小型气动机械手的设计

合集下载

气动机械手 毕业设计

气动机械手 毕业设计

气动机械手毕业设计气动机械手毕业设计随着科技的不断进步,机器人技术在工业领域的应用越来越广泛。

其中,气动机械手作为一种重要的机器人类型,具有灵活、高效、精准的特点,被广泛应用于生产线上的装配、搬运、喷涂等工作。

本文将探讨气动机械手的设计与优化,以及其在工业生产中的应用前景。

一、气动机械手的设计与优化1.1 气动机械手的结构与原理气动机械手主要由气动执行器、传动机构、控制系统和机械结构等组成。

其中,气动执行器是实现机械手运动的关键部件,常用的气动执行器包括气缸和气动马达。

传动机构通过传递气动能量,将气动执行器的运动传递给机械结构,实现机械手的动作。

1.2 气动机械手的设计要点在气动机械手的设计过程中,需要考虑以下几个要点:首先,根据实际应用需求确定机械手的工作范围、负载能力和精度要求。

不同的应用场景对机械手的要求不同,因此需要根据具体情况来确定设计参数。

其次,选择合适的气动执行器和传动机构。

气缸和气动马达具有不同的特点,需要根据机械手的工作特点来选择适合的气动执行器。

传动机构的设计也需要考虑传递效率、运动平稳性等因素。

最后,进行机械结构的设计与优化。

机械结构的设计要考虑刚度、稳定性、重量等因素,通过优化设计,提高机械手的工作效率和精度。

二、气动机械手在工业生产中的应用前景2.1 气动机械手的优势相比于其他类型的机械手,气动机械手具有以下几个优势:首先,气动机械手具有较高的工作速度和响应速度。

由于气动执行器的特点,气动机械手能够快速完成各种动作,提高生产效率。

其次,气动机械手具有较高的负载能力。

气动执行器能够提供较大的推力和扭矩,适合于承载较重的物体。

最后,气动机械手具有较低的成本。

相比于电动机械手,气动机械手的成本较低,适合于中小型企业的应用。

2.2 气动机械手的应用案例气动机械手在工业生产中有着广泛的应用。

以汽车制造业为例,气动机械手可以用于汽车零部件的装配、焊接和喷涂等工作。

在电子行业,气动机械手可以用于电子产品的组装和测试。

气动机械手的设计毕业设计

气动机械手的设计毕业设计

气动机械手的设计毕业设计首先是气动机械手的机械结构设计。

机械结构设计是气动机械手设计中的核心部分,它直接影响机械手的运动轨迹、载荷能力和稳定性。

在设计过程中,需要考虑机械手的工作空间、自由度、运动速度和负载要求等因素。

根据任务需求,可以选择不同类型的机械结构,例如直线型、旋转型、球面型等。

在选定机械结构后,需要进行强度计算和动力学仿真分析,以确定各种零部件的尺寸和材料,保证机械手的稳定性和可靠性。

其次是气动机械手的气动系统设计。

气动机械手的气动系统是实现机械手动作的关键,它由气源、气缸、气控阀和管路组成。

在气源选择上,一般采用压缩空气作为动力源,可以通过压缩机、气瓶或者空气压缩机组来提供气源。

气缸的选择和配置要根据机械手的设计要求和工作负载来确定,需要考虑气缸的工作压力、行程长度和移动速度等因素。

气控阀的种类有很多,例如单向阀、双向阀、比例阀等,根据具体的动作要求选用合适的气控阀。

管路设计可以采用集中式或分布式设计,根据机械手的运动方式和工作空间来确定。

最后是气动机械手的控制系统设计。

控制系统设计是实现机械手自动化操作和精确控制的关键,它包括传感器、执行器、控制器和人机界面等部分。

传感器可以添加在气缸或机械手关节处,用于检测气压、位置、力量等参数,实现机械手的反馈控制和保护功能。

执行器可以是气缸或其他电动执行器,用于实现机械手的各种动作。

控制器可以采用PLC或微控制器等设备,用于编程、逻辑控制和通信功能。

人机界面可以通过触摸屏、键盘或按钮等设备与机械手进行交互,实现操作和监视。

综上所述,气动机械手的设计涉及机械结构、气动系统和控制系统三个方面。

通过合理设计机械结构,选择适当的气动元件和配置气动系统,以及设计稳定可靠的控制系统,可以实现气动机械手的高效、精确和安全操作。

在毕业设计中,可以进一步深入探究气动机械手的优化设计和性能测试,以满足不同工作环境和任务需求的应用。

小型气动机械手的设计

小型气动机械手的设计

小型气动机械手的设计气动机械手是一种基于气动控制的工业机械手,具有结构简单、灵活性高、机械冲击力小等优点,被广泛应用于自动化生产线中。

本文将介绍小型气动机械手的设计过程。

设计目标与要求本次小型气动机械手的设计目标是能够完成工业生产中常见的抓取、移动和定位等操作。

设计要求如下:1.机械手要能够抓取并承载0.5kg左右的物体。

2.机械手需要能够在水平方向运动,并能够沿垂直方向移动。

3.机械手需要能够进行定位,并能够保持一定的稳定性和重复性。

4.机械手尽量采用轻质材料制造,以实现快速运动。

结构设计与选材小型气动机械手的结构设计参照了商用机械手的构造特点,采用了简洁、轻巧的气动控制系统,快速响应灵活性高。

机械手由抓取爪、连接部、气缸、导轨、气管和控制箱组成。

其中,抓取爪采用了常见的机械爪结构,能够灵活抓取和释放物体。

连接部是连接气缸和导轨的重要组成部分,需要承受气缸的工作力和导轨的滑动摩擦力,并且需要具有一定的抗振能力。

气缸是控制机械手上下运动的核心组件,需要具有良好的稳定性和响应速度。

导轨是机械手水平方向的运动轨迹,需要有足够的平滑度,使机械手能够在上面稳定运动。

气管是控制气缸的气源,需要具有良好的耐压性能和气密度。

机械手的选材需要具有轻质、高强度、耐腐蚀、耐磨损等特点。

导轨通常采用铝合金材料制造,气缸与连接部通常采用铝合金或不锈钢等金属材料制造,气管采用硬质聚氨酯材料制造。

在材料选择方面,需要根据机械手的设计要求进行合理搭配,以达到最佳性能。

控制系统设计机械手的控制系统采用PNP气缸控制方式,通过气缸腔内的气压来控制气缸推拉杆的伸缩。

控制气压的高低来实现机械手的上下运动。

机械手的气缸控制系统需要有良好的气密性,设备需要有恰当的压力调节、稳压设备、各个气动元件间的间隔等。

同时,布置管路时需要考虑管路铺设布局的复杂度及气源接口的安全性,这些都是控制系统设计中需要注意的地方。

性能评估对于小型气动机械手的性能评估,可以从稳定性、平稳性、抗负载能力和响应速度等方面进行考量。

气动机械手的设计

气动机械手的设计

第一章绪论1.1气动机械手的概述我国国家标准(GB/T12643–90)对机械手的定义:“具有和人手臂相似的动作功能,可在空间抓放物体,或进行其它操作的机械装置。

