2014实际问题与方程例1

合集下载

实际问题与一元一次方程精品练习题(1)

实际问题与一元一次方程精品练习题(1)

一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),调配问题,分配问题,配套问题,增长率问题数字问题,方案设计与成本分析,古典数学,浓度问题等。

(一)行程问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间S=vt(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析,理解行程问题。

例:1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。

(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?(二)行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

流水问题有如下两个基本公式:顺水速度=船速+水速(V顺=V静+V水)逆水速度=船速-水速(V顺=V静-V水)例:一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?工程问题中的三个量及其关系为:工作总量=工作效率×工作时间经常在题目中未给出工作总量时,设工作总量为单位1。

例一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(四)和差倍分问题(生产、做工等各类问题)1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

第五单元《解方程例1》教案

第五单元《解方程例1》教案
-合并同类项:对于含有多个同类项的方程,学生需要学会如何合并,并保持等式两边的平衡。
-方程解的应用:在解决实际问题时,如何将得到的解代入原问题中验证,并解释其意义。
举例:对于移项的难点,教师可以通过以下步骤帮助学生理解:
a.使用具体的数字例子,展示移项前后的变化,强调等式两边同时增加或减少相同的数,等式仍然成立。
3.重点难点解析:在讲授过程中,我会特别强调移项和合并同类项这两个重点。对于难点部分,我会通过具体的例题和图示法来帮助大家理解。
(三)实践活动(用时ቤተ መጻሕፍቲ ባይዱ0分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过实际操作来解方程。
b.通过图示法,如天平模型,让学生直观地看到移项相当于在天平的两边添加或拿掉相同质量的物体,天平仍然保持平衡。
c.引导学生通过小组讨论,分享自己对方程移项的理解,加深认识。
对于合并同类项的难点,教师可以通过以下方式帮助学生突破:
a.通过彩色标记或分类游戏,让学生区分并练习合并同类项。
b.设计不同难度的题目,从简单到复杂,逐步增加同类项的数量和种类,让学生逐步掌握合并技巧。
五、教学反思
在本次教学过程中,我发现学生们对一元一次方程的概念和解法有了基本的掌握,但在实际应用中仍存在一些问题。首先,对于方程移项和合并同类项的步骤,部分学生理解不够透彻,导致解题过程中出现错误。在今后的教学中,我需要更加注重对这两个知识点的讲解和练习。
此外,学生在将实际问题转化为方程的过程中,有时会感到困惑。这可能是因为他们在提取信息和构建方程模型方面的能力还不够强。为此,我计划在下一节课中增加一些关于如何从实际问题中抽象出方程的例题和练习,帮助学生提高这方面的能力。

实际问题与一元一次方程洋葱数学

实际问题与一元一次方程洋葱数学

实际问题与一元一次方程洋葱数学摘要:一、实际问题与一元一次方程的关联1.实际生活中的问题2.一元一次方程的应用3.洋葱数学与实际问题的结合二、一元一次方程的基本概念1.一元一次方程的定义2.常见的一元一次方程形式3.一元一次方程的解法三、洋葱数学解决一元一次方程的实例1.问题背景及分析2.利用洋葱数学解一元一次方程3.结果与讨论正文:一、实际问题与一元一次方程的关联在现实生活中,我们常常会遇到各种需要解决的问题。

