∠CBP.
∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM ⊥BP.……………………3分 ∵将线段AM 沿M 顺时针旋转90°得到线段MN ,
∴AM ⊥MN ,且AM=MN ,……………………………………………………………4分 ∴MN ∥BP ,∴四边形BMNP 是平行四边形.……………………………………5分
(2)如图,连接AQ ,∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°, ∴∠BAM=∠CMQ.……………………………………………6分
又∵∠ABM=∠C=90°,∴△ABM ∽△MCQ.…………………7分
∴MQ
MA MC AB =. 又∵△ABM ∽△MCQ ∽△AMQ ,∴
BM AB MQ MA =.………………8分 ∴BM
AB MC AB =,∴BM=MC. ………………9分
∴PN=BM=MC=2
1BC=1.……………………………………………10分 25.(1)①B (1,0),A (-4,0).………………………………………2分 ∴22
3212+--
=x x y .…………………………………………………4分
(2)设)22
321,(2+--m m m P . 如图,过点P 作PQ ⊥x 轴交AC 于点Q ,∴)22
1,(+m m Q . ∴m m m m m PQ 22
1)221(2232122--=+-+--=.……5分 ∵4)2(4242
122++-=--==⨯⨯=∆m m m PQ PQ S PAC , ∴当2-=m 时,△PAC 的面积有最大值,最大值是4.………………6分 此时P (-2,3)。

……………………………………………………7分
(3)如图,∵在Rt △AOC 中,tan ∠CAO=
21, 在Rt △BOC 中,tan ∠BCO=2
1, ∴∠CAO=∠BCO. ∵∠BCO+∠OBC=90°,
∴∠CAO+∠OBX=90°, ∴∠ACB=90°.
∴△ABC ∽△ACO ∽△CBO.………………………………………………8分
①当点M 1与点C 重合,即M 1(0,2)时,△M 1A N 1∽△BAC.…………9分
②根据抛物线的对称性,当M 2(-3,2)时,△M 2A N 2∽△ABC.………10分
③当点M 在第四象限时,设)22321,(2+--
n n n M ,则)0,(n N . ∴22
3212-+=n n MN ,4+=n AN . 当21=AN MN 时,AN MN 21=,即)4(2
1223212+=-+n n n , 化简得0822=-+n n ,∴41-=n (舍去),22=n .
∴)3,2(3-M .……………………………………………………11分 当12=AN MN 时,AN MN 2=,即)4(222
3212+=-+n n n , 化简得0202=--n n ,∴41-=n (舍去),52=n .
∴)18,5(4-M .
④若点M 在第三象限,没有符合题意的点.
综上所述,存在满足条件的点M ,其坐标为(0,2)或(-3,2)或(2,-3),或(5,-18). ……………………………………………………………………………………………12分。

相关文档
最新文档