”机械手可分为专用机械手和通用机械手两大类。

专用机械手:它作为整机的附属部分,动作简单,工作对象单一,具有固定(有时可调)程序,使用大批量的自动生产。

如自动生产线上的上料机械手,自动换刀机械手,装配焊接机械手等装置。

通用机械手:它是一种具有独立的控制系统、程序可变、动作灵活多样的机械手。

它适用于可变换生产品种的中小批量自动化生产。

它的工作范围大,定位精度高,通用性强,广泛应用于柔性自动线。

机械手最早应用在汽车制造工业,常用于焊接、喷漆、上下料和搬运。

机械手扩大了人的手足和大脑功能,它可替代人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。

目前主要应用于制造业中,特别是电器制造、汽车制造、塑料加工、通用机械制造及金属加工等工业。

机械手与数控加工中心,自动搬运小车与自动检测系统可组成柔性制造系统(FMS )和计算机集成制造系统(CIMS ),实现生产自动化。

随着生产的发展,功能和性能的不断改善和提高,机械手的应用领域日益扩大。

1.1.1气动技术气动技术—这个被誉为工业自动化之“肌肉”的传动与控制技术,在加工制造业领域越来越受到人们的重视,并获得了广泛应用。

目前,伴随着微电子技术、通信技术和自动化控制技术的迅猛发展,气动技术也不断创新,以工程实际应用为目标,得到了前所未有的发展。

气动技术(Pneumatics)是以压缩空气为介质来传动和控制机械的一门专业技术。

“Pneumatics”一词起源于希腊文的“Pneuma”,其原义为“呼吸”,后来才一演变成“气动技术”。

气动技术因具有节能、无污染、高效、低成本、安全可靠、结构简单,以及防火、防爆、抗电磁干扰、抗幅射等优点广泛应用于汽车制造、电子、工业机械、食品等工业产业中。

气动机械手控制系统设计

气动机械手控制系统设计

气动机械手控制系统设计气动机械手是一种应用气动技术的机械手执行器,通过气动元件驱动来实现抓取、搬运、装配等动作。

气动机械手控制系统设计是指设计控制气动机械手运动的电气、电子、液压等各种控制设备和控制方式。

本文将从气动机械手的工作原理、控制系统的设计要点和实现方法三方面进行详细介绍。

一、气动机械手的工作原理具体来说,气源通常会提供一定的压力,一般使用压缩空气。

气控元件包括气缸、气阀等,用于对压缩空气进行控制,如控制气缸的进气和排气,实现气缸的伸缩和运动方向的改变。

而工作执行器则是机械手的关键组成部分,它是气缸和机械手夹具的组合,通过气缸的控制,实现机械手的抓取、搬运等动作。

二、气动机械手控制系统设计要点1.选择合适的气源和气控元件:在设计气动机械手控制系统时,需要根据机械手的负载要求选择合适的气源和气控元件。

气源的压力和流量要满足机械手的工作需求,而气控元件的类型和数量要根据机械手的动作来确定。

2.设计合理的控制回路:气动机械手的控制回路包括气源控制回路和气缸控制回路。

气源控制回路主要控制气源的启动和停止,而气缸控制回路则控制气缸的进气和排气,实现机械手的运动。

控制回路的设计要合理布置元件,使其在工作过程中能够有序工作,减少能量损失。

3.合理安排气缸的布局:气缸的布局对机械手的工作效果有很大影响。

在布置气缸时,需要考虑机械手的工作空间、抓取点的位置和安全性等因素,尽量将气缸设在合适的位置,以提高机械手的工作效率和稳定性。

三、气动机械手控制系统的实现方法1.纯气动控制:纯气动控制是指完全依靠气源和气控元件来控制机械手的运动。

这种控制方式结构简单,控制精度较低,主要适用于对动作精度要求不高的场合。

2.气动与电气联合控制:在气动机械手的控制系统中,可以结合电气元件和电气控制方式,与气动元件共同控制机械手的运动。

在这种控制方式下,电气元件可用于控制气控元件的工作,提高气动机械手的控制精度。

3.PLC控制:PLC控制是指使用可编程序控制器(PLC)对气动机械手进行控制。

气动机械手的设计毕业设计论文

气动机械手的设计毕业设计论文

气动机械手的设计毕业设计论文
首先,根据气动机械手的工作原理和结构要求,我们选择了推杆气缸
作为驱动元件。

推杆气缸具有行程长、推力大的优势,适用于机械手的多
个关节。

在设计中,我们根据机械手所需的运动范围和推力要求选择了适
当的推杆气缸型号,并进行了合理的布置和装配。

其次,对于气动机械手的结构设计,我们选择了材料强度高、重量轻
的铝合金材料,并进行了强度计算和结构分析。

在设计过程中,我们考虑
了机械手在工作过程中的受力情况,确定了各个关节的尺寸和连接方式,
以保证机械手的稳定性和可靠性。

再次,对于气动机械手的控制系统设计,我们选择了先进的气动控制
阀及传感器,以实现机械手的精确控制。

在设计中,我们考虑了机械手的
运动范围、速度和承载能力等因素,确定了合适的控制策略,并进行了模
拟和仿真分析,以验证控制系统的性能。