这些问题可能涉及到数量、时间和各种变量的关系。

一元一次方程正是用来描述这类关系的数学工具。

通过建立一元一次方程,我们可以将实际问题转化为数学问题,从而更方便地分析和解决。

洋葱数学作为一种寓教于乐的在线教育平台,巧妙地将实际问题与一元一次方程相结合,使得学习变得更加生动有趣。

二、一元一次方程的基本概念1.一元一次方程的定义:一元一次方程是指形如ax + b = 0 的方程,其中a 和b 是已知数,x 是未知数。

2.常见的一元一次方程形式:除了ax + b = 0 的标准形式外,一元一次方程还可以有其他形式,如a1x + a2 = b、ax + by = c 等。

3.一元一次方程的解法:求解一元一次方程的方法有多种,如直接开平方法、因式分解法、完全平方公式法等。

其中最常用的是直接开平方法,即x = -b / a。

三、洋葱数学解决一元一次方程的实例1.问题背景及分析:假设有一个果园,苹果树的数量是梨树的两倍,已知苹果树有15 棵,求梨树的数量。

2.利用洋葱数学解一元一次方程:首先,根据题意可以建立一元一次方程:2x = 15,其中x 表示梨树的数量。

3.结果与讨论:将方程2x = 15 带入求解,得到x = 7.5。

由于梨树的数量应该是整数,所以这个结果并不符合实际情况。

此时,我们需要对题目进行进一步的分析,找出问题所在。

通过回顾题目,我们发现题目中“苹果树的数量是梨树的两倍”这一条件并未给出,因此需要补充这一条件,重新建立一元一次方程。

§_3.4实际问题与一元一次方程(练习答案)

§_3.4实际问题与一元一次方程(练习答案)

§ 3.4实际问题与一元一次方程(知识要点)一、销售问题在生活中,人们购买商品和销售商品时,经常会遇到进价、原价(标价)、售价、打折等概念,在了解这些概念后,还必须熟悉销售问题中的两个基本关系式:① 利润=售价-进价; ② 利润率=进价利润×100%. 在①式中若等式左边的“利润”为正,就是盈利;若为负,就是亏损;由①和②式可以得到:利润=售价-进价=利润率×进价。

【例1】 某商店将某种服装按进价提高30%作为标价,又以九折优惠卖出,结果仍可获利17元,则这种服装每件进价是多少元?分析:此题要用的等量关系是:利润=售价-进价,如果把进价设为x 元,则标价为(1+30%)x ,打九折后售价为0.9×(1+30%)x ,再减去进价x 元得到的就是利润17元。

解:设这种服装每件的进价为x 元,依题意列方程为:0.9×(1+30%)x -x =17解得x =100答:这种服装的进价是100元。

练习:某商店对一种商品进行调价,按原价的八折出售,打折后利润率是20%,已知商品的原价是63元,求该商品的进价?二、行程问题1、相遇问题:主要是指两车(戓人)从两地同时相向而行。

其基本等量关系为两车(戓人)所行的路程这和恰好等于两地的距离;两车(或人)人开始行驶到相遇所用的时间相等。

2、追赶问题:主要是指甲、乙同向而行,快者追慢者称为追赶问题。

① 基本公式:速度差×追赶时间=被追赶的路程;② 对于同向同地不同时出发的问题有相等关系:追赶者行进路程=被追赶者行进路程; ③ 对于同时同向不同地出发的问题有等量关系:追赶者的行驶时间=被追赶者的行驶时间。

3、航行问题:基本公式:顺水速度=静水速度+水速,逆水速度=静水速度-水速 顺风速度=无风速度+风速,逆风速度=无风速度-风速 符号公式:v 顺水=v 静水+v 水 v 顺风=v 无风+v 风v 逆水=v 静水-v 水 v 逆风=v 无风-v 风 4、行程问题一般都能通过画线段示意图来分析,通过线段示意图,等量关系就能直观地显示出来,进而用方程表示出来。

实际问题与一元二次方程题型归纳总结

实际问题与一元二次方程题型归纳总结

实际问题与一元二次方程题型归纳总结实际问题与一元二次方程题型归纳总结一、列一元二次方程解应用题的一般步骤:列一元二次方程解应用题的步骤可归纳为:“审、找、设、列、解、验、答”七个步骤。

1.审清题意,弄清已知量与未知量;2.找出等量关系;3.设未知数,有直接和间接两种设法,因题而异;4.列出一元二次方程;5.求出所列方程的解;6.检验方程的解是否正确,是否符合题意;7.作答。