最后,在气动机械手的实验验证与优化方面,我们通过搭建实验平台,对设计的机械手进行了性能测试和优化实验。

在实验中,我们利用传感器
和测量仪器对机械手的运动轨迹、力矩和功耗等进行了实时监测和分析,
以评价机械手的性能和效能,并对其进行了相应的优化设计。

综上所述,本文设计了一种气动机械手,并进行了详细的分析与优化。

通过设计和实验验证,证明了机械手的可行性和优越性。

未来可以进一步
改进和扩展该设计,以满足不同领域的自动化需求,并提高气动机械手的
性能和稳定性。

气动机械手毕业设计

气动机械手毕业设计

气动机械手毕业设计气动机械手是一种基于气动元件和气动控制系统的自动化设备,主要用于工厂生产线上的物料搬运、装配和处理等工作。

气动机械手具有结构简单、运动灵活、成本低廉、维护方便等优点,在工业领域得到了广泛应用。

本文将从气动机械手的结构设计、气动系统设计和控制系统设计三个方面进行讨论。

首先是气动机械手的结构设计。

气动机械手的结构设计要考虑到工作范围、负载能力、精度要求等因素。

首先需要确定机械手的工作范围,即能够覆盖的空间范围,这决定了机械手的臂长和关节点的位置。

然后需要根据工作负载的大小和要求确定机械手的负载能力,从而确定气缸和驱动装置的规格。

最后还需要考虑机械手的运动精度,这需要合理选择传动装置和关节点的位置,以确保机械手能够准确地完成任务。

其次是气动系统设计。

气动机械手的气动系统主要由气源、气压调节装置、气缸和气动阀组成。

在气源方面,可以选择压缩空气作为动力源,需要考虑气源的稳定性和供应能力。

气压调节装置用于调整气缸的工作压力,以满足不同的工作需求。

气缸是气动机械手的执行机构,一般选择双作用气缸,通过气源的压力差来实现前后运动。

气动阀则用于控制气缸的开闭和运动方向。

最后是控制系统设计。

气动机械手的控制系统一般采用PLC或者单片机控制。

在控制系统设计中,首先需要确定机械手的工作方式,可以是自动化连续工作,也可以是手动操作。

然后需要确定机械手的控制模式,可以是位置控制、力控制或者速度控制,根据不同的工作需求选择合适的控制模式。

同时还需要设计机械手的控制程序和界面,以实现对机械手的控制和监控。

综上所述,气动机械手的毕业设计主要包括结构设计、气动系统设计和控制系统设计三个方面。

在设计过程中,需要综合考虑机械手的工作范围、负载能力、精度要求等因素,选择合适的气缸和传动装置,并设计相应的气动系统和控制系统,以实现机械手的自动化操作。

气动机械手的毕业设计

气动机械手的毕业设计

气动机械手的毕业设计一、设计背景随着工业自动化程度的不断提高,机械手成为了现代工业领域中不可或缺的设备之一、传统的机械手多使用电动执行器,但其存在着噪音大、体积大、成本高等问题。

而气动机械手则可以通过利用空气压缩机产生的压缩气体驱动,具有噪音低、操作简单、灵活性高等优点。

因此,设计一种气动机械手是十分有意义的。

二、设计目标本设计的目标是设计一种具有良好性能的气动机械手,能够完成一定的操作任务,提高工作效率和工作质量。

三、设计内容1.气体动力系统设计设计气动机械手需要一套稳定的气体动力系统,包括压缩气体供应、处理和控制等。

需要选择适合的气体源,选用合适的过滤器、减压阀和控制阀等气动元件,并设计相应的管路系统。

2.机械结构设计机械结构设计是气动机械手设计的关键环节,需要确定机械手的自由度和工作范围,设计适合的关节结构和工具夹持装置。

同时,需要考虑机械手的刚度和稳定性,确保机械手能够稳定地完成工作任务。

3.控制系统设计控制系统设计是气动机械手设计过程中的另一个重要环节。

需要设计合适的传感器来感知工作环境,采集与控制相关的数据。

并通过合适的控制算法将输入信号转化为执行器动作。

同时,需要设计合适的控制面板和操作界面,方便对机械手进行操作和监控。

四、设计步骤1.确定设计目标和需求,包括气动机械手的工作负荷、工作环境和操作需求等。

2.进行气体动力系统的选型和设计,确定适合的气体源和气动元件,并设计相应的管路系统。

3.进行机械结构的设计,确定适当的自由度和工作范围,设计合适的关节结构和工具夹持装置。

4.进行控制系统的设计,选择合适的传感器和控制算法,设计控制面板和操作界面。

5.进行整体系统的组装和调试,测试气动机械手的性能和工作效果。

六、预期成果通过本设计,预期可以实现一种具有良好性能的气动机械手,能够完成一定的操作任务,提高工作效率和工作质量。

同时,能够对气动机械手的设计过程和性能进行评估和改进。

七、计划进度本设计计划在10个月内完成,按照以下进度进行:1.确定设计目标和需求:1个月2.气体动力系统的选型和设计:2个月3.机械结构的设计:3个月4.控制系统的设计:2个月5.整体系统的组装和调试:2个月1.王晓华,李骥.气动机械手的设计[J].科技创新与应用。

气动机械手的设计毕业设计(完整)讲解

气动机械手的设计毕业设计(完整)讲解

毕业设计(论文)课题名称:气动机械手的设计专业班级:13机械电子工程学生姓名:钟国森指导教师:201 年月目录摘要 (4)第一章前言1.1机械手概述 (5)1.2机械手的组成和分类 (5)1.2.1机械手的组成.......................................41.2.2机械手的分类.......................................6 第二章机械手的设计方案2.1机械手的坐标型式与自由度.............................. 82.2机械手的手部结构方案设计.............................. 82.3机械手的手腕结构方案设计.............................. 92.4机械手的手臂结构方案设计...............................92.5机械手的驱动方案设计...................................92.6机械手的控制方案设计...................................92.7机械手的主要参数.......................................92.8机械手的技术参数列表...................................9 第三章手部结构设计3.1夹持式手部结构.........................................113.1.1手指的形状和分类.................................113.1.2设计时考虑的几个问题.............................143.1.3手部夹紧气缸的设计...............................14 第四章手腕结构设计4.1手腕的自由度.......................................... 194.2手腕的驱动力矩的计算.................................. 194.2.1手腕转动时所需的驱动力矩........................ 204.2.2回转气缸的驱动力矩计算...........................22 第五章手臂伸缩,升降,回转气缸的设计与校核5.1手臂伸缩部分尺寸设计与校核.............................235.1.1尺寸设计.........................................235.1.2尺寸校核.........................................245 .1 .3导向装置.......................................255 .1 .4平衡装置.......................................255.2手臂升降部分尺寸设计与校核.............................265.2.1尺寸设计.........................................26.5.2.2尺寸校核.........................................265.3手臂回转部分尺寸设计与校核.............................275.3.1尺寸设计.........................................275.3.2尺寸校核.........................................27第六章机械手的PLC控制设计...................................276.1可编程序控制器的选择及工作过程.........................276.1.1可编程序控制器的选择.............................276.1.2可编程序控制器的工作过程.........................276.2可编程序控制器的使用步骤...............................23 第七章结论....................................................24 致谢...........................................................29 参考文献.......................................................30 专业相关的资料.................................................31摘要在设计机械手臂座的时候,用两个电机提供动力。

气动机械手的设计

气动机械手的设计

气动机械手的设计气动机械手是一种通过空气压缩来推动工作的机械手。

它具有高效性、灵活性和经济性等特点,被广泛应用于工业生产中。

在设计气动机械手时,需要考虑到机械手的结构、工作原理、控制系统和安全保护等方面。

下面将详细介绍气动机械手的设计。

首先,气动机械手的结构设计是设计的重点之一、机械手的结构应该能够满足工作的要求,并且具有足够的稳定性和强度。

通常,气动机械手由底座、活动臂、末端执行器和控制系统等部分组成。

底座是机械手的支撑结构,应该能够提供足够的稳定性,并且能够旋转和移动。

活动臂是机械手的延伸部分,通常由多节连接的臂组成,可以实现多个自由度的运动。

末端执行器是机械手的工作部分,通常用来夹取、举起和放置物体等操作。

控制系统是机械手的大脑,负责控制机械手的运动和工作。

其次,气动机械手的工作原理非常重要。

在设计气动机械手时,需要确定它是通过何种方式来实现工作。

一种常用的方法是利用空气压缩来推动机械手的动作。

这种方式具有操作简单、成本低廉和动力充足等优点,但也存在着一定的缺点,如速度较慢、噪音较大等。

另一种方法是利用气体的膨胀和收缩来实现机械手的动作。

这种方式通常使用气囊或者气缸来完成,具有速度快、精度高和噪音小等优点,但也存在着限制压力和动力不足等缺点。

此外,气动机械手的控制系统是设计的关键之一、控制系统负责控制机械手的运动和工作,通常采用基于计算机的控制系统。

这种控制系统能够实现对机械手的精确控制,并且可以根据需要进行编程。

在设计控制系统时,需要考虑到参数调整、运动规划和故障检测等方面。

另外,为了提高控制系统的可靠性和安全性,还需要设计相应的安全保护措施,如急停按钮、限位开关和防护罩等。

最后,气动机械手的安全保护是设计的重要部分。

由于气动机械手通常用于工业生产中,工作环境复杂,存在着一定的安全隐患。

因此,在设计气动机械手时,需要考虑到安全保护的方面。

首先,机械手的结构应该能够满足安全要求,并且能够防止意外事故的发生。

气动机械手控制系统设计分析

气动机械手控制系统设计分析

气动机械手控制系统设计分析气动机械手是一种用气压作为动力源的机械手臂,主要应用于工业自动化制造中的装配、夹取等工作。

气动机械手控制系统是机械手操作的重要组成部分,本文将从气动机械手控制系统设计分析的角度,对气动机械手控制系统相关问题进行分析。

一、气动机械手控制原理气动机械手的控制原理是通过空气压力驱动气缸活塞,改变气缸活塞的位置从而实现机械手臂的运动。

气动机械手控制系统一般由执行机构、感应元件、控制器、传感器等组成,其中最重要的部分就是控制器。

在气动机械手控制系统中,控制器是独立的微型计算机,其主要功能是根据操作者的设定来计算控制信号并形成控制指令,同时控制器还负责接收传感器的信号,控制气缸的开闭以及控制气压的大小等。