二、典型题型1、数字问题例1:有两个连续整数,它们的平方和为25,求这两个数。

例2:有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。

练:1.两个连续的整数的积是156,求这两个数。

2.一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A。

25 B。

36 C。

25或36 D。

-25或-362、传播问题公式:(a+x)=M,其中a为传染源(一般a=1),n为传染轮数,M为最后得病总人数例3:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?练:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?3、相互问题(循环、握手、互赠礼品等)问题循环问题:又可分为单循环问题n(n-1),双循环问题n(n-1)和复杂循环问题2n(n-3)例4:1.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?2.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?例5:一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人?例6:生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了182件,设全组有x个同学,则根据题意列出的方程是()A。

实际问题与一元一次方程 问题分类

实际问题与一元一次方程 问题分类

实际问题与一元一次方程问题分类配套问题1、某项工程需动用15台挖土机、运土机,每台机械每小时能挖土3立方米或运土2立方米,为了使挖的土能及时运走,安排了x太挖土机,则可列方程为__________________________2、包装厂有工人42人,每个工人每天平均每小时可以生产圆形贴片120片,或长方形贴片80片,将两张圆形铁片和一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形和长方形贴片能合理地将铁片配套?3、某部队派出一支由25人组成的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每两人每小时可抬泥土14袋,如何安排好人力,才能使得装泥和抬泥密切配合,正好清场干净?8、学校假期组织52名同学做礼品盒,平均每人每天加工大礼品盒14个或小礼品盒10个,已知每个大礼品盒可以装三个小礼品盒,问需要分别安排多少名同学加工大、小礼品盒,才能使每天加工的大小礼品盒刚好配套?4、某服装厂加工车间有54人,每人每天可以加工8件衣服或10条裤子,应怎样分配人数,才能使每天生产的上衣和裤子配套?5、某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,应怎样安排人员,正好能使挖出的土及时运走?10、用铝片做听装饮料瓶,每张铝片可制作瓶身16张或制作瓶底43张,一个瓶身和两个瓶底可配成一套,有150张铝片,用多少张来制作瓶身,用多少张来制作瓶底?11、某车间有工人16名,每人每天可加工甲零件5个或乙零件4个,已知每加工一个甲零件可获利16元,每加工一个乙零件可获利24元。

若次车间某天一共获利1440元,则这天一共有几名工人加工甲零件?13、制作一张桌子需要一个桌面和四个桌腿,1m3木材可制作20个桌面或制作400条桌腿,现有12m3的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?14、某服装厂加工一批西服,每15米毛料能做上衣10件或做裤子13条,现有毛料345米,为了使上衣和裤子配套,做上衣和裤子应各有毛料几米?工程问题1、一项工程,甲单独做要40天完成,乙单独做要50天完成,甲先单独做4天,然后两人一起做x天完成这项工程,则根据题意可列方程为:______________________2、一本稿件,甲打字员单独录入20天可以完成,甲、乙打字员一起录入12天可以完成,现由两人一起录入8天后,余下部分由乙打字员单独如还需要几天?4、有一批零件加工任务,甲单独做40小时完成,乙单独做30小时完成,甲做了几个小时后另有任务,剩下的由乙单独完成,乙比甲多做2小时完成了加工任务,甲做了几个小时?3、一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,已知甲工程队铺设每天需支付工程费2000元,乙工程队铺设每天需支付工程费1500元。

九年级-实际问题与一元二次方程

九年级-实际问题与一元二次方程

A.80(1+x)2=275
B.80+80(1+x)+80(1+x)2=275
C.80(1+x)3=275
D.80(1+x)+80(1+x)2=275
4. 有一个人患了流感,经过两轮传染后共有 100 人患了流感,设每轮传染中平均一个人传染的人数是 x
人,则下列方程正确的是( )
A.1+x2=100
B.(40-2x)(70-3x)=2450 D.(40-x)(70-x)=2450
【例21】(2011 江苏宿迁)如图,邻边不.等.的矩形花圃 ABCD,它的一边 AD 利用已有的围墙,另外三边 所围的栅栏的总长度是 6m.若矩形的面积为 4m2,则 AB 的长度是 m(可利用的围墙长度超过 6m).
6
不Ⅽ揉ⓧň∁㪴作ʼn棏歹
【例5】有一只鸡患了 H7N9 流感,经过两轮传染后共有 100 只鸡患了流感,那么每轮传染中,平均一只 鸡传染的只数为______________________________
【例6】(2013 襄阳)有一人患了流感,经过两轮传染后共有 64 人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染?
.
2. 某城市居民最低生活保障在 2009 年是 240 元,经过连续两年的增加,到 2011 年提高到 345.6 元.则
该城市两年来最低生活保障的平均年增长率是
.
3. 某经济开发区今年一月份工业产值达到 80 亿元,第一季度总产值为 275 亿元,问二、三月平均每月
的增长率是多少?设平均每月的增长率为 x,根据题意所列方程是( )
【例13】足球世界杯预选赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场.共举行比 赛 210 场,则参加比赛的球队共有____________支.