控制器一般使用PLC(可编程逻辑控制器)或PC(个人计算机)等。

二、气动机械手控制系统设计1、控制器选型气动机械手控制系统设计的一个重要因素是选择控制器类型。

可编程逻辑控制器(PLC)是主要的控制器类型之一,它是一种基于电子技术的智能控制器,具有可编程性和可扩展性特点。

PLC的应用是非常广泛的,它可以用于机器人、制造业、自动化系统等领域。

另外,个人计算机(PC)也可以作为气动机械手控制器。

相比PLC,PC的可编程性更强,其控制功能也更加灵活。

不过,PC在可靠性和实时性方面相对较弱,其控制系统需要通过编写控制软件或使用现有的控制程序来实现。

因此,在实际应用中需要根据具体的控制要求和性能要求来选择控制器类型。

2、传感器选型在气动机械手控制系统中,传感器是非常重要的部分,它能够实现机械手运动的持续监测和位置检测。

传感器的选型应该根据需求进行,有以下几种常用传感器:(1)接触式传感器:可以感知物体的接触情况,通常用于检测机械手夹持物体的情况。

(2)光电传感器:可以感知物体的存在和位置,通常用于检测工件的位置和方向。

(3)压力传感器:可以感知气压变化,通常用于检测气缸的工作状态。

(4)编码器:可以检测机械手的位置和方向,通常用于机械手的导航。

气动机械手的设计

气动机械手的设计

题目:气动机械手的设计专业:机械设计制造及其自动化学生:(签名)__________指导教师:(签名)__________摘要气动机械手是能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。

它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。

本文主要进行了气动机械手的总体结构设计和气动设计。

机械手的机械结构由气缸、气爪和连接件组成,可按预定轨迹运动,实现对工件的抓取、搬运和卸载。

气动部分的设计主要是选择合适的控制阀,设计合理的气动控制回路,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作。

关键词:气动机械手;气缸;气动回路。

Subject: The design of pneumatic manipulator.AbstractPneumatic manipulator is a automated devices that can mimic the human hand and arm movements to do something,aslo can according to a fixed procedure to moving objects or control tools. It can replace the heavy labor in order to achieve the production mechanization and automation, and can work in dangerous working environments to protect the personal safety, Therefore widely used in machine building, metallurgy, electronics, light industry and atomic energy sectors.This article is mainly of the pneumatic manipulator the overall design, and pneumatic design.This mechanism of manipulator includes cylinders and claws and connectors parts,it can move according to the due track on the movement of grabbing, carrying and unloading. The pneumatic part of the design is primarily to choose the right valves and design a reasonable pneumatic control loop, by controlling and regulating pressure, flow and direction of the compressed air to make it get the necessary strength, speed and changed the direction of movement in the prescribed procedure work.Key word: pneumatic manipulator;cylinder;pneumatic loop.目录1 绪论 (1)1.1 机械手简史 (1)1.2 机械手的分类 (3)1.3 机械手的组成 (6)1.4 应用机械手的意义 (8)2 机械手总体设计方案和气动回路的设计 (10)2.1 机械手的运动规划 (10)2.2 机械手基本形式的选择 (12)2.3 机械手的主要部件及运动 (13)2.4 驱动机构的选择 (13)2.5 机械手的技术参数列表 (13)2.6 气动回路的设计 (14)3 气动机械手的机械结构设计 (15)3.1 机械手末端执行器的设计 (15)3.1.1 末端执行器的概述 (15)3.1.2 末端执行器的运动和驱动方式 (16)3.1.3 末端执行器的典型结构 (16)3.1.4 末端执行器的具体设计 (17)3.2 机械手手臂的设计 (19)3.2.1 机械手手臂的设计要求 (19)3.2.2 机械手手臂的具体设计方案 (20)3.2.3 伸缩手臂的设计 (21)3.2.4 升降手臂的设计 (24)3.2.5 回转臂设计 (26)4 结论 (30)致谢 (31)参考文献 (32)1 绪论机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。

气动助力机械手的设计理念

气动助力机械手的设计理念

气动助力机械手的设计理念
随着科技的不断发展,机械手在工业生产中扮演着越来越重要的角色。

而在机
械手的设计中,气动助力技术正逐渐成为一种重要的趋势。

气动助力机械手的设计理念,旨在通过气动技术的应用,实现机械手的高效、精准和灵活操作,从而提高生产效率和质量。

首先,气动助力机械手的设计理念注重于提高机械手的操作效率。

传统的机械
手往往需要大量的电力驱动,而气动助力技术可以通过压缩空气的方式提供动力,不仅能够减少能源消耗,还可以实现快速响应和高速运动,从而大大提升了机械手的操作效率。

其次,气动助力机械手的设计理念注重于提高机械手的精准度。

气动系统可以
实现微小的调节和控制,使得机械手可以实现精准的定位和操作。

这对于一些需要高精度操作的行业,如电子制造、医疗器械等,具有重要的意义。

最后,气动助力机械手的设计理念注重于提高机械手的灵活性。

传统的机械手
往往需要大型的结构和复杂的传动系统,而气动助力技术可以通过轻量化设计和简化结构,使得机械手更加灵活,适应性更强。

这对于一些需要频繁变换工作场景的行业,如物流、仓储等,具有重要的意义。

总的来说,气动助力机械手的设计理念是以提高效率、精准度和灵活性为目标,通过气动技术的应用,实现机械手的高效、精准和灵活操作,从而推动工业生产的发展。

随着气动技术的不断创新和发展,相信气动助力机械手将会在未来的工业生产中发挥越来越重要的作用。

机械创新设计—气动机械手

机械创新设计—气动机械手

机械创新设计—气动机械手引言随着科技的不断发展,机械创新设计日新月异。

气动机械手作为一种重要的机械装置,在工业生产中扮演着重要的角色。

本文将介绍气动机械手的原理、构造和应用,并探讨其在工业自动化领域的创新设计。

气动机械手的原理气动机械手是利用气动元件驱动机械手臂进行工作的一种机器人。

其原理是通过气源驱动气缸,使机械手臂产生运动。

在气源的作用下,气缸内的活塞前后移动,从而驱动机械手臂的运动。

通过控制气源的供给,可以实现机械手臂在三维空间的精确控制。

气动机械手的构造气动机械手一般由基座、臂架、关节和执行器等部分组成。

基座是机械手的支撑结构,臂架是连接各个关节的主要部分,关节是机械手臂的运动节段,执行器是机械手臂的末端装置。

这些部分通过连杆、轴承、气缸等机构连接起来,共同组成一个完整的气动机械手。

气动机械手的应用气动机械手广泛应用于工业生产的各个领域,如汽车制造、电子生产、包装等。

它们可以完成各种各样的任务,如搬运、装配、焊接等。

由于气动机械手具有结构简单、成本低、操作方便等优势,因此受到了广大企业的青睐。

此外,气动机械手还具有一些创新设计的应用。

例如,柔性气动机械手可以通过调整气缸的供气量和供气时间,实现机械手臂的柔软伸缩,从而适应不同工作环境。

另外,智能气动机械手利用传感器、控制系统等技术,能够自动感知、识别和调整工作状态,提高生产效率和质量。

气动机械手的优势和挑战气动机械手作为一种机器人,具有以下优势:首先,结构简单、成本低,适用于大规模生产;其次,操作方便、易于维护,可以快速调整和更换工作模式;再次,具有较高的重复精度和工作速度,提高了生产效率。

然而,气动机械手也面临一些挑战。

首先,由于气源的特性,气动机械手在速度和力度上存在一定的限制;其次,气源的供应和控制需较为复杂,需要专门的装置和技术支持;再次,气动机械手的精确度较低,不适用于一些高精度的工作环境。

结论气动机械手作为一种重要的机械装置,广泛应用于各个工业领域。

四个自由度气动机械手结构设计

四个自由度气动机械手结构设计

四个自由度气动机械手结构设计四个自由度气动机械手是一种具有四个独立运动自由度的机械手,常用于工业生产线上的自动化操作。

它采用了气动驱动技术,能够在高速下快速、准确地完成各种复杂任务。

在这篇文章中,将介绍四个自由度气动机械手的结构设计。

四个自由度气动机械手一般由基座、转台、前臂、前臂臂杆以及末端执行器等主要部件组成。

其中,基座是机械手的支撑部分,承载机械手的整体结构;转台是机械手的第一旋转关节,使机械手能够在水平面上进行转动;前臂是机械手的第二旋转关节,使机械手能够在竖直方向上进行旋转;前臂臂杆是机械手的伸缩部分,通过伸缩前臂臂杆,可以使机械手的工作范围更加灵活;末端执行器是机械手的最后一个关节,通过末端执行器可以实现机械手的精确定位和抓取动作。

在四个自由度气动机械手的设计中,需要考虑以下几个方面:结构刚度、重量、精度和可靠性。

首先,结构刚度是机械手设计的重要指标之一、为了保证机械手在高速运动中不产生振动和形变,需要采用合适的结构材料和设计参数,提高机械手的整体刚度。

其次,重量是机械手设计的另一个重要指标。

较轻的机械手可以提高其加速度和速度,使其能够更快地完成任务。

因此,在设计中需要尽量减小机械手的自重,采用轻量化的材料。

第三,精度是机械手设计的关键要素之一、在一些需要高精度定位和抓取的任务中,机械手需要具备较高的精度。

在设计中,需要合理选择驱动器、传感器和控制系统,以确保机械手的精确定位和抓取动作。

最后,可靠性是机械手设计的关键要素之一、机械手在工作过程中需要承受较大的负载和惯性力,因此需要采用可靠的结构和驱动系统,以保证机械手在长时间工作中不发生故障。

总结而言,四个自由度气动机械手的结构设计涉及结构刚度、重量、精度和可靠性等多个方面。

在设计过程中,需要综合考虑这些因素,选择合适的驱动器、传感器和控制系统,以实现机械手的高速、准确和可靠的运动。

这样的机械手在工业生产线上能够提高生产效率,实现自动化操作。

气动机械手系统设计(含全套CAD图纸)

气动机械手系统设计(含全套CAD图纸)