五年级数学 (上)实际问题与方程(一)例1、例2

五年级数学 (上)实际问题与方程(一)例1、例2

哪组同学叙述一下解题过程?
自学提示1
阅读课本P73,完成以下任务: (1)理解例1并小组讨论怎样列方程 (2)完成做一做1、2
自学5分钟后,小组讨论5分钟 完成任务
哪组同学上台讲解例1? 哪组同学上台讲解做一做第1题? 哪组同学上台讲解做一做第2题? 说一说!
自学提示2
阅读课本P73,完成以下任务: (1)理解例2并小组讨论怎样列方程 (2)小组合作讨论得出: 列方程解决问题的步骤
问题是数学的心脏.生活中有许多的问题, 当我们面对的时候,你认为应该怎么办呢? 通过今天的学习,你认为以后可以怎么做?
退 出
11只
3.张林和李涛收集邮票,张林收集了126张,比李涛的3倍少 6张,他们共收集了邮票多少张?
44张
4、 一只足球46.8元,比一只排球价钱的3倍少1.2元,一只排 球的价钱是多少元?
16元
再见!
一、解下列方程。
3x=147 解:3x÷3=147÷3 x=49 检验:左边=3×49 =147 =右边 y-34=71 解:y -34+34=71+34 y =105 检验:左边=105-34 =71 =右边


相差
X
黑色皮:
2X
白色皮:
20
4
解:设共有X块黑色皮。 黑色皮的块数×2-白色皮的块数=4 2X-20=4
我怎样解这个方程呢?
2X-20+20=4+20 2X=24 2X÷2=24÷2 x=12
你是怎样列方程的?最后要记得验算。
先把2X看成 一个整体。
黑色皮有12块。
答:共有12块黑色皮。
还有其它列方程的方法吗?
阅读目标
重点:掌握较复杂方程的解法

一元一次方程(3)——实际问题与一元一次方程

一元一次方程(3)——实际问题与一元一次方程

一元一次方程(3)——实际问题与一元一次方程知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.例1、某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?例2、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?例3、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.知能点2:方案选择问题例4、某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50 元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1 分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?例5、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则过部分按基本电价的70%收费。

(1)某户八月份用电84千瓦时,共交电费30.72元,求a .(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时? 应交电费是多少元?例6、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3 种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A 种电视机可获利150元,销售一台B 种电视机可获利200元, 销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?知能点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