说明书设计题目:气动机械手系统设计专业年级: 2011级机械制造及其自动化学号: ********* 姓名:指导教师、职称:2015 年 05 月 27 日目录摘要 (I)Abstract (II)第一章引言 .......................................................... - 1 -1.1 本课题的目的和意义 ............................................ - 1 -1.2 本课题研究的主要内容、预期结果、关键问题和相关发展趋势 ........ - 1 -1.2.1 本课题研究的主要内容 .................................... - 1 -1.2.2 预期设计结果 ............................................ - 1 -1.2.3 关键问题 ................................................ - 1 -1.2.4 相关发展趋势 ............................................ - 2 -1.3 本课题的设计方法 .............................................. - 2 -1.4 系统功能说明 .................................................. - 3 - 第二章机械手气动系统设计 ............................................ - 4 -2.1 明确机械手的工作要求 ......................................... - 4 -2.1.1 气动机械手结构示意图分析 ................................ - 4 -2.1.2 工作要求 ................................................ - 5 -2.1.3 运动要求 ................................................ - 5 -2.1.4 动力要求 ................................................ - 5 -2.2 设计气动控制回路 ............................................. - 5 -2.2.1 列出气动执行元件的工作程序 .............................. - 5 -2.2.2 作X-D线图,写出执行信号的逻辑表达式 .................... - 6 -2.2.3 画出系统的逻辑原理图 .................................... - 7 -2.2.4 画出系统的气动回路原理图 ................................ - 7 - 第三章气缸及气动元件设计 ........................................... - 10 -3.1 手臂回转、伸缩、夹紧、升降气缸的设计 ........................ - 10 -3.3.1 确定气缸类型 ........................................... - 10 -3.3.2 气缸内径计算 ........................................... - 10 -3.3.3 选择气缸 ............................................... - 11 -3.3.4 验算气缸力的大小 ....................................... - 11 -3.3.5 活塞杆直径d的校核 ..................................... - 12 -3.3.6 耗气量计算 ............................................. - 13 -3.2 选择气动控制元件 ............................................ - 14 -3.2.1 选择主控气动换向阀 ..................................... - 14 -3.2.2 选择行程阀 ............................................. - 14 -3.2.3 选择手控换向阀 ......................................... - 15 -第四章机械手控制系统的设计 ......................................... - 16 -4.1 控制系统分析 ................................................ - 16 -4.1.1 总体控制要求 ........................................... - 16 -4.1.2 PLC机械手的动作分析.................................... - 16 -4.1.3 系统硬件配置 ........................................... - 17 -4.2 系统变量定义及分配表 ........................................ - 17 -4.2.1 输入/输点数分配 ........................................ - 17 -4.2.2 输入/输出点地址分配 .................................... - 18 -4.2.3 系统接线图 ............................................. - 18 -4.2.4 PLC外围接线图.......................................... - 19 -4.3 控制系统程序设计 ............................................ - 20 -4.3.1 控制程序流程图设计 ..................................... - 20 -4.3.2 程序设计(梯形图) ..................................... - 21 - 第五章 PLC机械手的程序调试.......................................... - 28 -5.1 系统调试及结果分析 .......................................... - 28 -5.1.1 PLC程序调试及解决的问题................................ - 28 -5.1.2 PLC与上位机联调........................................ - 28 -5.1.3 结果分析 ............................................... - 28 - 第六章设计总结 ..................................................... - 30 - 参考文献 ............................................................ - 31 - 致谢词 .............................................................. - 32 -摘要机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小型气动机械手的设计摘要:本文主要进行了气动机械手的总体结构设计和气动设计。

机械手的机械结构由气缸、气爪和连接件组成,可按预定轨迹运动,实现对工件的抓取、搬运和卸载。

气动部分的设计主要是选择合适的控制阀,设计合理的气动控制回路,通过控制和调节各个气缸压缩空气的压力、流量和方向来使气动执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作。

气动机械手作为机械手的一种, 它具有结构简单、重量轻、动作迅速、平稳、可靠、节能和不污染环境等优点而被广泛应用。

关键词:气动机械手;气缸;控制阀;回路;设计Design of Small Pneumatic ManipulatorAbstract:This article mainly has carried on the overall structural design and aerodynamic design of pneumatic manipulator. Robot mechanical structure is composed of a cylinder, a pneumatic claw and a connecting piece, according to a predetermined trajectory, on a workpiece gripping, conveying and unloading. Pneumatic main part of the design is to choose appropriate control valve, the rational design of pneumatic control circuit, the control and regulation of each cylinder of compressed air pressure, flow and direction to the pneumatic actuator to obtain the necessary force, speed of action and change the direction of movement, and according to the prescribed procedures work.Pneumatic machinery as a manipulator, which has the advantages of simple structure, light weight, quick action, stable, reliable, energy saving and no pollution to environment has been widely used.Key words: Pneumatic manipulator; cylinder; control valve; Circuit; the design1 前言机械工业是国民的装备部,是为国民经济提供装备和为人民生活提供耐用消费品的产业。

不论是传统产业,还是新兴产业,都离不开各种各样的机械装备,机械工业所提供装备的性能、质量和成本,对国民经济各部门技术进步和经济效益有很大的和直接的影响。

机械工业的规模和技术水平是衡量国家经济实力和科学技术水平的重要标志。

因此,世界各国都把发展机械工业作为发展本国经济的战略重点之一。

工业机械手是近几十年发展起来的一种高科技自动化生产设备。

工业机械手的是工业机器人的一个重要分支。

它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。

机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。

机械手是在机械化,自动化生产过程中发展起来的一种新型装置。

在现代生产过程中,机械手被广泛的运用于自动生产线中,机械人的研制和生产已成为高技术邻域内,迅速发展起来的一门新兴的技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。

机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动,不知疲劳,不怕危险,抓举重物的力量比人手力大的特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。

机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。

机械手是一种能自动化定位控制并可重新编程序以变动的多功能机器,它有多自由度,可用来搬运物体以完成在各个不同环境中工作。

气动机械手作为机械手的一种, 它具有结构简单、重量轻、动作迅速、平稳、可靠、节能和不污染环境等优点而被广泛应用。

气动机械手强调模块化的形式, 现代传输技术的气动机械手在控制方面采用了先进的阀岛技术(可重复编程等), 气动伺服系统(可实现任意位置上的精确定位), 在执行机构上全部采用模块化的拼装结构。

90年代初, 由布鲁塞尔皇家军事学院Y. Bando教授领导的综合技术部开发研制的电子气动机器人——“阿基里斯”六脚勘探员, 是气动技术、PLC控制技术和传感技术完美结合产生的“六足动物”。