最新人教版五年级数学上册解方程实际问题与方程73页74页_例1例2教学提纲

最新人教版五年级数学上册解方程实际问题与方程73页74页_例1例2教学提纲

三、巩固新知 拓展应用
2.
绿色圃中小学教育网 绿色圃中小学教育网
问题:你能用方程解决这个问题吗?自己试着做一做。
三、巩固新知 拓展应用
预设1:
半小时=30分
解:设一个滴水的水龙头每分钟浪费x千克水。
30x=1.8 x=1.8÷30 x=0.06
活动三、拓展应用
共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒? 1.
活动任务:从题目中找等量关系,并列方程解决 这个问题
每筒网球的个数×筒数+3=网球总数 解:设一共装了x筒 5x+3=1428
5x+3-3=1428-3 5x=1425
5x÷5=1425÷5 x=285
答:一共装了285筒。 你能读懂这位同学的想法吗?这里为什么要加3?
活动二、列方程
列方程:
方法1:
方法2:
方法3:
解:设共有x块黑色皮。 2x-4=20
解:设共有x块黑色皮。 2x-20=4
解:设共有x块黑色皮。 2x=20+4
黑色皮块数×2-白色皮块数=4 黑色皮块数×2-4=白色皮块数
黑色皮块数×2=白色皮块数+4
x块
黑色皮
2x块
白色皮
20块
4块
活动二、解方程
方法3:
解:设共有x块黑色皮。 2x=20+4 2x=24
2x÷2=24÷2 x=12
同一个问题,列出三个不同的方程。如果让你选择一个方程,你会选哪个?
(顺着题意找出等量关系,再列出方程更简洁)
问题: 列方程解决实际问题有哪些步骤?
1.找出未知数,用字母x表示; 2.分析实际问题中的数量关系,找出等量关系,列方程; 3.解方程并检验作答。

3_4实际问题与一元一次方程——行程问题(11_4)

3_4实际问题与一元一次方程——行程问题(11_4)

实际问题与一元一次方程——行程问题例1、电动机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电机车速度的5倍还快20千米/小时,半小时后相遇。

两车的速度各是多少?(课本P.102第6题)【配套练习】1.甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米.两人几小时后相遇?2. 一架飞机在A、B两地间航行。

从A地到B地需5.5小时,从B地到A地需6小时,风速为24千米/时,A、B两地的距离是多少?3.运动场跑道一圈长400米,甲、乙两人同时从同一处反向出发,甲每分钟跑290米,乙每分钟跑270米,那么经过多长时间首次相遇?又经过多长时间再次相遇?追及..问题例2:解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络,多长时间后,通讯员能赶上队伍?【配套练习】1. 小明每天早上要在7:50之前赶到距家1000米的学校上学。

小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书。

于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。

(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2.甲乙两人登一座山,甲每分钟登高10米,且甲先出发3 0分,乙每分钟登高15米,两人同时登上山顶,甲用多长时间登山?这座山有多高?(课本P.102第5题)3.跑得快的马每天走240里,跑得快的马每天走150里。

慢马先走12天,快马几天能够追上慢马?(课本P.113第5题)行船问题:1. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?2.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

3、一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?4. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

教育部审定2014秋季最新人教版五年级上数学第五单元实际问题与方程例1

教育部审定2014秋季最新人教版五年级上数学第五单元实际问题与方程例1

去年身高+长高的=今年的身高 解:设小明去年身高x米。
8cm=0.08m
巩固练习:
解:设小明去年身高x米。
8cm=0.08m
0.08+x=1.53 0.08+x-0.08=1.53- 0.08 x=1.45
答:小明去年身高1.45米。
巩固练习:
2.
每分钟浪费的水×半小时=半小时浪费的水
解:设这个滴水的水龙头每分钟浪费x kg水。
巩固练习:
解:设一个滴水的水龙头每分钟浪费x kg的水。
30x=1.8
30x ÷30=1.8 ÷30 x=0.06
答:这个滴水的水龙头每分钟浪费0.06 kg水。
四、布置作业
作业:第75页练习十六,
第2题、第3题、第4题。
作业:
第75页第2题、第3题、 第4题。
x
180
例1 :
学校原跳远记录是多少米?
例1 :
小明
线段图
4.21米
0.06米
原纪录
?米
原纪录+超出部分=小明的成绩
例1 :
解:设学校原跳远纪录是x米。
x+0.06=4.21
x+0.06-0.06=4.21-0.06
5米。
巩固练习:
1.
小明去年身高多少?
简易方程
实际问题与解方程 例1
课前复习
1.含有(
一、填空:
)的( )叫做方程。 )。 )叫做方程
2.求方程的解的过程叫做( 3.使方程左右两边相等的( 的解。
课前复习
二、列方程:
1、比x多5的数是10。 2、8与x的和是56。 3、比x少1.06的数是21.5。
三、根据图意解方程:
40 40 40

一元一次方程应用题及答案(2014山东17地市中考题)

一元一次方程应用题及答案(2014山东17地市中考题)

2014山东17地市中考一元一次方程应用题1、(2014·东营)为顺利通过“国家文明城市”验收,东营市政府拟对称取部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.【分析】(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元;方案二:由乙工程队单独完成需要2.5×30=75万元;方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元.所以选择甲工程队,既能按时完工,又能使工程费用最少.【点评】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.2、(2014·菏泽)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【分析】根据题意设出未知数,再根据题目中“700克该添加剂恰好生产了A,B两种饮料共500瓶”得出等量关系列出方程(组),求出结果即可【解答】解:设A种饮料生产了x瓶,则B种饮料生产了(500-x)瓶,根据题意得出:x+2(500-x)=700 解得:x=300 所以500-300=200答:A种饮料生产了300瓶,则B种饮料生产了200瓶。

五年级上数学教案-实际问题与方程2-人教新课标2014秋

五年级上数学教案-实际问题与方程2-人教新课标2014秋

教案标题:五年级上数学教案-实际问题与方程2-人教新课标2014秋一、教学目标1. 让学生掌握方程的概念,能够正确地列出一元一次方程。

2. 培养学生运用方程解决实际问题的能力,增强学生的数学应用意识。

3. 通过对实际问题的分析,让学生体验数学与生活的紧密联系,激发学生学习数学的兴趣。

二、教学内容1. 方程的概念及一元一次方程的列法。

2. 利用一元一次方程解决实际问题。

三、教学重点与难点1. 教学重点:方程的概念,一元一次方程的列法,利用方程解决实际问题。

2. 教学难点:理解方程的意义,掌握一元一次方程的求解方法,熟练运用方程解决实际问题。

四、教学过程1. 导入:通过一个简单的实际问题,引导学生回顾以前学过的解决问题的方法,进而引入方程的概念。

2. 新课:讲解方程的概念,让学生明确方程是表示两个数量相等的式子。

然后,引导学生学习一元一次方程的列法,通过例题让学生掌握如何从实际问题中抽象出一元一次方程。

3. 操练:让学生独立完成一些列一元一次方程的练习题,巩固所学知识。

4. 应用:通过解决实际问题,让学生体验方程的价值。

可以设计一些与学生生活密切相关的实际问题,让学生尝试用方程解决,并交流解题过程。

5. 总结:对本节课所学内容进行总结,强调方程在解决问题中的重要作用,鼓励学生在日常生活中多观察、多思考,运用所学知识解决实际问题。

6. 作业布置:布置一些一元一次方程的习题,让学生回家后独立完成,以巩固所学知识。

五、教学反思1. 在教学过程中,要注意引导学生理解方程的意义,避免死记硬背。

2. 通过设计有趣的实际问题,激发学生学习方程的兴趣,培养学生的数学应用意识。

3. 在讲解例题时,要注重解题思路的引导,让学生掌握解题方法,提高解题能力。

4. 关注学生的学习反馈,及时调整教学策略,确保教学效果。

六、教学评价1. 通过课堂提问、课后作业等方式,了解学生对方程概念及一元一次方程的掌握情况。

2. 评估学生在解决实际问题中运用方程的能力,观察学生是否能将所学知识应用到实际情境中。

实际问题与一元一次方程

实际问题与一元一次方程
解得 y=80
60+60-48-80=-8(元)
答:卖这两件衣服总的亏损了8元。
巩固训练
某商场把进价为1980元的商品按标价的八 折出售,仍获利10%, 则该商品的标价为 _____ 元. 解:设该商品的标价为x元.
80%x-1980=1980×10%
解得 x=2722.5
答:设该商品的标价为2722.5元.
损,或是不盈不利?
两件衣服的进价是 x + y
=_1_2_8_元,而两件衣服的售
价是60+60=120元,进价
__大___于售价,由此可知卖
这两件衣服总的盈亏情况是
¥60
¥60
_亏__损__了__8__元_.
解:设盈利25%的那件衣服的进价是x元, 另一件的进价为y元,根据题意,得
x+0.25x=60 解得 x=48 y-0.25y=60
解 方 程
实际问题 的答案
检验
一元一次方程 的解(x = a)
四、尝试合作, 探究方法
商品销售中的盈亏问题。
成本
标价
实际售价
利润 = 售价-进价
利润
利润率
利润 利润率 =
进价
x
打 x 折的售价= 原价×
10
1.某商品原来每件零售价是a元, 现在每 件降价10%,降价后每件零售价 是 0.9a ;
利润 = 售价-进价
利润率 =
利润 进价
打 x 折的售价=
原价×
x 10
探究二:球赛积分表问题
某次篮球联赛积分榜如下:
队名
比赛 场次
胜 场
负 场
积 分
前进 14 10 4 24
问题1:你能从表格中 东方 14 10 4 24 了解到哪些信息?