6个脚中的每一个脚都有3个自由度, 一个直线气缸把脚提起、放下, 一个摆动马达控制脚伸展/退回运动, 另一个摆动马达则负责围绕脚的轴心做旋转之用。

由汉诺威大学材料科学研究院设计的气动攀墙机器人, 它集遥感技术和真空技术于一体, 成功地解决了垂直攀缘等视为危险工作的操作问题。

T ron-X电子气动机器人, 能与人亲切地握手,它的头部、腰部、手能与人类一样弯曲运动, 并且有良好的柔韧性。

在幕后操纵人员的操作下(或通过自身的编程控制) 能与人进行对话, 或作自我介绍等。

T ron-X电子气动机器人集电子技术、气动技术和人工智能为一体, 它告诉我们, 气动技术能够实现机器人中最难解决的灵活的自由度, 具有在足够工作空间的适应性、高精度和快速灵敏的反应能力。

现代汽车制造工厂的生产线,尤其是主要工艺是焊接的生产线,大多采用了气动机械手。

车身在每个工序的移动;车身外壳被真空吸盘吸起和放下,在指定工位的夹紧和定位;点焊机焊头的快速接近、减速软着陆后的变压控制点焊,都采用了各种特殊功能的气动机械手。

高频率的点焊、力控的准确性及完成整个工序过程的高度自动化,堪称是最有代表性的气动机械手应用之一。

在彩电、冰箱等家用电器产品的装配生产线上,在半导体芯片、印刷电路等各种电子产品的装配流水线上,不仅可以看到各种大小不一、形状不同的气缸、气爪,还可以看到许多灵巧的真空吸盘将一般气爪很难抓起的显像管、纸箱等物品轻轻地吸住,运送到指定目标位置。

对加速度限制十分严格的芯片搬运系统,采用了平稳加速的SIN气缸。

气动机械手用于对食品行业的粉状、粒状、块状物料的自动计量包装;用于烟草工业的自动卷烟和自动包装等许多工序。

如酒、油漆灌装气动机械手;自动加盖、安装和拧紧气动机械手,牛奶盒装箱气动机械手等。

2 气动机械手的总体设计方案2.1 机械手的基本结构机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。

执行机构主要是机械手赖以完成工作任务的实体,通常由杆件和关节组成。

从功能的角度,执行机构可分为:手部、腕部、臂部、腰部和基座等。

2.1.1 手部手部又称末端执行器,是工业机械手直接进行工作的部分,可以是各种夹持器。

有时人们也把诸如电焊枪、油漆喷头等划作机器手的手部。

气动手指是模拟人的手指抓紧工件,以实现机械手的动作的气缸。

按结构特点可分为旋转驱动型、平行开闭型、支点开闭型和三爪开闭型。

2.1.2 腕部腕部与手部相连,主要功能是带动手部完成预定姿态,是操作机的中结构最为复杂的部分。

手腕有独立的自由度。

有回转运动、上下摆动、左右摆动。

一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。

目前,应用最为广泛的手腕回转运动机构为回转气压缸,它的结构紧凑,灵巧但回转角度小,一般小于 270度,并且要求严格密封,否则就难保证稳定的输出扭距。

因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。

2.1.3 臂部手臂部件是机械手的重要握持部件。

它的作用是支撑腕部和手部(包括工作或夹具),并带动他们做空间运动。

臂部运动的目的:把手部送到空间运动范围内任意一点。

如果改变手部的姿态(方位),则用腕部的自由度加以实现。

因此,一般来说臂部具有三个自由度才能满足基本要求,即手臂的伸缩、左右旋转、升降(或俯仰)运动。

手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部和工件的静、动载荷,而且自身运动较为多,受力复杂。

因此,它的结构、工作范围、灵活性以及抓重大小和定位精度直接影响机械手的工作性能。

2.2 机械手的基本形式选择常见的工业机械手根据手臂的动作形态,按坐标形式大致可以分为以下4种:(1)直角坐标型机械手;(2)圆柱坐标型机械手;(3)球坐标(极坐标)型机械手;(4)多关节型机机械手。

其中圆柱坐标型机械手结构简单紧凑,定位精度较高,占地面积小,因此本设计采用圆柱坐标型。

2.3 机械手的主要部件及运动参数设计在圆柱坐标式机械手的基本方案选定后,根据设计任务,为了满足设计要求,本设计的机械手具有4个自由度:手臂伸缩;手臂回转;机身回转;机身升降。

本设计的机械手主要由3个大部件和4个气缸组成:手部,采用一个气爪,通过机构运动实现手爪的张合。

臂部,采用直线缸来实现手臂的伸缩。

机身,采用一个直线缸和一个回转缸来实现手臂升降和回转。

驱动机构是工业机械手的重要组成部分, 工业机械手的性能价格比在很大程度上取决于驱动方案及其装置。

根据动力源的不同, 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。

气动机械手因为结构简单、成本低廉、重量轻、动作迅速、平稳、安全、可靠、节能和不污染环境等优点而被广泛应用在生产自动化的各个行业。

因此,机械手的驱动方案选择气压驱动[1]。

设计技术参数:(1)抓重:2Kg (夹持式手部)(2)自由度数:4个自由度(3)座标型式:圆柱座标(4)最大工作半径:600mm(5)手臂最大中心高:400mm(6)手臂运动参数伸缩行程:350mm伸缩速度:≤ 200mm/s升降行程:250mm升降速度:≤ 100mm/s回转范围:0~360°回转速度:≤ 60mm/s3手部的设计3.1手部的基本要求为了使机械手的通用性更强,把机械手的手部结构设计成可更换结构,当工件是圆柱形式时,使用夹持式手部;如果有实际需要,还可以换成气压吸盘式结构。

相关文档
最新文档