最新实际问题与二元一次方程组经典例题(学生版)

最新实际问题与二元一次方程组经典例题(学生版)

实际问题与二元一次方程组经典例题(学生版)------------------------------------------作者xxxx------------------------------------------日期xxxx实际问题与二元一次方程组经典例题列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③船的顺水速度-船的逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;(5)注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)(6)4.储蓄问题:(7)(1)基本概念(8)①本金:顾客存入银行的钱叫做本金。

实际问题与一元一次方程经典例题

实际问题与一元一次方程经典例题

1.列一元一次方程解应用题的一般步骤:(1)审题:理解题意.弄清问题中___________是什么,___________是什么,问题给出和涉及的___________是什么.(2)设元(未知数):用含未知数的___________表示相关的量.①直接未知数;②间接未知数(往往二者兼用).(3)寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列___________.(4)解方程及___________.(5)答题.2.列一元一次方程解应用题的关键是:___________.K知识参考答案:1.(1)已知量,未知量,相等关系(2)代数式(3)方程(4)检验2.找相等关系一、配套问题1.在配套问题中,配套的物品之间具有一定的数量关系,这个数量关系可以作为列方程的依据.2.配套问题中的基本数量关系:若m个A和n个B配成一套,则A mB n的数量的数量,可得等量关系:m×B的数量=n×A的数量.3.审题时,要注意对题目中“恰好”“最多”等关键词的理解.【例1】佳福服装公司为学校加工一批校服,3米长的布料可制作上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的布料加工校服,请你帮该公司计算一下,分别用多少布料生产上衣和裤子,才能配套?共能加工多少套校服?【答案】用360米布料生产上衣,则用240米布料生产裤子才能配套,共加工240套校服.【解析】设用x 米布料生产上衣,则用(600–x )米布料生产裤子才能配套, 由题意得,2x =3(600–x ), 解得:x =360, 则600–x =240,共加工校服:360÷3×2=240(套). 答:用360米布料生产上衣,则用240米布料生产裤子才能配套,共加工240套校服.二、工程问题1.工程问题的基本量:工作量、工作效率、工作时间. 2.工程问题的基本数量关系: 工作量=工作效率×工作时间; 合作的效率=各单独做的效率和; 总工作量=各部分工作量之和.【例2】现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分三、商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、售价、标价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下相等关系: 利润率=利润进价×100%; 打x 折后的售价=标价×10x;售价=进价×(1+利润率); 利润=售价–进价;利润=进价÷利润率.【例3】某服装店卖出两件不同的衣服,均以91元卖出,其中一件赚30%,另一件亏30%,则卖出这两件衣服后商店 A .不赚不亏 B .赚了21元C .亏了18元D .赚了39元【答案】C【解析】设盈利的进价是x 元,则x +30%x =91,解得x =70. 设亏损的进价是y 元,则y –30%y =91,解得y =130. 所以91+91–130–70=–18,所以亏了18元. 故选C .四、比赛中的积分问题在比赛积分问题中,基本相等关系有:某个队的参赛场数=该队的胜场数+该队的负场数+该队的平场数; 某个队的总积分=该队的胜场积分+该队的负场积分+该队的平场积分.【例4】篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是 A .2 B .3C .4D .5【答案】B【解析】设该队获胜x 场,则负了(6–x )场, 根据题意得:3x +(6–x )=12,解得:x =3. 故选B .【名师点睛】(1)并不是每种比赛都按胜、平、负情况积分,有的只按胜、平两种情况积分,所以解题时一定要认真理解比赛的积分规则.(2)比赛中的积分与胜负场数有关,同时也与比赛积分规则有关,需先弄清“胜一场积几分,平一场积几分,负一场积几分”.五、方案选择问题在现实生活中,做一件事往往有多种方案可供选择,如何选择对我们最有利的方案呢?这就需要我们利用所学的知识,通过列方程、计算和比较,来选择最优方案.已知加工能力如下:若蔬菜总量再增加20吨,粗加工刚好10天全部加工完.若蔬菜总量减少20吨,精加工刚好20天全部加工完,且精加工比粗加工每天少加工10吨,又精加工和粗加工不能同时进行,而受季节限制,基地必须要15天(含15天)内全部加工或销售,为此基地特制定了三种方案:①尽可能多的精加工,来不及加工的在市场上直接销售,②全部粗加工,③将一部分精加工,其余蔬菜粗加工,且刚好15天完成.解答下列问题:(1)求基地这批蔬菜有多少吨;(2)哪种方案获利最多?最多为多少万元?【答案】(1)基地这批蔬菜有140吨;(2)方案③获利最多,最多为81万元.∵81>72.5>63,所以方案③获利最多,最多为81万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:
学校原跳远记录是多少米?
学校原跳记录是多少米?
原纪录 ?米
小明 0.06米
4.21米
我能用算术的方法解答。 小明的跳远成绩-超出的部分=原跳远记录
4.21-0.06 =4.15(m)
答:学校原跳远纪录是4.15m。
学校原跳记录是多少米?
原纪录 ?米 0.06米
小明 4.21米
由于原纪录是未知数,可以把 我会用列方程的方法解答。 它设为xm,再列方程解答。
原纪录+超出部分=小明的成绩
学校原跳记录是多少米?
解:设学校原跳远纪录是xm。
原纪录 + 超出部分 =小明的成绩 原纪录 超出部分 x 0.06 小明的成绩 4.21
x+0.06=4.21 x+0.06-0.06=4.21-0.06 x=4.15
答:学校原跳纪录是4.15米。
学校原跳记录是多少米?
有没有其他的方程列式呢?想一想。。。
解:设学校原跳远纪录是xm。
4.21-x=0.06
小明的成绩-超出部分=原纪录
4.21-x+x=x+0.06 4.21=x+0.06 x+0.06=4.21 x+0.06-0.06=4.21-0.06

x=4.15
答:学校原跳纪录是4.15米。
1.找出未知数,用字母表示。
问题:1. 请说一说你的想法。
2. 解决这个问题时,你想提醒大家注意什么呢?(统一单位)
2.
问题:你能用方程解决这个问题吗?自己试着做一做。
方法1:
半小时=30分
解:设一个滴水的水龙头每分钟浪费x千克水。 30x=1.8 30x÷30=1.8÷30 x=0.06 答:一个滴水的水龙头每分钟浪费0.06千克水。 问题:1. 这位同学的想法你能看懂吗? 每分钟滴的水×30=半小时滴的水 2.还可以怎么做呢
方法2: 解:设一个滴水的水龙头每分钟浪费x千克水。 1.8÷x=30 1.8÷x×x=30×x 1.8=30x 30x=1.8 30x÷30=1.8÷30 x=0.06 问题:1. 请说一说你的想法。

半小时滴的水÷每分钟滴的水=30
2.分析实际问题的数量关系, 找出等量关系,列方程。 3.解方程并检验作答。
做一做:
1.
小明去年身高多少? 问题:你能用方程解决这个问题吗?自己试着做一做。
方法1:
8cm=0.08m 解:设小明去年身高x米。 0.08+x=1.53 0.08+x-0.08=1.53-0.08 x=1.45
方法2: 8cm=0.08m 解:设小明去年身高x米。 1.53-x=0.08 1.53-x+x=0.08+x 1.53=0.08+x 0.08+x=1.53 0.08+x-0.08=1.53-0.08 x=1.45
相关文档
最新文档